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Superconducting circuits are a versatile platform to implement a multitude of Hamiltonians which
perform quantum computation, simulation and sensing tasks. A key ingredient for realizing a desired
Hamiltonian is the irradiation of the circuit by a strong drive. These strong drives provide an in-
situ control of couplings, which cannot be obtained by near-equilibrium Hamiltonians. However,
as shown in this paper, out-of-equilibrium systems are easily plagued by complex dynamics leading
to instabilities. Predicting and preventing these instabilities is crucial, both from a fundamental
and application perspective. We propose an inductively shunted transmon as the elementary circuit
optimized for strong parametric drives. Developing a novel numerical approach that avoids the built-
in limitations of perturbative analysis, we demonstrate that adding the inductive shunt significantly
extends the range of pump powers over which the circuit behaves in a stable manner.

I. INTRODUCTION

Josephson junctions are ideal non-dissipative elements
that realize nonlinear Hamiltonians for superconducting
quantum circuits. Compared to nonlinear crystals in the
optical regime, Josephson circuits have a much larger
ratio between multi-wave mixing and decoherence rates
[1–3]. By applying off-resonant drives (pumps) verifying
frequency matching conditions, one can engineer various
Hamiltonians that are not obtainable statically. This so-
called parametric method has been used, for instance, to
achieve frequency conversion [4], quantum-limited am-
plification [5], two-mode squeezing [6], transverse read-
out of a qubit [7], and multi-photon exchanges between
two modes [8]. In all these applications, the rates of
the engineered parametric couplings scale with the pump
power. However, as observed in [8–10], this scaling can
be strongly limited by effects such as the induced deteri-
oration of the coherence properties.

In this paper, we explain these limitations by analyz-
ing the structural stability of the underlying dynamical
system. We call a dynamical system structurally sta-
ble if small modifications of the parameters, such as the
strength of the pumping drives, lead to small changes in
its qualitative behavior, such as the asymptotic steady
states of the driven-dissipative system. We show that
the ubiquitous system consisting of a transmon [11, 12]
coupled to a cavity mode displays strong instabilities in
this sense. We predict that above a critical pump power
the transmon state escapes the Josephson potential con-
finement and is sent to free-particle-like states. The cir-
cuit behaves then as if we had removed the junction, and
this explains the jump of the cavity frequency towards
its bare (undressed) value, a phenomenon observed and

used in the past for single shot qubit readout [13]. Next,
to prevent the instability caused by this escape from the
confining potential, we propose to shunt the transmon
with an inductance smaller than the kinetic inductance
of the junction. We show that, as a result of the addi-
tional harmonic confinement, this system behaves in a
stable manner over a wide range of pump strengths.

Non-perturbative numerical simulations of these
strongly driven nonlinear systems is particularly chal-
lenging. It requires simulating a master equation over
a Hilbert space of large dimension, and with time-scales
separated by many orders of magnitude [14]. Here, we
treat the dimension problem by performing transforma-
tions that displace correctly the high excitation manifold
into a tractable one (see Appendix A). Also, usually, to
simplify the dynamics, one starts by removing the fast
time scales through rotating-wave approximations. How-
ever, reliable simulations in the presence of strong drives
require taking into account the counter-rotating terms in
the Hamiltonian, whose importance have been previously
noticed by [15, 16]. Here, we avoid time-averaging the
driven Hamiltonian, by using the Floquet-Markov the-
ory [17] to characterize the asymptotic behavior of the
system. The periodically driven Hamiltonian of a gen-
eral circuit, subject to a single pump at frequency ωp
(Fig. 1(a) and (d)), can be expressed in the Floquet states
basis. These Floquet states {|Ψα(t)〉}α, corresponding to
2π/ωp-periodic orbits of the system, are the eigenstates
of the time-dependent Hamiltonian associated to eigen-
values {εα}α that are called the Floquet quasi-energies.
For any Markovian bath, and in the weak coupling limit,
one achieves an effective Floquet master equation for the
evolution of the open quantum system. In the absence
of resonances [17, Section 9.3], this Floquet master equa-
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tion admits, as the steady state, a limit cycle of period
2π/ωp given by ρss(t) =

∑
α pα |Ψα(t)〉 〈Ψα(t)|, a statis-

tical mixture of Floquet states. The populations of these
states are calculated through an extension of the Fermi
golden rule to time-periodic systems [17] (also see Ap-
pendix B).

II. DRIVEN TRANSMON AND STRUCTURAL
INSTABILITY

We start by considering a transmon coupled to a har-
monic oscillator (referred in the following simply as “os-
cillator”). The Hamiltonian of this circuit (shown in
Fig. 1(a)) is given by

H (t) = ~ωa a†a + 4EC N2 − EJ cos (θ)

+ i~gN
(
a† − a

)
+ i~Ap(t)

(
a† − a

)
.

(1)

Here, N and cos (θ) are the transmon mode opera-
tors corresponding to the number of Cooper pairs and
their transfer across the junction, while a and a† are
photon annihilation and creation operators of the oscil-
lator. We note that here the phase θ takes its values
in the interval [0, 2π] and only periodic operators such
as cos(θ) = (

∑
N |N〉 〈N + 1|+ h.c.)/2 are well-defined

(here |N〉 are the charge states) [18]. Furthermore, EC
is the charging energy, EJ is the Josephson coupling en-
ergy, ωa is the bare frequency of the oscillator in ab-
sence of coupling to the transmon, g is the coupling
rate between the two modes. The pump is described
by Ap(t) = Ap cos (ωpt) with an amplitude Ap and a fre-
quency ωp far detuned from the resonance frequencies of
the system. Throughout this paper, we will consider as
the basis, the tensor products of the oscillator Fock states
{|n〉}∞n=0 and the transmon states {|ηk〉}∞k=0 (eigenstates
of the transmon Hamiltonian 4ECN

2 − EJ cos (θ)). We
model the dissipation as a capacitive coupling of the os-
cillator to a transmission line [19]

HSB =
∑
k

~ωkc†[ωk]c[ωk]−~Ω[ωk](a†−a)(c†[ωk]−c[ωk]).

(2)
Here the modes c[ωk] are the bath modes and Ω[ωk] rep-
resents their coupling strengths to the mode a.

We investigate the dynamics of this system for large
pump amplitudes where the circulating photon number,
given by n̄ = |Ap|2/4 |∆p|2 (with ∆p the detuning be-
tween the pump frequency and the dressed oscillator fre-
quency), can reach a few thousands. In order to reduce
the required truncation of the Hilbert space, we consider
a change of variables which takes into account such a
coherent displacement of the oscillator. As shown in Ap-
pendix A, the new Hamiltonian is given by

H̃ (t) = ~ωa ã†ã + 4EC Ñ2

− EJ cos
(
θ̃ + ξ sin(ωpt)

)
+ i~g Ñ

(
ã† − ã

)
,

(3)

where ξ = 2gωaAp/
[
ωp
(
ω2
a − ω2

p

)]
.

We have performed Floquet-Markov-type simula-
tions [20] assuming a white noise spectrum for the bath.
In Fig. 1(b), we plot the populations of the transmon
eigenstates {|ηk〉}∞k=0 in ρss(0) as a function of pump
power. We do not plot the populations in the mode ã, as
the displaced oscillator remains close to its ground state.
This confirms that the actual state is well-approximated
by a coherent state as calculated in Appendix A. The
dynamics of the displaced transmon mode exhibits two
regimes. For n̄ . 100, the state remains pure (impurity
given by the black crosses, right axis, in Fig. 1(c)) close
to the ground state, except for a few pump power values.
For n̄ & 100 it rapidly turns into a mixed state of high
number of excitations, above the cosine confinement. In-
deed, the number of confined states is roughly given by
the ratio between the depth of the cosine potential (2EJ)
and the level spacings (≈ √8EJEC) [11]. With the pa-
rameters used in Fig. 1, we obtain about 8 confined levels.

Inspired by the experiments on the AC Stark shift [21,
22], we simulated an excitation spectroscopy of such a
driven system near the oscillator bare frequency. Each
Floquet state |Ψα(t)〉, with a non-zero population in
the steady state ρss(t), can be excited to other Flo-
quet states |Ψβ(t)〉 by a weak probe drive at the fre-
quency given by the difference of their quasi-energies
(εβ−εα)/~ [16, 23, 24] (see also Appendix B). In Fig. 1(c),
we plot all these resonance frequencies as a function of
the pump power. For each pump power, we may ob-
serve a few resonance frequencies corresponding to vari-
ous transitions and various Floquet states populated in
the limit cycle. For weak drives n̄� 100, we observe a
linear behavior in agreement with the usual AC Stark
shift experiments [21, 22] and the associated theoreti-
cal work [25]. The behavior remains rather smooth up
to n̄ ≈ 100 with a slight curvature representing the ef-
fect of higher order nonlinearities [26]. For n̄ & 300 the
dominant resonance frequency shifts near oscillator bare
frequency. This can be physically understood by the fact
that high-energy transmon states (energy above 2EJ) are
not affected by the cosine potential and therefore are well
approximated by charge states. When reaching these lev-
els (Fig. 1(b)), the transmon mode acts as a free particle
(similar to the ionization of an atom), whose dynam-
ics follows that of the oscillator. The oscillator does no
longer inherit a non-linearity from the transmon mode as
evidenced by the jump of its resonance frequency towards
the bare frequency ωa. These two regimes slightly over-
lap in the middle region (100 . n̄ . 300) which presents
many transition frequencies.

Previously, such a jump in the resonance frequency
has been observed in a setup with a single strong probe
drive, and used to perform single shot measurements of
the transmon qubit [13]. Various theoretical work have
investigated this phenomenon assuming two-level [27],
multi-level [16, 28, 29], and Duffing approximations [30]
of the transmon mode. In contrast to these approaches,
the above numerical simulations of the full model (3)-
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FIG. 1. Floquet-Markov simulations (asymptotic regime) of the un-shunted and shunted transmon. (a and d) Circuits of
a regular transmon and an inductively shunted transmon, coupled to a harmonic oscillator, and capacitively coupled to a
transmission line. A (strong) off-resonant microwave drive at frequency ωp, called a pump, is sent to the system through the
transmission line. (b and e)Populations of the transmon eigenstates |ηk〉, and shunted transmon states |νk〉, in the steady
state ρss(0) of (3)-(2) and of (5)-(2), as a function of pump power. In the un-shunted case, the parameters are taken to be
EC/h = 150 MHz, EJ/h = 20 GHz, g/2π = 140 MHz, ωa/2π = 5.5GHz and ωp/2π = 6 GHz. For the shunted transmon, we
use the same parameters except for EJ/h = 6 GHz and EL/h = 14 GHz (leading to the same bare transmon frequency). Here,
n̄est = |Ap|2/4|ωp − ωa|2 is an estimation of the circulating photon number n̄, where we have used the bare oscillator frequency
instead of the dressed one. Red dots indicate the average number of excitations in the transmon mode. (c and f) Blue dots
(left axis) correspond to the AC Stark shifted frequencies of the oscillator as a function of the pump power. The areas of the
points are proportional to the associated transition probabilities (see Appendix B). Green horizontal line corresponds to the
oscillator bare frequency ωa in the un-shunted case, and to the renormalized frequency ω̃a in the shunted one. In the first case,
at many pump powers, we observe multiple resonance frequencies corresponding to different transitions from the limit cycle to
Floquet states. In contrast, in the second one, the frequency is unique and well-defined for all pump frequencies. This is also
reflected by the impurity of the steady state (black crosses, right axis). While in the first case, the steady state is very mixed
even for small pump strengths, in the second one, the impurity remains smaller than 3%.

(2), and the experimental observations of [10], illustrate
that such a jump in the resonance frequency coincides
with the excitation of the transmon mode to high energy
levels well beyond the confinement potential.

III. INDUCTIVELY SHUNTED TRANSMON: A
SOLUTION TO INSTABILITY

The above analysis illustrates that in the parametric
construction of a nonlinear Hamiltonian (such as the two-
photon exchange between two modes), we are strongly

limited in the span of the pump strength. Above a crit-
ical threshold, the ionized transmon no longer induces
any nonlinearity on the oscillator. Such a limitation has
been observed through the heating of the transmon mode
in [9]. Further confinement of the nonlinear mode should
provide a larger span of exploitable pump strength. We
propose here to shunt the transmon circuit with an in-
ductance providing a harmonic confinement of the phase
across the junction [31–33]. The Hamiltonian of such a
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circuit (shown in Fig. 1(d)) is given by

Hshunt (t) = ~ωa a†a + 4EC N2 +
EL
2
ϕ2

− EJ cos (ϕ) + i~gN
(
a† − a

)
+ i~Ap(t)

(
a† − a

)
.

(4)

where EL is the shunt inductance energy and ϕ rep-
resents the dimensionless flux operator across the junc-
tion [18]. Previously, the inductively shunted Josephson
junctions have been considered as superconducting qubit
designs [34, 35]. Here, we consider parameters compa-
rable to a flux qubit EC � EJ . EL. However, rather
than the coherence properties of this circuit, we are in-
terested in its behavior as a nonlinear device in the strong
pumping regime. While at large numbers of excitations,
the harmonic potential EL

2 ϕ2 dominates the nonlinear
part EJ cos (ϕ), the passage to the linear regime should
be smoother than with the transmon. We therefore ex-
pect to be able to explore the nonlinearity up to a higher
number of excitations.

Similarly to the un-shunted case, after a unitary trans-
formation provided in Appendix A, the Hamiltonian of
the inductively shunted transmon becomes

H̃shunt(t) = ~ω̃a ã†ã + ~ω̃b b̃†b̃

− EJ cos
[
ϕ0
a

(
ã + ã†

)
+ ϕ0

b

(
b̃ + b̃†

)
+ ξ sin (ωpt)

]
(5)

where ω̃a and ω̃b are renormalized frequencies, ϕ0
a and

ϕ0
b are zero-point fluctuations of the two modes as seen

by the Josephson junction and ξ is a renormalized pump
amplitude. Here the mode ã is closer to the initial os-

cillator mode a and the mode b̃ is closer to the junction
mode (ϕ0

a � ϕ0
b). In contrast to the un-shunted case, this

change of variables ensures that both modes remain close
to their ground state. This is a direct consequence of the
harmonic confinement and will be confirmed through nu-
merical simulations.

We use again the Floquet-Markov framework to carry
out the numerical simulations of the driven dissipative
system (5) and (2). While the calculations are done in

the basis of the Fock states of the two modes ã and b̃, we
plot the results in the shunted transmon basis {|νk〉}∞k=0
(eigenstates of the Hamiltonian 4ECN

2 + ELϕ
2/2 −

EJ cos(ϕ)). In Fig. 1(e), we plot the populations of the
states |νk〉 in the steady state together with its average
number of excitations (red dots). We have not plotted
the populations in the mode ã, as it remains very close to
its ground state. We observe that the state ρss(0) follows
a very smooth behavior and as shown in Fig. 1(f), the im-
purity of ρss (black crosses, right axis) remains close to
zero. As shown in Appendix B, in the frame correspond-

ing to ã and b̃, this steady state remains very close to the
ground state for all values of the pump power. Finally,
Fig. 1(f) also illustrates the AC Stark shifted frequency
of the resonator mode which is now well-defined for all
values of the pump power. The simulation parameters
are chosen such that the bare frequencies, impedances

and coupling of the harmonic oscillator and the transmon
mode coincide with those of the un-shunted case. The im-
portant change concerns the dilution of the nonlinearity
by the addition of the harmonic shunt with an energy
EL, about a factor of 2 larger than EJ (see Appendix B
for simulations with other parameters and comments on
the choice of factor 2).
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FIG. 2. (a) Floquet-Markov simulations of the AC Stark
shifted frequencies, for very large cavity photon numbers in
the shunted case. The superimposed orange curve corre-
sponds to the resonance frequency from the time-averaged
model. Indeed, it is calculated as the difference between the
two eigen-energies of the Hamiltonian (6) associated to the
dressed ã-mode. The green line corresponds to the oscillator
renormalized frequency ω̃a. (b) Strength of the induced Kerr
of the most linear mode ã, defined as the difference of the
transition frequencies for the first and the second excitations.
The orange curve corresponds to the expected induced Kerr
strength from the time-averaged model (6).

As a result of this smooth behavior, we can extend the
study to much higher pump powers. As illustrated in
Fig. 2(a), the AC Stark shifted frequency is well-defined
over a wide range of pump powers and exhibits a smooth
oscillating behavior decaying to ω̃a. This curve is in good
agreement with the first-order predictions by a model
resulting from time-averaging the Hamiltonian (5)

H̃av = ~ω̃a ã†ã + ~ω̃b b̃†b̃

− J0(ξ)EJ cos
[
ϕ0
a

(
ã + ã†

)
+ ϕ0

b

(
b̃ + b̃†

)]
,

(6)

where J0(·) represents the Bessel function of the first
kind. We note that the observed jump in the AC Stark
shift of the un-shunted case appears at pump strengths
much lower than the first oscillation of this Bessel func-
tion. An experimental observation of such an oscillat-
ing behavior will prove a striking difference with the un-
shunted case.

This analysis indicates that we should also be able to
tune the strength of various types of nonlinear Hamil-
tonians such as the induced Kerr of the mode ã [3]. In
Fig. 2(b), we plot the Kerr strength calculated from Flo-
quet simulations (blue dots). Such a simulation is per-
formed by determining the first and the second excited



5

Floquet states coupled to the ones in the limit cycle.
Indeed, the Kerr strength is given by the difference of
the transition frequencies for the first and the second ex-
citation. Interestingly, we observe that the Kerr term
vanishes for high enough powers. This ability in cancel-
ing the leading order nonlinear effects by merely tuning
a pump power will be an extremely useful tool for cir-
cuit QED experiments [36]. Furthermore, we plot the
expected Kerr strength computed numerically from the
time-averaged model (6) (orange curve). This is a first-
order approximation of the Kerr effect and represents well
its qualitative behavior. In order to achieve a more pre-
cise approximation, we require to perform higher order
rotating-wave approximations [37].

IV. CONCLUSION

In summary, we have investigated the non-linear dis-
sipative dynamics of a Josephson circuit in the presence
of strong off-resonant drives. Drive and dissipation are
central ingredients of many recent parametric protocols
to engineer various linear or nonlinear Hamiltonians in
the context of circuit QED. Through the analysis of the
steady state of the driven system coupled to a cold bath,
we demonstrated that the transmon circuit, commonly
used for such a purpose, displays a structural instability
in the exploitable range of pump powers. Indeed, even
for moderate pump powers and zero-temperature bath,
this steady state is significantly mixed and takes its sup-
port on transmon states that are not confined in the co-
sine potential of the Josephson junction. The transmon
states are progressively transformed into states acting as
those of a free rotor, which do not induce any AC Stark
shift of the oscillator. In contrast, shunting the trans-
mon circuit with an appropriate inductance prevents the
structural instability of the system and considerably in-
creases the purity of its states. Therefore the nonlinearity
of the Josephson junction can be exploited over a wide
range of pump strengths. In particular, the induced Kerr
effect can be canceled out with high enough pump pow-
ers, while maintaining other signatures of nonlinearity.
Finally, the Floquet type analysis performed in this paper
can be extended to other similar problems, such as the
study of the dependence of the relaxation rate of a trans-
mon qubit on the dispersive readout strength [15, 38].
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Appendix A: Simulated models

1. Un-shunted transmon

We start with the Hamiltonian of the circuit shown in
Fig. 1(a)

H = ~ωa a†a + 4EC (N−Ng)2 − EJ cos(θ)

+ i~g (N−Ng)
(
a† − a

)
+ i~Ap(t)

(
a† − a

)
(A1)

where ωa is the frequency of the bare harmonic oscillator
(in absence of coupling to the transmon), EC and EJ are
the capacitive and Josephson energies of the transmon
and g is the coupling strength. The pump is described
by Ap(t) = Ap cos(ωpt) where Ap is the pump amplitude
and ωp is the pump frequency. Here, N and cos(θ) are the
transmon mode operators corresponding to the number
and transfer of Cooper pairs across the junction{

N =
∑+∞
N=−∞ |N〉 〈N |

cos(θ) = 1
2

∑+∞
N=−∞ |N〉 〈N + 1|+ h.c.

(A2)

and a is the cavity annihilation operator. Also, Ng is the
offset charge of the superconducting island. We model
the dissipation as a capacitive coupling of the cavity to
the transmission line provided by (2).

Let us displace the modes as ã = a − ā(t) and θ̃ =
θ − θ̄(t) where

ā(t) =
Ap
2i

[
eiωpt

ωa + ωp
+

e−iωpt

ωa − ωp

]
θ̄(t) =

2Apgωa

ωp
(
ω2
a − ω2

p

) sin (ωpt) mod (2π).

Note that, here the displacement of θ is equivalent to the
application of a unitary given by U = exp(iθ̄(t)N).

The Hamiltonian in the displaced frame is given by

H̃(t) = ~ωa ã†ã+4EC (N−Ng)2−EJ cos(θ̃+ξ sin(ωpt))

+ i~g (N−Ng)
(
ã† − ã

)
(A3)

where

ξ =
2Apgωa

ωp
(
ω2
a − ω2

p

) .
This displacement brings the number of excitations in
the harmonic oscillator close to zero. Additionally, it
takes the pump drive into account as a drive on the su-
perconducting phase of the transmon, inside the cosine
term. These properties make the numerical simulations
tractable.

At this point, one should note that under this change
of variables, the coupling to the bath (2) is the same,
using ã† and ã operators instead of a† and a.
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2. Inductively shunted transmon

The Hamiltonian of the circuit shown in Fig. 1(d) is
given by

Hshunt(t) = ~ωaa†a + 4ECN
2 +

EL
2
ϕ2 − EJ cosϕ

+ i~gN(a† − a) + i~Ap(t)(a† − a). (A4)

This is similar to the Hamiltonian of the previous sub-
section, except for the additional term corresponding to
energy of the inductive shunt ELϕ

2/2. Also, as a result
of removing the superconducting island, and in contrast
to the case of the previous subsection, the phase ϕ is no
more a compact variable and takes its values over entire
R. This is why we use a different notation from the un-
shunted case: θ stands for a phase defined in the compact
interval [0, 2π] and ϕ is a phase defined over the entire
R.

We start by defining b = (ϕ + iN)/
√

2. In the aim
of diagonalizing the system and displacing it to take into
account the drive, we perform, in order, a Bogoliubov
transformation Us1, a beam-splitter type unitary Uθ, a
displacement of the frame D, and another Bogoliubov
transformation Us2 given by

Us1 = exp

(
ζ

2
(b†2 − b2)

)
Uθ = exp(θ(ab† − a†b))

D = exp(α∗(t)a− α(t)a†) exp(β∗(t)b− β(t)b†)

Us2 = exp

(
ζa
2

(a†2 − a2)

)
exp

(
ζb
2

(b†2 − b2)

)
.

Here

θ = −1

2
arctan

[
2~g
√

2EL~ωa
(~ωa)2 − 8ECEL

]
,

α(t) =
Ap cos θ

ω2
p − ωaω1

(ωp sin(ωpt) + iωa cos(ωpt)) ,

β(t) =
Ap sin θ

ω2
p − ωaω2

(ωp sin(ωpt) + iωa cos(ωpt)) ,

ζ = log

(√
EL
~ωa

)
,

ζa = log

(
4

√
ωa
ω1

)
, ζb = log

(
4

√
ωa
ω2

)
,

with

ω1 = ωa cos2 θ +
8ECEL
~2ωa

sin2 θ − g
√

2EL
~ωa

sin(2θ),

ω2 = ωa sin2 θ +
8ECEL
~2ωa

cos2 θ + g

√
2EL
~ωa

sin(2θ).

This leads to a Hamiltonian given by

H̃shunt(t) = ~ω̃aã†ã + ~ω̃bb̃†b̃

− EJ cos
(
φa(ã† + ã) + φb(b̃

† + b̃) + ξ sin(ωpt)
)

(A5)

where

ω̃a =
√
ωaω1, ω̃b =

√
ωaω2,

φa = − sin(θ)

√
~ωa
2EL

4

√
ω1

ωa
, φb = cos(θ)

√
~ωa
2EL

4

√
ω2

ωa
,

ξ = Apωp sin(2θ)

√
~ωa
2EL

(
1

ω2
p − ωaω2

− 1

ω2
p − ωaω1

)
.

Under this change of variables, the coupling to the bath
(2) through the operator i(a− a†), is replaced by

ν = i cos(θ) 4

√
ω1

ωa
(ã− ã†) + i sin(θ) 4

√
ω2

ωa
(b̃− b̃†).

Therefore, the new system-bath coupling is given by

H̃SB =
∑
k

~ωkc†[ωk]c[ωk]

− ~Ω[ωk] cos(θ) 4

√
ω1

ωa
(ã† − ã)(c†[ωk]− c[ωk])

− ~Ω[ωk] sin(θ) 4

√
ω2

ωa
(b̃† − b̃)(c†[ωk]− c[ωk]). (A6)

Appendix B: Floquet simulations

1. Hamiltonian formulation of Floquet theory

We consider here a system evolving under a time-

periodic Hamiltonian H̃(t), of period T = 2π/ωp. Such a
system can be efficiently simulated using the tools from
the Floquet theory [17, Section 2]. In this section, we
remind some of the basic elements of the Floquet the-
ory that are required to understand the simulations of
this paper. This material is borrowed and summarized
from [17].

The Schrödinger equation for this system is

i~
∂

∂t

∣∣∣Ψ̃(t)
〉

= H̃(t)
∣∣∣Ψ̃(t)

〉
(B1)

where
∣∣∣Ψ̃(t)

〉
denotes the state of the system at time t.

The Floquet theorem states that there exists solutions to
(B1) of the form

|Ψα̃(t)〉 = e−iεα̃t/~ |Φα̃(t)〉 (B2)

where |Φα̃〉 is called a Floquet mode and is T -periodic in
time and εα̃ is a real-valued energy, called a quasi-energy.
In particular, we note that the set of quasi-energies is
invariant under translation by multiples of ~ωp, as for
any Floquet mode |Φα̃(t)〉, the periodic wave-function
exp(inωpt) |Φα̃(t)〉 is also a Floquet mode. There-
fore, the index α̃ corresponds to two indices (α, n) ∈
[−~ωp/2, ~ωp/2[×Z with εα,n = εα + nωp. Each value
of n here corresponds to a Brillouin zone. In these notes,
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H

ǫα[~ωp]

|ψα〉

1

FIG. 3. Driven-dissipative quantum circuits and the Floquet-
Markov theory. Floquet states {|Ψα(t)〉}α are periodic orbits
of the driven system in its Hilbert spaceH . A quasi-energy εα
is associated to each Floquet state |Ψα(t)〉. The set of quasi-
energies is invariant under translation by multiples of ~ωp
(different Brillouin zones). Here we plot the Floquet states
of the first Brillouin zone (with quasi-energies defined mod-
ulo ~ωp and denoted by εα[~ωp]) and their transitions due
to the coupling to the bath. The steady state of the driven-
dissipative system is given by a statistical mixture of these
Floquet states, with populations inferred from an extension
of the Fermi golden rule.

we consider the first Brillouin zone (α, 0) that we replace
by α to simplify the notations.

A general approach to solve the above Schrödinger
equation is to identify the Floquet modes and the as-
sociated quasi-energies. By decomposing the initial state
as a superposition of the Floquet modes of the first Bril-
louin zone at time t = 0, |Ψ(0)〉 =

∑
α cα |Φα(0)〉, the

solution at time t is given by

|Ψ(t)〉 =
∑
α

cαe
−iεαt/~ |Φα(t)〉 .

In order to identify the Floquet modes and the quasi-

energies, we note that by applying the propagator Ũ(t+
T, t) of (B1), to a Floquet solution, we get

Ũ(t+ T, t) |Φα(t)〉 = e−iεαT/~ |Φα(T + t)〉 (B3)

and in particular at t = 0,

Ũ(T, 0) |Φα(0)〉 = e−iεαT/~ |Φα(0)〉 . (B4)

Equation (B4) can be used to numerically compute the
Floquet modes at t = 0 and their quasi-energies through

the eigenstates and eigenvalues of Ũ(T, 0). Then, we can
get the value of the Floquet mode at any later time using

|Φα(t)〉 = eiεαt/~Ũ(t, 0) |Φα(0)〉 . (B5)

2. Floquet-Markov approach for weak dissipation
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(b)
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FIG. 4. Floquet-Markov simulations (asymptotic regime)
of (A5)-(A6) with EC/h = 150MHz, EJ/h = 6GHz, EL/h =
14GHz, g/2π = 140MHz, ωa/2π = 5.5MHz, ωp/2π = 6GHz.
(a) The populations of the shunted transmon eigenstates |νk〉
in the steady state ρss(0) as a function of pump power. (b)

The populations of the b̃-mode’s Fock states in the same
steady state.

The Floquet theory can be extended to take into ac-
count weak dissipations. Under the Floquet-Markov-
Born approximation [17, section 9], one can write a mas-
ter equation in the basis of the Floquet modes of the first
Brillouin zone:

ρ̇αα(t) =
∑
ν [Lανρνν(t)− Lναραα(t)]

ρ̇αβ(t) = − 1
2

∑
ν (Lνα + Lνβ) ραβ(t), α 6= β

(B6)

where (ραβ) = 〈Φα(t)| ρ |Φβ(t)〉 are the components of
the density matrix ρ. We have defined

Lαβ =

+∞∑
k=−∞

(
γα,β,k + nth(|∆α,β,k|) (γα,β,k + γβ,α,−k)

)
.

(B7)
Here,

γα,β,k = 2πΘ (∆αβk) J (∆α,β,k) |Pαβk|2 (B8)

where Θ is the Heaviside distribution, ~∆α,β,k = εβ−εα+
k~ωp is a quasi-energy difference and J(ω) is the noise
spectral function of the environmental coupling. The ma-
trix elements, Pαβk are given by

Pαβk =
i

T

∫ T

0

e−ikωpt 〈Φα(t)| (ã− ã†) |Φβ(t)〉 dt. (B9)
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FIG. 5. Floquet-Markov simulations (in the asymptotic regime) of (A1)-(2), using the same parameters as in Section II and
three different values of Ng. In the top figures, we plot the populations of the transmon eigenstates in the steady state ρss(0)
as a function of pump power. Also the red dots indicate the average number of excitations in the transmon mode. In the
bottom figures, we plot the AC Stark shifted frequencies of the oscillator (blue dots) and the impurity of the steady state (black
crosses, right axis) as a function of the pump power. As it can be seen, we observe no significant qualitative difference between
the three cases. The steady state becomes rapidly very mixed and highly excited and the frequency is not well defined for n̄
larger than 100.

Finally, nth(ω) = 1/[exp(~ω/kBT )−1] is the thermal oc-
cupation of the bath at frequency ω. In our simulations,
we assume a zero temperature and therefore nth ≡ 0.

Under some non-degeneracy assumptions (absence of
resonance), the steady state of (B6) is diagonal in the
Floquet modes basis. Moreover, the diagonal of this
steady state density matrix can be numerically com-
puted, by solving the linear system Rp = 0, where
(pα)α = (ραα)α is the diagonal of the steady state den-
sity matrix and (Rαβ)αβ = (Lαβ − δαβ

∑
ν Lαν)

αβ
with

δαβ the Kronecker delta.

3. Numerical calculation of steady states

The steady states in the simulations of Fig. 1b and e
have been numerically calculated following the above ap-
proach. We start by computing the Floquet modes and
then reconstruct the stochastic transition matrix R. Af-
ter calculating the steady state as a statistical mixture of
the Floquet modes, we plot them in an appropriate basis
of the Hilbert space. All our numerical simulations are
run on a desktop workstation with an Intel Core i7-6700.
We are running our simulations on a modified version of
QuTiP 4.2.0 [39, 40] under Python 3.5.2 and the plots
have been produced using Matplotlib [41]. In the un-
shunted case, and in the displaced frame provided in Ap-
pendix A 1, we require a truncation of about 50 transmon
states and 10 oscillator Fock states. For the un-shunted
case, we go to a frame provided in Appendix A 2. As a

result of the stable behavior in this case, we require a
smaller truncation of about 20 Fock states of the nonlin-
ear mode and 10 Fock states of the linear one.

In Fig. 1(e), in order to put the system in a similar
basis as in Fig. 1(b) for the un-shunted case, we plot
the steady states in the shunted transmon basis after
applying the inverse of the unitary transformations of
Appendix A 2. Here, in Fig 4, we provide this steady
state over an extended span of pump powers, and both in
the shunted transmon basis |νk〉 of 4ECN

2 + ELϕ
2/2−

EJ cos(ϕ), and in the distorted, rotated and displaced

frame ã and b̃, of Appendix A 2. We see that in this
second frame, the steady state remains very close to the

ground state of the mode b̃, for all values of the pump
power. This statement is also true for the mode ã.

4. Computing AC-Stark shifts

We are interested in the resonance frequency of the

driven system with Hamiltonian H̃(t), close to the oscilla-
tor’s bare frequency. Experimentally, we can find such a
resonance frequency by sweeping the frequency of a very
weak probe drive around the oscillator’s frequency [10].
We model this weak probe as a small perturbative Hamil-
tonian i~ε(t)

(
ã† − ã

)
.

As shown in previous subsections, the system con-
verges asymptotically to a limit cycle given by a statisti-
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FIG. 6. Floquet-Markov simulations of the shunted trans-
mon with parameters EC/h = 450 MHz, EJ/h = 2.22 GHz,
EL/h = 4.44 GHz, g/2π = 245 MHz, ωa/2π = 5.5 GHz,
ωp/2π = 6 GHz. (a) Blue dots correspond to the AC Stark
shifted frequencies of the oscillator as a function of the pump
power. For comparison, we have also reproduced the results
for the un-shunted case with the parameters of Fig. 1. These
are plotted as pale blue dots (left axis). We also have plot-
ted the impurity of the steady state (black crosses, right axis)
versus the corresponding results for the un-shunted case (gray
crosses, right axis). (b) We plot the AC Stark shifted fre-
quency with the shunted transmon over an extended range of
pump powers. The blue dots correspond to the Floquet sim-
ulation results and the orange curve indicates the expected
values from a time-averaged model. This is to be compared
to Fig. 2(a).(c) Induced Kerr strength over the same extended
range (to be compared with Fig. 2(b)).

cal mixture of Floquet states:

ρss(t) =
∑
α

pα |Φα(t)〉 〈Φα(t)| .

Initializing the system at one of the Floquet modes |Φα〉
populated in the steady state, let us focus on the solu-
tion of the Schrödinger equation in the presence of the
weak probe. We consider this solution at the lowest or-
der in the amplitude of the probe field. The Schrödinger

equation in this case is

∂

∂t
|Ψ(t)〉 = − i

~
Hε(t) |Ψ(t)〉 , |Ψ(0)〉 = |Φα(0)〉 (B10)

where Hε(t) = H̃(t) + iε(t)
(
ã† − ã

)
.

First, let us introduce the propagation operator Ũ(t, 0)

associated with the H̃(t) Hamiltonian,

∂Ũ(t, 0)

∂t
= − i

~
H̃(t)Ũ(t, 0), Ũ(0, 0) = I.

The solution of (B10) is given by

|Ψ(t)〉 = Ũ(t, 0) |Φα(0)〉

+
1

~
Ũ(t, 0)

∫ t

0

ε(s)Ũ(s, 0)†
(
ã† − ã

)
Ũ(s, 0) |Φα(0)〉 ds

= e−iεαt/~ |Φα(t)〉 (B11)

+
1

~
Ũ(t, 0)

∫ t

0

ε(s)e−iεαs/~Ũ(s, 0)†
(
ã† − ã

)
|Φα(s)〉 ds.

Let us now focus on the overlap of |Ψ(t)〉 with other Flo-
quet modes |Φβ(t)〉. We have from(B11),

〈Φβ(t)| Ψ(t)〉 = e−iεαt/~ 〈Φβ(t)| Φα(t)〉

+
1

~
〈Φβ(t)| Ũ(t, 0)

∫ t

0

ε(s)e−iεαs/~Ũ(s, 0)†
(
ã† − ã

)
|Φα(s)〉 ds

(B12)

that is

〈Φβ(t)| Ψ(t)〉 = e−iεαt/~ 〈Φβ(t)| Φα(t)〉

+
1

~
e−iεβt/~

∫ t

0

ε(s)ei(εβ−εα)s/~ 〈Φβ(s)|
(
ã† − ã

)
|Φα(s)〉 ds

= e−iεαt/~ 〈Φβ(t)| Φα(t)〉

− i

~
e−iεβt/~

∑
k

∫ t

0

ε(s)ei∆α,β,ksPβ,α,kds

To induce a transition in the system between the Flo-
quet modes |Φα〉 and |Φβ〉, one needs the frequency of
the probe drive ε(t) to match one of the frequencies
∆α,β,k, and furthermore that the associated matrix el-
ement Pβ,α,k is non-zero. Moreover, the transition rate
is proportional to both the population of the initial Flo-
quet mode |Φα〉 in the steady state ρss given by pα, and
the matrix element Pβ,α,k. In Figs. 1c and f, we have
plotted the predominant transition frequencies at each
pump power.

5. un-shunted transmon and charge offset

In this subsection, we focus on the un-shunted case
and we study the effect of the charge offset Ng. In the
simulations of Section II, we have taken Ng = 0. As we
see in Fig. 5, the choice of Ng in the Hamiltonian (A1)
does not have any significant effect on the qualitative
behavior of the system in the steady state.
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FIG. 7. Impurity of the steady state as a function of pump
power. We use the same parameters as in Fig. 6, except for
EJ and EL. While the sum (EJ +EL)/h = 6.66 GHz is fixed,
we take 3 different choices for their ratio r = EL/EJ . The
black crosses correspond to r = 2 (EL/h = 4.44 GHz and
EJ/h = 2.22 GHz), the orange ones to r = 1.5 (EL/h = 4
GHz and EJ/h = 2.22 GHz), and the magenta ones to r = 1
(EL/h = EJ/h = 3.33 GHz).

6. Choice of parameters for shunted transmon

The simulations of Section III have been performed
with the same parameters as in the un-shunted case, ex-
cept for the Josephson energy that has been taken to be
EJ/h = 6 GHz and the addition of EL/h = 14 GHz.
Noting that the sum of these two energies correspond to
the Josephson energy in the un-shunted case, this choice
allows to keep the bare frequency of the transmon mode
the same. This, however, comes at the expense of dilut-
ing the nonlinearity of the transmon mode. Indeed, the
anharmonicity of the shunted transmon mode is given by
37 MHz, to be compared to 143 MHz in the un-shunted
case. In the same way the induced Kerr on the cavity of
306 kHz is weaker than 655 kHz, for the un-shunted case.
The shallower slope of the AC Stark shift in Fig. 1(f)
(with respect to Fig. 1(c)) can be explained through this
difference.

Using a different set of parameters, one can achieve
similar nonlinearities for the shunted transmon. For in-

stance, by choosing EC/h = 450 MHz, EJ/h = 2.22
GHz, EL/h = 4.44 GHz, g/2π = 245 MHz, ωa = 5.5
GHz, we achieve similar frequencies and nonlinearities to
the shunted case. More precisely, in the absence of the
pump, we find the cavity frequency to be 5.545 GHz, the
qubit frequency 4.7 GHz, the qubit anharmonicity 123
MHz, the induced cavity Kerr of 600 kHz, and a cross
Kerr between the qubit and the cavity of 15.5 MHz.
These parameters for the un-shunted case are respec-
tively given by 5.545 GHz, 4.691 GHz, 143 MHz, 655
kHz, 17.3 MHz. In Fig. 6(a), we plot and compare the
shifted cavity frequencies in the shunted and un-shunted
case (blue dots, left axis). The slope near n̄est = 0 of
the variation of frequency vs photon number n̄est is now
very close to that of the un-shunted case. We also plot
the impurity of the steady state in both cases versus the
pump power (black and gray crosses, right axis). One
clearly observes a much purer and smoother behavior for
the shunted case with respect to the un-shunted one. In
Fig. 6(b) and (c), we plot the shifted cavity frequency and
induced Kerr effect over a larger range of pump powers
for the shunted case with these new parameters. We ob-
serve a behavior similar to that shown in panels (a) and
(b) of Fig. 2. As a result of the increased non-linearity,
the range of the values taken by the Kerr strength is twice
larger than in the simulations of the shunted case with
the parameters in Section III.

In these simulations, similar to the previous set of pa-
rameters, we have chosen a ratio between EL and EJ
of about 2. Noting that a large ratio between EL and
EJ leads to the dilution of the Josephson junctions non-
linearity, one may consider the possibility of choosing a
smaller ratio. We will see however that, this comes at
the expense of losing the purity of the steady state and
therefore getting closer to the asymptotic behavior in the
un-shunted case. In order to illustrate this, we perform
numerical simulations with the same parameters as in
Fig. 6, except for EJ and EL. Indeed, we fix their sum
(EJ + EL)/h = 6.66 GHz, and we let vary the ratio be-
tween them. In Fig. 7, we provide the impurity of the
steady state as a function of the pump power for 3 dif-
ferent choices of the ratio r = EL/EJ . As it can be seen
a ratio of 2, as chosen in this paper, ensures globally
a purer steady state and this purity is lost for smaller
ratios.
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