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We argue that a high-purity Yb-doped silica glass can potentially be cooled via anti-Stokes fluo-
rescence optical refrigeration. In order to achieve net solid-state optical refrigeration, it is necessary
for the cooling efficiency to be positive. This requires the pump wavelength to be greater than
the mean fluorescence wavelength, and the internal quantum efficiency as well as the absorption
efficiency to be near unity. Our conclusion is reached by showing, using reasonable assumptions for
the host material properties, that the non-radiative decay rate of Yb ions can be made substantially
smaller than the radiative decay rate. Therefore, an internal quantum efficiency of near unity can
be obtained. Moreover, the background absorption coefficient in high-quality silica glass lies in an
acceptable range to guarantee a near unity absorption efficiency at room temperature. Using spec-
tral measurements of the fluorescence from a Yb-doped silica optical fiber at different temperatures,
we estimate the minimum achievable temperature in Yb-doped silica glass for different values of the

internal quantum efficiency.

I. INTRODUCTION

In solid-state optical refrigeration, anti-Stokes fluores-
cence removes thermal energy from the material, result-
ing in net cooling. Solid-state optical cooling was first
proposed by Pringsheim in 1929 [1] and was put on a
solid thermodynamic foundation by Landau in 1946 [2].
Solid-state optical cooling was first experimentally ob-
served in 1995 by Epstein’s group at Los Alamos Na-
tional Laboratory in Yb-doped ZBLANP glass [3]. Much
attention has since been devoted to solid-state optical
refrigeration in different materials and geometries due to
its interesting basic science properties and potential ap-
plications [4]. The quest for solid-state optical cooling in
new configurations and materials is on-going [5].

In particular, solid-state optical refrigeration of Yb-
doped silica glass, which is extensively used in high-power
fiber lasers, is highly desirable. New generations of high
power fiber amplifiers and lasers now operate at few kilo-
Watt levels [6]. However, the significant heat-load in
high-power operation has hindered the efforts to further
scale up the power in fiber lasers and amplifiers [6-9].
Different methods have been developed to manage the
heat-load in high-power fiber lasers or amplifiers; in par-
ticular, solid-state optical refrigeration via anti-Stokes
fluorescence has been suggested as a viable path for heat
mitigation [10-12]. So far, there is no report of solid-state
optical refrigeration in Yb-doped silica; this manuscript
is intended to highlight its possibility.

In this context, Radiation-Balanced Lasers (RBL) were
first introduced by Bowman in 1999 [10]. In radiation
balancing, the heat that originates from the quantum
defect of the laser as well as parasitic absorption can be
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removed by anti-Stokes fluorescence under a very subtle
balance condition between different parameters of a laser
(or an amplifier) [10, 11, 13]. In other words, the anti-
Stokes fluorescence removes the excess heat generated in
the medium. Therefore, heat mitigation by radiation-
balancing via anti-Stokes fluorescence is highly desirable
and will have great practical implications if it can be
achieved in Yb-doped silica glass, which is the material of
choice for most high-power fiber lasers and amplifiers [6,
14, 15].

Although the first solid-state optical refrigeration was
observed in a Yb-doped ZBLAN glass, it soon became
apparent that rare-earth-doped crystals can be cooled
more efficiently because i) the absorption lines of the Yb
ions in crystals have a smaller inhomogeneous broaden-
ing, and ii) crystals can accept higher concentrations of
rare-earth ions [4, 5]. As such, rare-earth-doped crystals
have become the material of choice for solid-state optical
refrigeration [16]. Only recently has there been a renewed
interest in glasses, mainly because of their potential in
RBL fiber lasers and amplifiers [12].

The investigation of solid-state optical refrigeration
can be done either directly or indirectly. In a direct in-
vestigation, the material is exposed to a laser in a ther-
mally isolated setup, often in a sophisticated vacuum en-
vironment [16], and its temperature is measured directly
by a thermal camera or similar methods. In an indi-
rect method, the spectroscopic properties of materials
at different temperatures are measured to evaluate the
possibility of solid-state optical refrigeration [3, 16-18].
In this manuscript, we use the indirect method to argue
for the potential of high-quality Yb-doped silica glass for
solid-state optical refrigeration and radiation-balancing
in lasers and amplifiers.

In order to characterize the cooling potential of Yb-
doped silica glass, we use the cooling efficiency 7. defined



as [16, 18]
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In Eq. 1, Ay is the mean fluorescence wavelength and
Ap is the pump wavelength. 7, is the internal quantum
efficiency and 745 is the absorption efficiency; they are
defined as
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where W,., W,,,., and Wy, are radiative, non-radiative,
and total decay rates of the excited state, respectively.
ayp is the background absorption coefficient, and «;. is
the resonant absorption coefficient. Note that «; does
not contain the attenuation due to scattering as this pro-
cess does not lead to heating of the material. We have
assumed that due to the small cross sectional area of
optical fibers, the fluorescence escape efficiency to be
unity [3, 19]. The mean fluorescence wavelength is de-
fined by
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where S(\, T) is the fluorescence power spectral density,
which is a function of the glass temperature T', and A is
the spectral domain encompassing the relevant emission
spectral range [16, 18].

In order to achieve net solid-state optical refrigeration,
it is necessary for the cooling efficiency to be positive.
Therefore, we must show that 7. > 0 is attainable over a
range of A, and T values. It can be seen from Eq. 1 that
because A\, and Ay are often very close to each other in
solid-state optical refrigeration schemes (\, 2 A¢), the
internal quantum efficiency n, has to be close to unity
(ng = 1) [3, 16]. There are two main processes that
lower the internal quantum efficiency: the multi-phonon
non-radiative relaxation and the concentration quench-
ing effect [20-27]. We will argue that the multi-phonon
non-radiative relaxation is negligible in Yb-doped silica
glass and the concentration quenching process can be
prevented if the Yb ion density is kept lower than the
characteristic Yb ion quenching concentration.

In order to evaluate the absorption efficiency 7445, We
need to know the background absorption (a;) and res-
onant absorption («;.) coefficients. For the background
absorption coefficient in Yb-doped silica glass, we will
use typical values reported in the literature [28-30]. By
measuring the power spectral density of a Yb-doped sil-
ica optical fiber from its side at different temperatures,
S(A,T), we can also obtain the resonant absorption coef-
ficient () as well as the mean fluorescence wavelength
(Ar). Therefore, we will have all the necessary param-
eters in Eq. 1; using this information we will estimate
the cooling efficiency and show that solid-state optical
refrigeration is feasible in Yb-doped silica glass.

II. INTERNAL QUANTUM EFFICIENCY

The internal quantum efficiency is the fraction of the
radiative decay versus the total decay of an excited state
in a medium; therefore, the presence of non-radiative
decay channels characterized by the non-radiative decay
rate Wy, in Eq. 2 are responsible for decreasing n, below
unity. The non-radiative decay channels in a typical Yb-
doped silica glass can be broken down according to the
following equation:
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The partial non-radiative decay channels are as follows:
Wnp represents the multi-phonon decay of the Yb excited
state, Wop- accounts for non-radiative decay of the Yb
excited state via the high-energy vibrational modes of
OH™ impurities, Wy}, accounts for non-radiative decay
in Yb ion clusters, and Wty and Wgrg represent non-
radiative decay due to interactions of the excited state
with various transition-metal and rare-earth ion impuri-
ties, respectively.

In the following, we will discuss the various non-
radiative decay channels in Eq. 5 and show that they can
be made sufficiently small to allow for a near-unity in-
ternal quantum efficiency value (n, = 1). We first begin
with the multi-phonon relaxation that originates from
the coupling of the excited state with the vibrational
wavefunctions of the ground state. Using the energy-
gap law [20, 22, 24, 31], we can calculate the decay rate
from

Winp = Wo e~ on(Fa—2Ep), (6)

where E), is the maximum phonon energy of the host ma-
terial, and E is the energy gap of the dopant ion (Yb).
Wy and «a, are phenomenological parameters, whose val-
ues strongly depend on the host-material [20, 22, 24, 31].
Figure 1 shows the multi-phonon non-radiative decay
rates of silica and ZBLAN glasses versus the energy gaps
of the doped ions at T = 300K, using the parameters
shown in Table I.

TABLE 1. Parameters related to Eq. 6 and Fig. 1 for silica
and ZBLAN glasses [20, 22, 31].

Host Wo (s™1) ap, (cm) E, (em™1)
Silica 78 x 107 |4.7x 1072 [1.10 x 10°
ZBLAN (1.7 x10* 2.1 x107% |0.58 x 103

The vertical solid line in Fig. 1 marks the energy
gap of a Yb3t ion. It is evident that for Yb-doped
silica glass, the non-radiative decay rate is around
W;}gca ~ 107% 571, which is much smaller than the Yb-

doped ZBLAN glass multi-phonon decay rate WZBLAN ~



10~% s~!. This comparison suggests that with respect to
Yb multi-phonon relaxation, silica glass is a more suitable
choice for solid-state optical refrigeration than ZBLAN
glass.
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FIG. 1. Multi-phonon non-radiative decay rate (W) of Yb-
doped ZBLAN and silica glasses versus energy gap (Eq) cal-
culated from Eq. 6 and the parameters listed in Table I.

Considering the advances in materials synthesis of fiber
preforms, the term Wgop- in Eq. 5 can be made very
small (see e.g. dry fiber technology [32]); therefore, it
can be neglected [23]. It has also been shown by Auzel
et al. [25] that the total effect of the last three terms in
Eq. 5, Wy, + XWom + XWrE, can be described by a
phenomenological equation based on a limited diffusion
process, modeled as a non-radiative dipole-dipole inter-
action between the ions and impurities [25, 26]. This
concentration quenching process can be prevented if the
YD ion density is lower than the critical quenching con-
centration of the Yb-doped silica glass, which exists be-
cause there are impurities. Therefore, the critical quench-
ing concentration is generally a sample specific quantity.
That is, it would be higher for lower impurity concen-
trations. For a Yb ion density smaller than the critical
quenching concentration, the internal quantum efficiency
can approach n, ~ 1 [25-27]. It must be noted that an in-
ternal quantum efficiency of n, =0.95 is reported in [33]
for Yb-doped silica, which is consistent with our claim
that Wy, can be made quite small in Yb-doped silica.

III. ABSORPTION EFFICIENCY AND MEAN
FLUORESCENCE WAVELENGTH

In order to calculate the cooling efficiency, we still
need to obtain the resonant absorption coeflicient and the
mean fluorescence wavelength, both of which can be ob-
tained from a spectroscopic investigation. The resonant
absorption coefficient is used in conjunction with Eq. 3
to determine the absorption efficiency. The setup imple-
mented in our experiment is shown in Fig. 2 and consists
of a single-mode Yb-doped silica fiber (DF-1100, from
Newport Corporation) that is pumped by a Ti:Sapphire
laser at A=900nm. The fiber is mounted on a plate
whose temperature is changed from nearly 180K up to
360 K. The fluorescence of the Yb-doped silica fiber is
captured by a multimode fiber from the side of the Yb-

doped silica fiber and is sent to an Optical Spectrum Ana-
lyzer (Yokogawa-AQ6319). Figure 3 shows the measured
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FIG. 2. The experimental setup is shown. A Ti:Sapphire
laser at A =900 nm is used to pump a single-mode Yb-doped
silica fiber using a 20X objective lens. The fiber is mounted
on a plate whose temperature is changed from nearly 180 K
up to 360 K. The temperature of the plate is monitored by a
temperature sensor. The fluorescence of the Yb-doped silica
fiber is captured by a multimode fiber from the side of the Yb-
doped silica fiber and is sent to an Optical Spectrum Analyzer.

fluorescence spectra (power spectral density S(A,T)),
normalized to their peak values at Apcax ~976nm, at
different temperatures.

1.0F
:@ ”
=
=}
£08¢f T=360 K
«©
= T=330K ——ee—
=
=06 T=300K ......
2
2
‘@
F0.4r
£
c
o
202}
E
i

Wavelength (nm)

FIG. 3. Measured peak normalized emission spectra (fluo-
rescence power spectral density) of DF-1100 Yb-doped silica
fiber at different temperatures.

By inserting the measured fluorescence spectra into



Eq. 4 and considering A € {905nm, 1150nm}, the de-
pendence of the mean fluorescence wavelength on tem-
perature is obtained. The mean fluorescence wavelength
follows approximately the following function:

Ap(T) ~ 999 (nm) + bx T b = 2735+ 31lnm/K.

(7)

This behavior at temperatures above 245 K to 360K is
nearly linear, which is similar to that reported in other
host materials, such as ZBLAN [17, 20].

In order to calculate the the resonant absorption co-
efficient a,., we first calculate the emission cross section
0., and then use the McCumber relation to obtain the
absorption cross section o, and then the resonant ab-
sorption coefficient . [34-36]. The emission cross sec-
tion is obtained from the measured fluorescence power
spectral density S(\,T) via the Fiichtbauer-Ladenburg
equation [36, 37]:
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where n is the refractive index of the fiber core, ¢ is the
speed of light in vacuum, and 7, = W,~! is the radiative
lifetime.

In order to apply Eq. 8, the radiative lifetime at each
temperature needs to be measured. In high-quality sam-
ples for which the non-radiative decay rates are negli-
gible compared to the radiative decay rates, the fluo-
rescence lifetimes are comparable to the radiative life-
times (75 ~ 7,.); therefore, we measured the fluorescence
lifetimes at different temperatures from the side of the
fiber [38]. Using this assumption, the emission cross sec-
tions at different temperatures are calculated and are
shown in Fig. 4. The absorption cross sections can be
readily obtained using the McCumber relation:

0a(NT) = 0o(AT) x Z(\,T), )
20.7) = e o5 - 10|

where kj, is the Boltzmann constant, h is the Planck con-
stant and A\g = 976 nm is the wavelength corresponding
to the zero-line phonon energy [14, 18, 35]. The resonant
absorption coefficient can be calculated from o,(\, T) in
Eq. 9 (and Fig. 4) using

ar(\T) = o4(A\,T) x N. (10)

Here, we will assume a typical Yb ion density of N =
5 x 102 m~3. We now have all the necessary ingredients
to calculate the cooling efficiency 7. in Eq. 1. We only
need to provide a value for the background absorption
coefficient in Eq. 3 to determine the absorption efficiency
Nabs- Here, we assume a background absorption coef-
ficient of a;, = 10dB/km= 2.3 x 1073/m, which is a
typical value for commercial grade Yb-doped silica fibers.
Using this information, we present a contour plot of the
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FIG. 4. Emission cross section versus wavelength for DF-1000
Yb-doped silica fiber at different temperatures. The spectra
are calculated from Eq. 8 using the emission spectra shown
in Fig. 3 and the measured radiative lifetimes from Ref. [38].

cooling efficiency 7. in Fig. 5 as a function of the pump
wavelength and temperature, assuming that n, =1. Note
that we only know the values of «,.(\, T') at discrete val-
ues of temperature T' for which our measurements were
performed in Fig. 3; the density plot in Fig. 5 is an inter-
polation of the measured values. It is seen in Fig. 5 that
the cooling efficiency decreases with decreasing tempera-
ture; this behavior is due to the red-shift of the mean fluo-
rescence wavelength and the decrease in the resonant ab-
sorption coefficient with decreasing temperature [16, 20].
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FIG. 5. Cooling efficiency versus temperature and pump
wavelength with 7 =1 and «, = 10 dB/km for DF-1100 Yb-
doped silica fiber calculated from Eq. 1. The dashed line
connects the experimental measurements of the mean fluores-
cence wavelength versus the temperature.

In practice, it is impossible to achieve an internal quan-
tum efficiency of unity; therefore, in Fig. 6 we investigate
the effect of a non-ideal internal quantum efficiency on
the cooling efficiency, for A\, = 1030 nm, as a function of
the temperature. The discrete points in Fig. 6 signify the
values of 7). obtained for the assumed 7, at the particular



measured temperatures reported in Fig. 3. The appar-
ent difference between the cooling efficiency obtained for
1q =1 versus 7, = 0.98 highlights the importance of hav-
ing a high-quality glass for radiative cooling. While the
discrete points in Fig. 6 reveal the main expected behav-
ior of 7, versus the temperature, it is helpful to estimate
the minimum achievable temperature for solid-state op-
tical refrigeration in Yb-doped silica glass, subject to the
assumptions made about 14, N, and «y. In order to do
so, we next present an analytical fitting to the discrete
points in Fig. 6 that can be used to estimate the minimum
achievable temperature. The analytical fitting, which is
described in the next paragraph, is used in conjunction
with Eq. 1 to plot the colored lines for each value of 7,
in Fig. 6 and is in reasonable agreement with the exper-
imentally measured discrete data. From the discussions

Ne (%)

FIG. 6. Cooling efficiency versus temperature with o, =
10dB/km for DF-1100 Yb-doped silica fiber calculated from
Eq. 1 for different internal quantum efficiencies, 1. The col-
ored lines are plotted using Eq. 1 and the fitting presented in
Eq. 14.

above and Egs. 8, 9, and 10, we note that a,(\,,T) (at
the pump wavelength) can be expressed as:

1A S(Ap, T)
T - b D>
ar(Ap, T) o< = Ta X SO\, T)dA

X Z(Ap, T).
(11)

In Ref. [38], we performed fluorescence lifetime measure-
ments in Yb-silica. Here, we present a fitting of 7,.(T) to
an analytical form that is based on a two-level excited
state:

1+ exp(—0E/kT)
1y texp(—0E/kyT)

7 (T) = (12)

71 = 798 &+ 2ps, and 75 = 576 £+ 27 s are the lifetimes
of the first and second energy levels of the excited state,
respectively, and 6 E = 506 & 56 cm ™! is the energy dif-
ference between these two levels [36, 39]. We also present
the following approximation:

A2 S\, T) d\’°
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(13)

Using Egs. 12 and 13, we can approximate a,(A,,T)
[Eq. 11] with the following mathematical form:
Qr 0 5
S0, T) ~ —2m0 (.4 d/T ) Z(\,, 7).
0 T) = 2505 (T + (/7)) % 204 T)
(14)

Fitting the analytical in Eq. 14 to the discrete points
in Fig. 6, we find the dimensionless coefficient o, =
(0.95 + 0.01) x 10°. The fitted lines in Fig. 6 show that
the minimum achievable temperature can reach down to
Tmin = 138K for n, = 1, Thin = 175K for n, = 0.99,
and Thnin = 290K for n, = 0.98. Figure 6 also shows
that the maximum cooling efficiency for Yb-silica glass is
around n*** ~2% at room temperature for A, = 1030 nm.
Setting the background absorption to zero (a;=0) in-
creases this value to n** ~2.2%. In order to increase
the cooling efficiency, the background absorption must
be minimized, the internal quantum efficiency has to be
close to unity, and the ion dopant density N must be
increased to enhance the resonant absorption coefficient.
We note that these requirements are not necessarily com-
patible with each other; e.g. increasing N can potentially
decrease 77, due to quenching. Therefore, a compromise
determined by careful measurements must be obtained.

IV. DISCUSSION AND CONCLUSION

It must be noted that by taking N = 5 x 102°m~3
in this manuscript, we have implicitly assumed that the
silica glass host is co-doped with some modifiers like
Al5Og, in order to shift the quenching concentration to
higher values to reduce clustering and ensure an ade-
quate cooling efficiency [40, 41]. For pure silica, ap-
plying the model developed by Auzel et al. [25] to the
experimental data from Ref. [23], it can be shown that
N =0.7 x 102> m~3 can guarantee a near unity internal
quantum efficiency [40, 41]. Using N = 0.7 x 10**m~3
in pure silica, we have calculated the minimum achiev-
able temperature to be Tpn, = 216K for n, = 1, and
Tmin = 262K for n, = 0.99. For n; = 0.98, Tiin is
higher than the room temperature. As expected, a de-
crease in ion density results in a lower cooling efficiency.

In conclusion, we have argued that a high-purity Yb-
doped silica glass can potentially be cooled via anti-
Stokes fluorescence. In order to achieve net solid-state
optical refrigeration, it is necessary for the cooling effi-
ciency to be positive. This requires the pump wavelength
to be greater than the mean fluorescence wavelength, and
the internal quantum efficiency as well as the absorption
efficiency to be near unity. For the internal quantum effi-
ciency we have shown that, in principle, the non-radiative
decay rate W,,, can be made substantially smaller than
the radiative decay rate W,.. Therefore, an internal quan-
tum efficiency of near unity can be obtained, making Yb-
doped silica glass suitable for solid-state optical refrigera-
tion. Our assessment is based on reasonable assumptions
for material properties, e.g. we have assumed a typical



background absorption coefficient of o, =10dB/km and
an internal quantum efficiency of larger than n,=0.98.
We have made spectral measurements of the fluorescence
from a Yb-doped silica optical fiber at different temper-
atures. Using these measurements, we have reported the
temperature dependence of the mean fluorescence wave-
length, and have estimated the minimum achievable tem-
perature in Yb-doped silica glass.

Our analysis highlights the potential for Yb-doped sil-
ica glass to be used as the gain medium for radiation-
balanced high-power fiber lasers and amplifiers. In order
to observe the solid-state optical refrigeration of silica,
high-quality samples with adequate Yb doping concen-

trations are required. It is preferable to co-dope silica
with modifiers such as Al;O3 to increase the solubility of
Yb ions and consequently increase the cooling efficiency.
Of course, proper thermal isolation in solid-state opti-
cal refrigeration is essential. Such experiments are quite
delicate [16] and Yb-doped silica will be no exception.

ACKNOWLEDGMENT

This material is based upon work supported by the Air
Force Office of Scientific Research under award number
FA9550-16-1-0362 titled Multidisciplinary Approaches to
Radiation Balanced Lasers (MARBLE).

[1] P. Pringsheim, “Zwei Bemerkungen iiber den Unterschied
von Lumineszenz- und Temperaturstrahlung,” Zeitschrift
fiir Physik 57, 739-746 (1929).

[2] L. Landau, “On the thermodynamics of photolumines-
cence,” J. Phys. (Moscow) 10 (1946).

[3] R. I Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gos-
nell, and C. E. Mungan, “Observation of laser-induced
fluorescent cooling of a solid,” Nature 377, 500 (1995).

[4] R. I. Epstein and M. Sheik-Bahae, Optical refrigeration:
science and applications of laser cooling of solids (John
Wiley & Sons, 2010).

[5] D. V. Seletskiy, R. Epstein, and M. Sheik-Bahae, “Laser
cooling in solids: advances and prospects,” Reports on
Progress in Physics 79, 096401 (2016).

[6] D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High
power fiber lasers: current status and future perspec-
tives,” J. Opt. Soc. Am. B 27, B63-B92 (2010).

[7] A. V. Smith and J. J. Smith, “Mode instability in high
power fiber amplifiers,” Opt. Express 19, 10180-10192
(2011).

[8] J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y.
Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax,
J. E. Heebner, C. W. Siders, and C. Barty, “Analysis of
the scalability of diffraction-limited fiber lasers and am-
plifiers to high average power,” Opt. Express 16, 13240—
13266 (2008).

[9] C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen,
J. Limpert, and A. Tinnermann, “Physical origin of
mode instabilities in high-power fiber laser systems,”
Opt. Express 20, 1291212925 (2012).

[10] S. R. Bowman, “Lasers without internal heat genera-
tion,” IEEE journal of quantum electronics 35, 115-122
(1999).

[11] S. R. Bowman, S. P. O’Connor, S. Biswal, N. J. Condon,
and A. Rosenberg, “Minimizing heat generation in solid-
state lasers,” IEEE Journal of Quantum Electronics 46,
1076-1085 (2010).

[12] E. Mobini, M. Peysokhan, B. Abaie, and A. Mafi, “Ther-
mal modeling, heat mitigation, and radiative cooling for
double-clad fiber amplifiers,” JOSA B Early Posting,
0000-0000 (2018).

[13] G. Nemova and R. Kashyap, “Athermal continuous-wave
fiber amplifier,” Optics Communications 282, 25712575
(2009).

[14] H. Pask, R. J. Carman, D. C. Hanna, A. C. Trop-
per, C. J. Mackechnie, P. R. Barber, and J. M. Dawes,
“Ytterbium-doped silica fiber lasers: versatile sources for
the 1-1.2 um region,” IEEE Journal of Selected Topics
in Quantum Electronics 1, 2-13 (1995).

[15] R. Paschotta, J. Nilsson, A. C. Tropper, and D. C.
Hanna, “Ytterbium-doped fiber amplifiers,” IEEE Jour-
nal of quantum electronics 33, 1049-1056 (1997).

[16] D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Li-
eto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of
solids to cryogenic temperatures,” Nature Photonics 4,
161 (2010).

[17] G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards,
R. I. Epstein, M. T. Murtagh, and G. Sigel, “Spectro-
scopic evaluation of Yb*'-doped glasses for optical re-
frigeration,” IEEE journal of quantum electronics 34,
1839-1845 (1998).

[18] S. Melgaard, D. Seletskiy, M. Sheik-Bahae, S. Bigotta,
A. Di Lieto, M. Tonelli, and R. Epstein, “Spectroscopy
of Yb-doped YLF crystals for laser cooling,” in Laser Re-
frigeration of Solids III, , vol. 7614 (International Society
for Optics and Photonics, 2010), p. 761407.

[19] X. Ruan and M. Kaviany, “Enhanced laser cooling of
rare-earth-ion-doped nanocrystalline powders,” Physical
Review B 73, 155422 (2006).

[20] M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of
laser cooling in the Yb®*'-doped fluorozirconate glass
ZBLAN,” Physical Review B 75, 144302 (2007).

[21] M. J. Digonnet, Rare-earth-doped fiber lasers and ampli-
fiers, revised and expanded (CRC press, 2001).

[22] C. Hoyt, M. Hasselbeck, M. Sheik-Bahae, R. Epstein,
S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Ad-
vances in laser cooling of Thulium-doped glass,” JOSA
B 20, 1066-1074 (2003).

[23] P. Barua, E. Sekiya, K. Saito, and A. Ikushima, “In-
fluences of Yb3T jon concentration on the spectroscopic
properties of silica glass,” Journal of Non-Crystalline
Solids 354, 4760-4764 (2008).

[24] J. Van Dijk and M. Schuurmans, “On the nonradiative
and radiative decay rates and a modified exponential en-
ergy gap law for 4 f—4 f transitions in rare-earth ions,”
The Journal of Chemical Physics 78, 53175323 (1983).

[25] F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon,
“Radiation trapping and self-quenching analysis in Yb3T,



Er3*, and Ho®*' doped Y20s,” Optical Materials 24,
103-109 (2003).

[26] G. Boulon, “Why so deep research on Yb**-doped optical
inorganic materials?” Journal of Alloys and Compounds
451, 1-11 (2008).

[27] D. T. Nguyen, J. Zong, D. Rhonehouse, A. Miller, Z. Yao,
G. Hardesty, N. Kwong, R. Binder, and A. Chavez-
Pirson, “All fiber approach to solid-state laser cooling,”
in Laser Refrigeration of Solids V, , vol. 8275 (Interna-
tional Society for Optics and Photonics, 2012), p. 827506.

[28] S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and
J. Kirchhof, “Efficient Yb laser fibers with low photo-
darkening by optimization of the core composition,” Op-
tics Express 16, 15540-15545 (2008).

[29] M. Leich, F. Just, A. Langner, M. Such, G. Schétz, T. Es-
chrich, and S. Grimm, “Highly efficient Yb-doped silica
fibers prepared by powder sinter technology,” Optics let-
ters 36, 1557-1559 (2011).

[30] R. Sidharthan, S. H. Lim, K. J. Lim, D. Ho, C. H. Tse,
J. Ji, H. Li, Y. M. Seng, S. L. Chua, and S. Yoo, “Fabri-
cation of low loss low-NA highly Yb-doped Aluminophos-
phosilicate fiber for high power fiber lasers,” in Confer-
ence on Lasers and Electro-Optics, (Optical Society of
America, 2018), p. JTh2A.129.

[31] B. Faure, W. Blanc, B. Dussardier, and G. Monnom,
“Improvement of the Tm>*: 3Hy level lifetime in silica
optical fibers by lowering the local phonon energy,” Jour-
nal of Non-Crystalline Solids 353, 27672773 (2007).

[32] G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J.
Stephen, “Towards the clarity limit in optical fibre,” Na-
ture 404, 262 (2000).

[33] Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson,
“Ytterbium-doped large-core fiber laser with 1.36 kw

continuous-wave output power,” Opt. Express 12, 6088—
6092 (2004).

[34] T. Fan and M. Kokta, “End-pumped Nd:LaF*T and
Nd:LaMgAl;1 019 lasers,” IEEE journal of quantum elec-
tronics 25, 1845-1849 (1989).

[35] D. E. McCumber, “Theory of phonon-terminated optical
masers,” Physical review 134, A299 (1964).

[36] T. Newell, P. Peterson, A. Gavrielides, and M. Sharma,
“Temperature effects on the emission properties of Yb-
doped optical fibers,” Optics communications 273, 256—
259 (2007).

[37] B. Aull and H. Jenssen, “Vibronic interactions in
Nd:YAG resulting in nonreciprocity of absorption and
stimulated emission cross sections,” IEEE Journal of
Quantum Electronics 18, 925-930 (1982).

[38] E. Mobini, M. Peysokhan, B. Abaie, and A. Mafi, “In-
vestigation of solid state laser cooling in ytterbium-doped
silica fibers,” in Conference on Lasers and Electro-Optics,
(Optical Society of America, 2018), p. FF3E.4.

[39] Z. Zhang, K. Grattan, and A. Palmer, Journal of applied
physics 73, 3493 (1993).

[40] K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii,
and T. Handa, “Aluminum or phosphorus co-doping
effects on the fluorescence and structural properties
of neodymium-doped silica glass,” Journal of Applied
Physics 59, 3430-3436 (1986).

[41] J. Leegsgaard, “Dissolution of rare-earth clusters in SiO2
by Al codoping: a microscopic model,” Physical Review
B 65, 174114 (2002).



