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We investigate a non-adiabatic holonomic operation that enables us to entangle two fixed-
frequency superconducting transmon qubits attached to a common bus resonator. Two coherent
microwave tones are applied simultaneously to the two qubits and drive transitions between the
first excited resonator state and the second excited state of each qubit. The cyclic evolution within
this effective 3-level Λ-system gives rise to a holonomic operation entangling the two qubits. Two-
qubit states with 95% fidelity, limited mainly by charge-noise of the current device, are created
within 213 ns. This scheme is a step toward implementing a SWAP-type gate directly in an all-
microwave controlled hardware platform. By extending the available set of two-qubit operations
in the fixed-frequency qubit architecture, the proposed scheme may find applications in near-term
quantum applications using variational algorithms to efficiently create problem-specific trial states.
We illustrate this point by computing the ground state of molecular hydrogen using the holonomic
operation.

I. INTRODUCTION

Superconducting qubits are one of the leading candi-
dates to build a quantum computer [1]. They are fabri-
cated with conventional micro- and nanofabrication tech-
niques [2, 3] and are controlled using standard microwave
instrumentation. The fixed-frequency transmon is a spe-
cific version of a superconducting qubit that is not sensi-
tive to flux [4]. This improves the qubit coherence time at
the cost of controllability. Fixed-frequency qubits can be
coupled dispersively through coupling elements such as
coplanar wave-guide resonators [5, 6]. Two-qubit opera-
tions are then activated by applying coherent microwave
signals to generate, e.g., a controlled-NOT operation us-
ing the cross-resonance gate [7, 8].

In this paper we demonstrate an alternative all-
microwave entangling scheme in which we simultane-
ously drive transitions between a resonator and two fixed-
frequency qubits [9]. This scheme is based on a holon-
omy emerging in a driven Λ-type system with three en-
ergy levels [10–19]. Such quantum operations have at-
tracted attention because they may be exploited for holo-
nomic quantum computing based on non-abelian geo-
metric phases created by steering the system along a
closed loop in Hilbert space [20, 21]. Holonomic quantum
computing may benefit from the robustness of geometric
phases to certain types of errors [22–34]. While in the-
ory, holonomic adiabatic gates can reach high fidelities
in the limit of long gate duration [34, 35], decoherence in
real devices severly limits the achievable gate fidelities.
A particular challenge is to realize holonomic two-qubit
operations. A few experimental demonstrations exist but
operate either on different degrees of freedom [36] or use
a trotterized approach [37]. Here, we present a direct
realization of a non-adiabatic two-qubit holonomic oper-
ation that entangles two superconducting qubits in a scal-
able architecture [38]. Furthermore, the holonomic oper-
ation does not constrain the qubit frequencies as much as
the cross-resonance gate does. Moreover, in contrast to
the cross-resonance gate which realizes a CNOT primi-

tive, the holonomy results in an exchange-type operation
which may be useful to reduce the circuit depth in var-
ious quantum algorithms [39]. As a benchmark test, we
compute the energy of the ground state of molecular hy-
drogen using the holonomy.

This paper is structured as follows. Section II in-
troduces the holonomic operation and the experimental
setup. Section III discusses the various steps needed to
calibrate the holonomic operation. Experimental results
and simulations are discussed in sections IV and V, re-
spectively. The experimental determination of the en-
ergy of the ground state of molecular hydrogen is shown
in section VI.

II. SETUP AND HOLONOMIC OPERATION

The system is made up of two fixed-frequency super-
conducting qubits coupled to a common coplanar wave-
guide resonator, see Fig. 1(a). The coupling strengths
are g1/(2π) = 156 MHz and g2/(2π) = 196 MHz and
the resonator frequency is ωr/(2π) = 6.272 GHz. The
Hamiltonian describing the system is

Ĥ = ωrâ
†â+

∑
i=1,2

ωib̂
†
i b̂i +

αi
2
b̂†i b̂
†
i b̂i b̂i

+gi

(
b̂†i â+ b̂i â

†
)

+ Ωi(t)
(
b̂†i + b̂i

)
. (1)

Here ~ = 1, b̂i (b̂
†
i ) is the lowering (raising) operator of

qubit i whilst â (â†) is the resonator lowering (raising)
operator. The qubit frequencies and anharmonicities are
ω1/(2π) = 4.896 GHz and ω2/(2π) = 4.689 GHz and
α1/(2π) = −330 MHz and α2/(2π) = −333 MHz, respec-
tively. The system is operated in the dispersive regime
|∆i| = |ωi − ωr| � gi to avoid direct qubit-resonator ex-
citation transfer. The T1 times of qubit one (Q1), qubit
two (Q2) and the coupling resonator are 42 µs, 56 µs and
7 µs, respectively. Each qubit is driven by a microwave
signal with a time-dependent amplitude Ωi(t) applied via
individual capacitively coupled charge bias lines.
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Figure 1. (a) Micrograph of the superconducting qubit chip
with two transmons (Q1 and Q2) connected via a coplanar
wave-guide resonator (R). The transmon-style qubits are in-
dividually addressed through capacitively coupled charge-bias
lines and measured using coplanar wave-guide readout res-
onators. (b) Level diagram of the two qubits with energy
levels |g〉, |e〉 and |f〉 connected to a resonator with lowest ly-
ing states |0〉 and |1〉. The holonomic operation is created by
microwave drives Ω1,2(t) between the |f〉 state of each qubit
and the |1〉 state of the resonator.

Entanglement with holonomic operations

In our experiments we use the first three transmon
states |g〉, |e〉 and |f〉, here listed in order of increasing
energy. The two-qubit operation described in this pa-
per is realized by simultaneously driving the |f0〉 to |g1〉
transition of each qubit where |0〉 is the ground state
and |1〉 is the excited state of the resonator, see Fig.
1(b). These qubit-resonator transitions, as well as the
single qubit transitions, are controlled by applying the
microwave drive Ωi(t) = λiηi(t) cos(ωd,it + ϕi) with ad-
justable frequency ωd,i, phase ϕi, and pulse envelope ηi(t)
to each qubit. The complex scalars λi are the relevant
scaling factors for the two-qubit holonomic operation.

Applying a drive on qubit i at frequency ωd,i = ωi
(ωd,i = ωi +αi) creates a rotation Xg→e

βi
(Xe→f

βi
) around

the x-axis of the {|g〉 , |e〉} ({|e〉 , |f〉}) Bloch sphere with
angle

∫
ηi(t)dt = βi [40, 41]. We set λi = 1 for single

qubit operations. A different rotation axis in the equato-
rial plane can be selected by changing the phase ϕi of the

drive. Similarly, applying a drive on qubit i at the differ-
ence frequency between the |f〉 state of qubit i and the
excited resonator state |1〉, i.e. ωd,i = 2ωi + αi − ωr, ac-
tivates induced Jaynes-Cummings-type vacuum-Rabi os-
cillations between these states entangling the qubit and
the resonator [9]. This can be seen from a perturbation
theory argument considering only qubit i, the resonator
and the drive, which results in the effective Hamiltonian
[9, 42]

Ĥeff,i =∆
(i)
f0 |f0〉〈f0|+ g̃i |f0〉〈g1|+ h.c.

The qubit state |e〉 is far detuned and can be ignored.
The ac-Stark shift ∆

(i)
f0 is to leading order quadratic in

the drive strength. The drive frequency can be set to
compensate for this ac-Stark shift so that the states |f0〉
and |g1〉 form a degenerate subspace allowing for a co-
herent population transfer between qubit and resonator.
The effective coupling strength between |f0〉 and |g1〉 is
[9]

g̃i(t) =
giαiλiηi(t)√
2∆i(∆i + αi)

. (2)

The rate of the |f0〉 ↔ |g1〉 microwave activated tran-
sition decreases with qubit-resonator detuning ∆i but
can be compensated by stronger driving. Rabi rates of
10 MHz have been reported [9]. By contrast, the rate
of the cross-resonance gate depends on the qubit-qubit
frequency difference. Therefore, an architecture using
the holonomy as the two-qubit operation allows a greater
qubit-qubit frequency difference and may avoid frequency
crowding problems.

Simultaneously applying both drives, illustrated in
Fig. 1(b), creates a degenerate subspace spanned by
{|fg0〉 , |gf0〉 , |gg1〉}. Again, perturbation theory gives
the effective Hamiltonian

Ĥeff(t) = ∆fg0 |fg0〉〈fg0|+ ∆gf0 |gf0〉〈gf0| (3)
+ g̃1(t) |fg0〉〈gg1|+ g̃2(t) |gf0〉〈gg1|+ h.c.

with the effective coupling strengths given by Eq. (2).
The ac Stark shifts ∆fg0 and ∆gf0 under this two-tone
drive, henceforth named cross ac Stark shifts, may differ
in experiment from the ac Stark shifts ∆

(i)
f0 under the

single tone drive, see Sec. III. The cross ac Stark shifts are
removed by approprietly selecting the drive frequencies.
To create a holonomic operation and to avoid transitions
into dark states [10, 43], the Rabi rates at each point in
time must be equal up to the constant scaling parameters
λi, i.e.

g̃1(t)

λ1
=
g̃2(t)

λ2
= g̃(t) ∀t. (4)

Doing so allows us to write the Hamiltonian in Eq. (3) as
the product of a time dependent scale factor and a time
independent operator

Ĥ ′eff(t) = g̃(t) (λ1 |fg0〉〈gg1|+ λ2 |gf0〉〈gg1|+ h.c.) .
(5)
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Note that Eq. (4) and (2) imply that both pulses have
the same envelope η1(t) = η2(t). Under Ĥ ′eff the system
evolves according to

|ψj(t)〉 = exp

(
−i
∫ t

0

Ĥ ′eff(τ)dτ

)
|ψj(0)〉 ,

where |ψj(0)〉 ∈ {|fg0〉 , |gf0〉 , |gg1〉}. States that start
in the subspace spanned by |fg0〉 and |gf0〉 satisfy the
parallel transport condition 〈ψj(t)|Ĥ ′eff(t)|ψk(t)〉 = 0,
see Appendix A. The evolution is thus purely geomet-
ric [10, 43]. If the pulse duration T is chosen such that
the evolution is cyclic, i. e.

∫ T
0
g̃i(t)dt = π, the final state

|ψj(T )〉 returns to its initial subspace {|fg0〉 , |gf0〉}, see
Appendix B. In this basis the resulting operation can be
written as the transformation

Û =

(
cos θ eiφ sin θ

e−iφ sin θ − cos θ

)
, (6)

where  −eiφ tan
θ

2
=
λ1
λ2
,

|λ1|2 + |λ2|2 = 1.

(7)

The form of Û implies that arbitrary rotations between
|fg〉 and |gf〉 can be created by changing λ1 and λ2. The
rotation angle θ controls the amount of population trans-
ferred between the qubits. The phase difference between
the drives φ = ϕ1 − ϕ2 changes the relative phase be-
tween |fg〉 and |gf〉. The magnitudes of the rotation θ
and phase φ only depend on λi and are controlled at fixed
operation time T .

As an example, let λ1 = λ2 = 1/
√

2 and Q1 and Q2
be in the |f〉 and |g〉 states, respectively. The drive Ω1(t)
transfers the population from Q1 to the resonator. Simul-
taneously, the second drive Ω2(t) transfers the population
from the resonator to Q2. During this time-evolution the
resonator is only partially populated and is completely
depleted at the end, as discussed in Sec. V.

III. CALIBRATION OF THE SIMULTANEOUS
TWO-TONE DRIVE

To realize the holonomic operation Û in Eq. (6), the
strength, frequency, phase, and duration of each drive
must be controlled. In particular, cross ac Stark shifts
occurring under simultaneous driving of both qubit-
resonator transitions must be compensated to avoid fre-
quency offsets that reduce the fidelity of the population
transfer. To keep all ac Stark shifts constant during
the holonomic operation, square pulse envelopes are used
when driving the |f0〉 ↔ |g1〉 transitions. In short, the
calibration is accomplished through the following steps.
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Figure 2. (a) Pulse sequence for qubit and readout tone
used to calibrate the ac Stark shifts. (b) and (c) Cali-
bration of the ac Stark shifts for Q1 and Q2 respectively.
The qubit |f〉 population is measured after a spectroscopic
square pulse around the targeted |f0〉 ↔ |g1〉 transition.
The y-axis is given as voltage amplitude Vi at the out-
put of the arbitrary waveform generator that drives the re-
spective qubit i. For each amplitude the spectrum is fit-
ted to a Lorentzian, see text. The ac-Start shift corrected
|f0〉 ↔ |g1〉 frequencies are ω(i)

f0↔g1/(2π) = aiV
2
1 + bi GHz

with coefficients {a1, b1} = {−0.164 GHz/V2, 3.196 GHz} and
{a2, b2} = {−0.094 GHz/V2, 2.775 GHz} for Q1 and Q2, re-
spectively.

(i) Measurements of individual ac Stark shifts when
applying a single drive Ωi(t) result in a calibration
curve of frequency shifts as a function of drive am-
plitude, see Fig. 2.

(ii) Jaynes-Cummings-type oscillations between |f0〉
and |g1〉 are measured to calibrate the individual
drive amplitudes with λi = 1 such that the induced
Rabi rates are equal, i.e. g̃1 = g̃2, see Fig. 3.

(iii) To calibrate cross ac Stark shifts, the population
transferred to an initially empty target qubit is
measured as a function of drive frequency offset
when both drives are applied simultaneously, see
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Fig. 4(a).

(iv) Changing the rotation angle θ requires modifying
the drive strengths thus producing different (cross)
ac Stark shifts. Step (iii) is, therefore, repeated for
different θ angles to obtain a θ-dependent calibra-
tion curve of cross ac Stark shifts for each drive,
see Fig. 4(b).
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Figure 3. Rabi oscillations between each qubit |f〉 state
and the resonator |1〉 state. Each qubit is first prepared in
|f〉, then the |f0〉 ↔ |g1〉 drive is applied for a variable time
before measuring the qubit. The resulting data set is fitted to
a decaying sinusoid to extract the effective coupling strength
g̃i.

In more detail, in step (i) the ac Stark shift induced
by the |f0〉 ↔ |g1〉 drive of each qubit is determined
for a range of drive amplitudes. Spectroscopy on the
|f0〉 ↔ |g1〉 transition of each qubit yields the ∆

(i)
f0 (Ωi)

ac Stark shift calibration curve. In each data set the
relevant qubit is prepared in the |f〉 state by applying
a Xg→e

π π-pulse followed by a Xe→f
π π-pulses. Next, a

10 µs spectroscopic pulse is applied at a fixed amplitude
and frequency and the qubit is measured, see Fig. 2(a).
This pulse sequence is repeated for different amplitudes
and frequencies. The resonance line is fitted to a second-
order polynomial in drive amplitude shown by the white
dashed line in Fig. 2(b)-(c). In the limit of zero drive
amplitude the frequencies of the |f0〉 ↔ |g1〉 drives are
3.196 GHz and 2.775 GHz for Q1 and Q2, respectively.
Henceforth, all frequency shifts in the following figures
will be referenced to these values.

In the next step (ii), the amplitude of each drive (ap-
plied separately) is adjusted to produce rotations be-
tween the qubit |f〉 and the resonator |1〉 state at equal
Rabi rates. With a target duration of T = 213 ns we ob-
tain g̃1/(2π) = 4.69(1) MHz and g̃2/(2π) = 4.72(1) MHz
for Q1 and Q2, respectively, see Fig. 3. For this, the cal-
ibration of the ac Stark shifts of step (i) is used to adjust
the drive frequency.
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Figure 4. (a) Population transferred to Q1 as function of the
frequency shifts applied to both drives when θ = 1.1 rad and
Q2 is initially in state |f〉. The dashed lines show a Gaussian
fit to determine the frequency shifts δω1 and δω2 for optimal
population transfer indicated by the dot. (b) Measured values
(points) and calibration curves (lines) for the compensation of
the θ-dependent cross ac Stark shifts during two-tone driving.
The optimal value for θ = 1.1 rad in (a) is indicated by an
arrow. The ac Stark shifts ∆

(i)
f0 are the fitted curves from

Fig. 2. In both (a) and (b) frequency shifts are relative to the
zero-amplitude offsets 3.196 GHz and 2.775 GHz for Q1 and
Q2, respectively.

In step (iii) both drives are simultaneously applied for
a duration T . To quantify the cross ac Stark shifts the
frequencies of both drives are varied by offsets δωi and
the population transfer between the qubits is measured.
For this, Q2 is prepared in state |f〉, then both drives are
applied, finally the population in Q1 is measured. The
population is fitted to a 2D Gaussian function to obtain
the frequency offsets (∆fg0,∆gf0) that are equal to the
δωi values of maximum population transfer and therefore
compensate the cross ac Stark shifts, see Fig. 4(a).

The measured cross ac Stark shifts differ from the ac
Stark shifts ∆

(i)
f0 obtained when a single tone is applied,

see Fig. 4(b). This effect is not observed in the simula-
tions discussed in Sec. V. We therefore attribute the extra
shifts to drive-induced crosstalk and/or unwanted qubit-
qubit interactions resulting from static capacitive cou-
pling. In the last step (iv) we determine the dependence
of the cross ac Stark shifts on the θ angles, which is ad-
justed by the drive amplitude ratio λ1/λ2. For this, step
(iii) is repeated for different θ. The cross ac Stark shifts
(∆fg0(θ),∆gf0(θ)) are fitted to a second-order function
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in θ yielding a calibration curve for each drive, see Fig.
4(b).

The cross ac Stark shifts acting on the qubits dur-
ing the simultaneous driving leads to an additional phase
shift of the individual qubit states. This induces a sys-
tematic θ-dependent phase shift on the qubit states that
is removed a posteriori in the data so as not to affect
fidelity measurements. Alternatively, such phase shifts
can also be removed in software [44].

IV. PREPARATION OF ENTANGLED STATES

To form entangled states as arbitrary superpositions
of |eg〉 and |ge〉, one qubit (source) is prepared in state
|f〉, the two-tone holonomic operation coherently trans-
fers some population to the |f〉 state of the other qubit
(target), and a final Xf→e

π pulse maps the qubit |f〉 pop-
ulations back to |e〉. With the chosen rate of g̃/(2π) =
4.70 MHz for the holonomic operation and θ = π/4, a
fully-entangled Bell state |Ψ〉 = (|eg〉 + eiϕ |ge〉)/

√
2, is

formed by a pulse of duration 213 ns. A state fidelity
F = Tr{

√√
ρTρM

√
ρT} = 95.2% (95.3%) is obtained for

Q1 (Q2) as the source qubit with the ideal target state
density matrix ρT = |Ψ〉 〈Ψ| and the measured density
matrix ρM. ρM is determined using state tomography
with 1000 repeated single-shot measurements, see Fig. 5.
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Figure 5. Pauli-operator representation of the entangled
state |Ψ〉 = (|eg〉+eiϕ |ge〉)/

√
2 with 95.3% and 95.2% fidelity

when the source qubit is Q1 (a) and Q2 (b), respectively. The
solid black lines show the ideal values.

To demonstrate control over the angles θ and φ, quan-
tum state tomography has been done on 900 states gen-
erated with 30 different linearly spaced values of θ ∈
[0, π/2] and φ ∈ [0, 2π]. For each state the fidelity F has
been measured with Q1 used as the source qubit. Scaling
the drives by λ1 and λ2 according to Eq. (7) produces the
different θ-angles transferring sin(θ)2 of population from

the source qubit to the target qubit. Changing the phase
φ2 of the drive on Q2 changes the measured angle ϕ.

For each value of θ, the populations in the source qubit
and target qubit, extracted from the density matrix, are
averaged over the different phase values φ. As θ increases,
more population is transferred to the target qubit in good
agreement with theory, see Fig. 6(a). The state fidelities
averaged over φ are lower for larger θ, see Fig. 6(b). We
attribute this to the large charge dispersion (determined
by Ramsey-type measurements) of 1.8 MHz and 3.0 MHz
on the |f〉 states of Q1 and Q2 respectively, as confirmed
by numerical simulations discussed in Sec. V.
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Figure 6. State transfer from Q1 to Q2 as a function of the
angle θ. (a) Population in the source (Q1) and target qubit
(Q2) extracted from quantum state tomography in the qubit
{|e〉 , |g〉} subspace. The solid lines indicate ideal values. The
dotted lines are a simulation showing the effect of T1 on the
ideal population transfer. The dashed lines show a simulation
of the effect of charge dispersion and T1. (b) State fidelity
after transferring an amount of population controlled by θ.
Each point is the state fidelity average over 30 different values
of φ. The average state fidelity is 94.8%.

Control over φ is demonstrated using the density ma-
trices with θ ∈ [0.19π, 0.31π] from which the phase be-
tween |eg〉 and |ge〉 can be measured and compared to the
expected phase, see Fig. 7. This θ-range is used since the
measured phase between |eg〉 and |ge〉 is more accurate
when both states have large populations. In 8.3% of the
measurements, a large systematic phase error of 834±81
mrad was observed, which we attribute to charge noise.
These data points are not shown in the figure. The differ-
ence between the expected and measured relative phase ϕ
between the |eg〉 and |ge〉 states for ϕ 6= 0 is−2±42 mrad,
see Fig. 7(b). The small mean shows that φ can be set
with high accuracy. The large standard deviation reflects
measurement imperfections of the density matrix and in-
cludes the measured timing jitter σjitter = 2.6 ps between
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the two drives. This corresponds to a 7 mrad imprecision
in ϕ computed from 2πσjitter(3.196 GHz− 2.775 GHz).
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Figure 7. (a) Difference between expected and measured
phases (between |ge〉 and |eg〉) obtained from quantum state
tomography as a function of the phase of the drive applied to
Q2. Each green point corresponds to different value of θ and
φ. The black dots show the average over θ. The data points at
the set phase φ = 0 are used to remove the systematic single-
qubit phases induced by θ-dependent cross ac Stark shifts
leading to zero dispersion of the first point. (b) Histogram of
the errors, the mean and standard deviation of all points are
−2 mrad and 42 mrad, respectively.

V. SIMULATION RESULTS

The holonomic operation is simulated using QuTiP [45]
to understand leading error contributions. We use the
Hamiltonian in Eq. (1) with the qubits modeled as anhar-
monic four-level systems and the resonator modeled as a
harmonic three-level system. Experimentally determined
frequencies, anharmonicities, coupling strengths and T1
times are taken into account when computing the time
evolution using a master equation in Lindblad form. As
in the experiment, we assume that one of the qubits starts
in the |f〉 state. The control pulse is a flat-top Gaussian
with 206 ns long top and σ = 3.5 ns to reflect the effect
of the finite bandwidth of the experimental setup on the
square pulse.

The simulated time evolution of a population trans-
fer from Q1 to Q2 shows that the resonator is populated
during the holonomic operation and returns to its ini-
tial ground state at the end of the pulse, see Fig. 8(a)
for an example with θ = π/2. Here the maximum pop-
ulation reached in the resonator is 50%. Table I sum-
marizes simulation results of end populations for differ-
ent T1 times of the qubits and the resonator. For uni-
tary dynamics (T1 → ∞), the target state is reached
with 99.98% fidelity. If relaxation processes for both
qubits and resonator are included, this value decreases to
98.48%, with some residual population in the |e〉 states
due to the finite T1 time of the qubits. The short T1 time
of the resonator only marginally decreases the amount
of population transferred, as can be seen from the fi-
delity of 99.11% reached when assuming no relaxation in

the resonator but finite T1 times of the qubits. How-
ever, the effect of the 1.8 MHz and 3.0 MHz charge
dispersion on Q1 and Q2, respectively, is detrimental.
We simulate this effect by imposing a frequency shift
−0.9 MHz ≤ δω1/(2π) ≤ 0.9 MHz on the drive of Q1 and
−1.5 MHz ≤ δω2/(2π) ≤ 1.5 MHz on the drive of Q2.
For each pair of frequency shifts on this two-dimensional
grid we compute the time dynamics for different θ-angles.
We average the final population in each qubit over the
two-dimensional grid assuming that the offset charge ng
due to the electrostatic environment has a uniform prob-
ability distribution. Since the qubit frequency is a si-
nusoid function in ng [46] the probability distribution
function for δωi is fi(δωi) = 1/(π

√
δω2

i,max−δω2
i ) where

δωi,max/(2π) is 0.9 MHz and 1.5 MHz for Q1 and Q2,
respectively. The population transfer with the simu-
lated charge noise matches well the experimental data,
see Fig. 6(a). As seen from the last entry in Tab. I,
with such large charge dispersion the population is not
properly transferred between the qubits and partially
remains in the resonator, see Fig. 8(b) for an exam-
ple in which (δω1/(2π), δω2/(2π)) = (0.9, 0) MHz and
θ = π/2. We expect that by slightly modifying the charg-
ing energies of the transmons, charge noise can be signifi-
cantly suppressed: for example requiring less than 10 kHz
charge dispersion in the |f〉 state can be achieved with
an EC ≤ 217 MHz for a 5.0 GHz qubit [4].
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Figure 8. Simulation of the time evolution when θ = π/2
and Q1 is the source qubit. (a) Time evolution assuming
the drives are calibrated using the procedure in Sec. III. (b)
Simulated time evolution when the drive on Q1 is 0.9 MHz
detuned.
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Table I. Final populations in the different states of the system
rounded to 10−4 after a flat-top Gaussian pulse with 206 ns
long top and σ = 3.5 ns that swaps the population from |fg0〉
into |gf0〉. The numbers are expressed as a percentage.

Unitary time evolution
|gf0〉 |gg0〉 |eg0〉 |ge0〉 |gg1〉 |fg0〉
99.98 0 0 0 0.02 0

Finite T1

|gf0〉 |gg0〉 |eg0〉 |ge0〉 |gg1〉 |fg0〉
98.62 0.87 0.19 0.29 0.02 0

Finite qubit T1, Resonator T1 →∞
|gf0〉 |gg0〉 |eg0〉 |ge0〉 |gg1〉 |fg0〉
99.11 0.01 0.37 0.5 0.02 0

Finite T1 with charge dispersion
|gf0〉 |gg0〉 |eg0〉 |ge0〉 |gg1〉 |fg0〉
82.73 0.98 0.17 0.3 11.38 4.44

VI. QUANTUM CHEMISTRY

The two-tone holonomic operation conserves the ex-
citation number, see Eq. (6). This property makes it
well suited for quantum chemistry applications where the
number of electrons is fixed [39]. As an example, we use
the holonomy to compute the ground state of molecu-
lar hydrogen, a system that has been used as an exper-
imental benchmark for performing quantum chemsitry
calculations in various platforms [47–53]. This fermionic
problem, in a minimal STO-3G basis, is first mapped to
the qubit Hamiltonian

ĤH2
=α1II + α2Î σ̂

(z)
2 + α3σ̂

(z)
1 Î (8)

+α4σ̂
(x)
1 σ

(x)
2 + α5σ̂

(y)
1 σ

(y)
2 + α6σ̂

(z)
1 σ

(z)
2 ,

where the overlap integrals αi depend on the bond length
d [47] and σ̂

(j)
i are qubit Pauli operators. Equation (8)

describes the two-electron subspace of the H2 molecule
restricted to states with zero magnetic moment. In this
model, the energy of the ground state E0 is found by
minimizing the expectation value of ĤH2

for trial states
|ψ(θ, φ)〉 ∈ {|ge〉 , |eg〉}.

To create the trial states we apply a first Xg→e
π pulse

followed by a Xe→f
π pulse to Q1. We then use the

two-tone holonomic drive to create the state cos θ |fg〉+
eiφ sin θ |gf〉. The angles θ and φ are controlled by λ1,2,
see Eq. (7). A final Xf→e

π pulse applied to each qubit
maps the population in the |f〉 states back to the |e〉
states. The resulting trial state |ψ(θ, φ)〉 = cos θ |eg〉 +
eiφ sin θ |ge〉 is used to measure the expectation value of
the correlators in Eq. (8).

In a scalable calculation of molecular energies using
a quantum computer, the energies would be found with
a search algorithm using the variational quantum eigen-
solver method (VQE) [47, 49, 54, 55]. However, the pa-
rameter space of the H2 molecule is small enough such
that this can be done with a two-dimensional scan over θ
and φ. We calculate the energy of the molecule for θ and

Figure 9. Measurement of the ground state energy of the H2

molecule using the two-tone holonomic operation. (a) energy
ofH2 as function of θ and φ for a d = 1.4 Å bond length. Each
point is obtained by measuring the correlators in Eq. (8) and
weighing them by the overlap integrals αi(d). Each data point
corresponds to the average of three measurements with 1000
shots each. The white dot in (a) indicates the minimum mea-
sured energy. (b) Theoretical calculation of the ground state
energy of H2 obtained by diagonalizing ĤH2 for a d = 1.4 Å
bond length. (c) Dissociation curve of molecular hydrogen ob-
tained by computing E0 for different bond lengths using the
measured correlators that make up the energy map shown in
(a).

φ values ranging between [0, π/2] and [0, 2π], respectively,
which results in an energy map E(θ, φ), see Fig. 9(a) for
an example with bond length d = 1.4 Å. The ground
state energy is given by the point with the lowest energy,
as indicated by the white dot in Fig. 9(a). Comparing
the measured data in Fig. 9(a) to the theoretical energy
map, shown in Fig. 9(b), reveals a θ-dependent phase
offset which twists the (θ, φ) energy map. We believe
that this error is induced by ac Stark shifts. Despite this
effect, we still manage to find the ground state energy.
This observation provides support to the hypothesis that
variational quantum chemistry is robust to some unitary
errors [49]. Identifying the minimum energy for differ-
ent bond lengths yields the dissociation curve of molec-
ular hydrogen shown in Fig. 9(c). We observe a devia-
tion with respect to the theoretical curve which increases
with bond length. In our model the ground state energy
for longer bond lengths d is obtained at larger θ-values.
We therefore attribute the deviation with theory mainly
to charge noise, see Fig. 6(b). For bond lengths below
1.85 Å the α3 factor that multiplies the 〈Iσ̂(z)

2 〉 correla-
tor is negative. Errors that reduce the magnitude of all
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other correlators with respect to 〈Iσ̂(z)
2 〉 may thus result

in data points lying below the theoretical curve.

VII. CONCLUSION AND OUTLOOK

We have demonstrated entanglement creation and ma-
nipulation of two-qubit states using non-adiabatic holo-
nomic operations. Using square pulses lasting 213 ns we
have created two-qubit states with fidelities above 95%.
This fidelity is also affected by imperfections of the single
qubit rotations Xi→j

α with gate fidelities of 98% as de-
termined by quantum process tomography. Simulations
have identified charge dispersion in the qubit |f〉 states as
the main fidelity limitation. With reduced charge disper-
sion, population transfers with higher fidelity are possi-
ble. Further gains in fidelity can be obtained by increas-
ing the T1 time of the resonator, e.g. by optimizing its ge-
ometry [56]. In the future, the holonomic operation pre-
sented here may be extended to a two-qubit non-Abelian
non-adiabatic gate [57]. For this to be possible, the 1-
2 excitation manifold {|gg1〉 , |fg0〉 , |gf0〉} must be well
separated from the transitions in the 3-4 excitation man-
ifold {|fg1〉 , |gf1〉 , |ff0〉} to avoid residual driving of
these transitions. In our sample, the separation between
these manifolds was 5 MHz. A larger separation will per-
mit the operation described in Eq. (6) as a SWAP-type
gate that acts on the full computational subspace with-
out population loss. A larger separation can be achieved
by increasing the dispersive shift between the coupling
resonator and the qubits. Alternatively, it may be possi-
ble to use more complex pulse shapes obtained by opti-
mal control methods [58, 59] applied to superconducting
qubits [60, 61].

From a practical perspective the holonomic operation
provides a potential solution to the frequency-crowding
issue when using cross-resonance gates in all-microwave
architectures: a greater qubit-resonator frequency differ-
ence can be compensated by a stronger drive whereas
in the case of the cross-resonance gate the qubit-qubit
frequency difference has to be similar to the qubit
anhrmonicity. A second important aspect is that the
holonomy provides an excitation preserving interaction
that restricts the dimension of the state space explored
in VQE-based quantum chemsitry calculations. It can,
thus, lead to a faster convergence with algorithms that
have shorter circuit-depth [39].
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Appendix A: Dynamics

Here we show that the evolution in the two-qubit sub-
space governed by the Hamiltonian Ĥ ′eff from Eq. (5) is
purely geometric by following a parallel transport. Con-
sider two orthonormal vectors that initially span the
qubit subspace {|fg0〉 , |gf0〉}

|ψ1(0)〉 = α |fg0〉+ β |gf0〉
|ψ2(0)〉 = β∗ |fg0〉 − α∗ |gf0〉 ,

where α, β ∈ C and |α|2 + |β|2 = 1. We define
the initial subspace S0 = span{|ψ1(0)〉 , |ψ2(0)〉}. Un-
der the action of Ĥ ′eff this subspace evolves into St =
span{|ψ1(t)〉 , |ψ2(t)〉}. The time evolution satisfies the
parallel transport condition

〈ψj(t)|Ĥ ′eff(t)|ψk(t)〉 = 0 (A1)

which can be transformed into 〈ψj(t)|ψ̇k(t)〉 = 0 using
the Schrodinger equation. This implies that an infinites-
imally small time-step dt evolves the vector |ψk(t)〉 along
a direction which is perpendicular to all vectors in St, i. e.
there are no transitions between the vectors in St during
the time evolution. This means that the resulting non-
Abelian geometric phase has no dynamical contributions
[21].

Now we show that Eq. (A1) holds when the Hamilto-
nian Ĥ ′eff is given by Eq. (5). We write Ĥ ′eff(t) = g̃(t)Â,
where

Â =

 0 λ1 0
λ∗1 0 λ2
0 λ∗2 0


in the basis |fg0〉 = (1, 0, 0)T , |gg1〉 = (0, 1, 0)T and
|gf0〉 = (0, 0, 1)T . The time evolution operator is

Û(t) = T exp

(
−i
∫ t

0

g̃(t′)Âdt

)
= exp

(
−iG(t)Â

)
where G =

∫ t
0
g̃(t′)dt′ and T denotes time-ordering.

The last equation follows from the time-independence
of Â resulting in Ĥ ′eff commuting with itself at all
times. The left-hand side of Eq. (A1) can be written
as g̃(t) 〈ψj(0)|Û(t)†ÂÛ(t)|ψk(0)〉. Since [Û , Â] = 0 the
term Û†ÂÛ reduces to Â. The action of Â on |ψ1(0)〉
and |ψ2(0)〉 yields a vector proportional to |gg1〉 which is
perpendicular to |ψj(0)〉 for j = 1, 2. The parallel trans-
port condition is thus satisfied ∀ t.
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Appendix B: Cyclical evolution

Since |λ1|2 + |λ2|2 = 1, Â satisfies Â3 = Â resulting in
Â2n+1 = Â and Â2n = Â2 for n ≥ 1 where

Â2 =

|λ1|2 0 λ1λ2
0 1 0

λ∗1λ
∗
2 0 |λ2|2

 .

Using the Taylor expansion for the exponential, cosine
and sine functions the time evolution operator is

Û(t) = I + Â2{cos[G(t)]− 1} − iÂ sin[G(t)].

When G(T ) = π the time evolution operator reads
Û(τ) = I−2Â2. The evolution is thus cyclical, i. e. ST =

S0, since Â2 does not mix the subspace {|fg0〉 , |gf0〉}
and {|gg1〉}. By introducing −eiφ tan(θ/2) = λ1/λ2 one
recovers the time evolution operator of Eq. (6) in the
main text.
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