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We present a general theory of exceptional points of degeneracy (EPD) in periodically time-variant 
systems. We show that even a single resonator with a time-periodic component is able to develop EPDs, 
contrarily to PT-symmetric systems that require two coupled resonators. An EPD is a special point in a 
system parameter space at which two or more eigenmodes coalesce in both their eigenvalues and 
eigenvectors into a single degenerate eigenmode. We demonstrate the conditions for EPDs to exist when 
they are directly induced by time-periodic variation of a system that is without loss and gain elements. We 
also show that a single resonator system with zero time-average loss/gain exhibits EPDs with purely real 
resonance frequencies, yet the resonator energy grows algebraically in time since energy is injected to the 
system from the time variation mechanism. Although the introduced concept and formalism is general for 
any time-periodic system, here we focus on the occurrence of EPDs in a single LC resonator with time 
periodic modulation. These findings have significant importance in various electromagnetic and photonic 
systems and pave the way to many applications like sensors, amplifiers and modulators. We show a 
potential application of this time varying EPD as a highly-sensitive sensor. 

I. INTRODUCTION 

Frequency splitting phenomena at exceptional points of 
degeneracy (EPDs) is adopted to serve in sensing 
applications [1,2]. Frequency splitting occurs at degenerate 
resonance frequencies where multiple eigenmodes of the system 
coalesce. Such degenerate resonance frequencies are extremely 
sensitive to small changes in the system which lead to a 
detectable shift in the system variables. This concept is used in 
modern sensing devices such as optical microcavities [2–4], 
bending curvature sensors [5] and optical gyroscopes [6,7].  

The splitting point of degenerate resonance frequencies 
varying a system parameter is referred to as an EPD and it 
emerges in a system when two or more eigenmodes coalesce in 
both their eigenvalues and eigenvectors into a single degenerate 
eigenmode. The concept of EPDs has received a surge of 
interest in recent years [8–16]. EPDs have been found in non-
Hermitian parity-time (PT-) symmetric coupled systems, i.e., 
systems with balanced gain and loss [17,9,11,14,18]. EPDs 
based on the concept of PT-symmetry have been investigated in 
coupled waveguides whose eigenmodes evolution is described 
in space [19,8,1], and also in coupled resonators where the 
eigenmodes evolution is described in time [20,10,12,15]. EPDs 
may also exist in lossless/gainless periodic waveguides which 
support multiple polarization eigenmodes that are periodically 
mixed and they usually occur at the transmission band 
edge [21–30,13]. In essence, EPDs are obtained when the 
system matrix is similar to a matrix that contains a Jordan 
block [23,31,32]. At the EPD, the system eigenstate is 
represented in terms of generalized eigenvectors rather than the 
regular eigenvectors [22,23]; which in turn leads to algebraic 
growth in the system eigenstates [23,32]. There are different 
unique properties associated with the emergence of EPDs which 
lead to various potential applications such as enhancing the gain 
of active 

systems [33–37,16], directivity in antennas [38], enhanced 
sensors [1,2,39], etc. 

In this paper, we demonstrate the occurrence of EPDs directly 
induced by temporal periodic variation of a system. The newly 
introduced concept for systems that are periodically time 
varying is analogous to EPDs found in spatially periodic 
waveguides  [13,21–24,28,30,16].  

In Fig. 1, we show two examples of temporally periodic 
systems that exhibit EPDs. Note that time variation was already 
considered in PT-symmetric systems with EPDs [40–44]. The 
time variation was used to enhance some features in systems 
that already developed EPDs due to PT-symmetry. In contrast, 
in this paper we show that EPDs are induced in a single 
resonator directly by periodic time-variation of the system 
itself, without the need of elements that exhibit time-invariant 
gain. As an example, we demonstrate the concept using the 
simplest possible resonator, i.e., an LC resonator, though the 
formalism is general and applicable to any time-periodic 
photonic or radio frequency system. Remarkably, we 

 
Fig. 1. Two examples of systems with time periodic variation: (a) LC 
resonator with a time varying capacitor ( )C t . (b) Metallic resonator filled 
with a dielectric that has a time-varying permittivity ( )tε . These single 
resonators are able to exhibit EPDs when a precise modulation frequency is 
applied. 
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demonstrate that the occurrence of EPDs is solely due to time-
periodic variations in a linear time-periodic (LTP) system. 
Hence the presence of time-invariant gain or loss (namely a 
transistor, a pumped active medium, or material losses) is not 
necessary to generate an EPD. When an EPD is directly induced 
by time modulation, as proposed in this paper, the system 
receives energy in a subtle way through the time variation 
process. Therefore, in an LTP system the EPD is obtained by 
simply tuning the period of the time modulation which is a 
standard practice in many engineering applications, in contrast 
to PT symmetric systems where the requirements on gain and 
loss elements may be difficult to achieve in practice. Moreover, 
gain elements always include parasitic reactances that have to 
be included in any PT symmetric double resonator realistic 
design.  

In the following, in Sec. II we provide the general theory and 
formulation for EPDs to exist in linear time-periodic systems. 
Then we show that even a single passive resonator (without gain 
or loss elements such as transistors or negative resistors) exhibit 
EPDs once time periodic modulation is introduced. Then we 
further investigate two other linear time-periodic systems that 
include negative resistance and we derive the necessary and 
sufficient conditions for 2nd order EPDs to occur. Finally, we 
show how a simple resonator with time modulation can perform 
as an extremely sensitive sensor.  

II. FORMULATION FOR EPD INDUCED BY TIME 
PERIODIC VARIATION 

Time periodic variation is introduced in a system through any 
time-varying system parameter. Generally, an LTP system may 
comprise multiple components therefore we will assume that the 
state vector ( )tΨ  describing this system is N-dimensional, i.e., 

 1( ) [ ( ) ( )]TNt t t= Ψ ΨΨ L ,  (1) 

where T denotes the transpose operator. The temporal evolution 
of the state vector obeys the multidimensional first-order 
differential equation  

 ( ) ( ) ( )d t t t
dt

=Ψ M Ψ   (2) 

where ( )tM  is the N N×  time-variant system matrix. For LTP 
systems with period Tm, the state vector evolution from the time 
instant t to mt T+  is given by  

 ( ) ( , ) ( )m mt T t T t t+ = +Ψ Φ Ψ ,  (3) 

where )( ,mt T t+Φ  is the state transition matrix [45]. In the 
following, for simplicity and without loss of generality, we 
assume the matrix ( )tM  is represented by a piecewise constant 
periodic function, hence we relate the transition matrix to the 
system matrices as  

 1
jjJ

j
Te== ∏ MΦ ,  (4) 

where jM  is the system matrix in the jth interval Tj, and the 

system modulation frequency is 1/m mf T=  where 

1
J

jjmT T==∑ .  Solutions of an LTP system in general satisfy 

 ( ) ( )mi T
mt T e tω−+ =Ψ Ψ   (5) 

which means that ( )tΨ  can be represented in terms of the 
Floquet harmonics. Using the transition matrix to represent the 
time evolution of the state vector, we formulate the eigenvalue 
problem as 

 ( ) ( )t tλ=ΦΨ Ψ .  (6) 

The eigenvalues exp( ) 1, ,n n mi nT Nλ ω= − = K , with nω  
being the system eigenfrequencies, are obtained solving the 
characteristic polynomial 

 ( )det 0λ− =Φ I  . (7) 

When the transition matrix is diagonalizable we can write 
1−=Φ UΛU , where U is a non-singular similarity 

transformation matrix whose columns are the eigenvectors of 

 
Fig. 2. (a) Real and imaginary parts of dispersion diagram of the 
eigenfrequencies (complex resonance frequencies ω ) versus normalized 
modulation angular frequency mω . (b) The linear algebraic growth of the 
inductor current at an EPD for an LC resonator with time-varying capacitor. 
Therefore, the energy stored in the inductor grows quadratically.   
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Φ  that are all independent. This analysis is valid unless an 
EPD emerges, at which the transition matrix Φ  is non-
diagonalizable and it is similar to a matrix JΛ  that contains at 
least a non-trivial Jordan block with P degenerate 
eigenvalues [32]. Therefore, at the EPD, the algebraic 
multiplicity P of an eigenvalue eλ  (and its correspondent 
eigenfrequency eω ) of (2) is higher than its geometrical 
multiplicity (the number of independent  eigenvectors 
associated with that eigenvalue) because two or more 
eigenvectors coalesce. The similarity transformation at the EPD 
is written as 1

J
−=Φ VΛ V  where the columns of V  are 

composed of regular eigenvectors and generalized eigenvectors 
that are found through 

 ( ) ( ) 1, 2, ,p
e p t p Pλ− = =Φ 0I Ψ K   (8) 

Here pΨ  with 1p >  are the generalized eigenvector and P is 
the order of degeneracy (see Chap. 7 in [31]).  

III. TIME-VARIYING INDUCED SECOND ORDER 
EPD  

For the sake of simplicity, the following analysis and 
examples are focusing on second order EPDs that emerge in 
LTP systems, hence the transition matrix Φ  has dimensions 
2×2. For a system described by a real 2×2 transition matrix, the 
characteristic polynomial ( )det 0λ− =Φ I  has real coefficients 
so that the eigenvalues 1λ  and 2λ  are either both real or a 
complex conjugate pair. Since the determinant of the matrix can 
be expressed as 

 
t

1
r( )2

12det( ) j jT
j eλ λ == = ∏

MΦ ,  (9) 

where tr denotes the trace of the matrix, then the determinant 
can be either  

 12 Im{ }det( ) mTe ω=Φ   (10) 

when 2 1
*λ λ= , where the symbol *  denotes the complex 

conjugate operation, or  

 1 2(Im{ Im{} })det( ) mis Te e ω ωπ +=Φ   (11) 

when 1λ  and 2λ  are both real, where ω1 and ω2 are the 
eigenfrequencies of the eigensystem (6) and s  is an integer.  At 
the EPD the 2×2 transition matrix Φ  is similar to a Jordan 
block with two degenerate eigenvalues that are associated with a 
regular eigenvector and a generalized eigenvector obtained from 
(8). On the other hand, the eigenvalues of any 2×2 matrix Φ  
are [46], 

 [ ]2tr( ) / 2 tr( d )) / 2 et(nλ = ± −Φ Φ Φ   (12) 

 
where the upper and lower signs hold for 1, 2n = .  The 
associated eigenvectors of the system described by a non-
diagonal Φ  are 

 12 11[ , ] , 1, 2T
n n nφ λ φ= − =Ψ ,  (13) 

where 11φ  and 12φ  are elements of the matrix Φ  [45]. It is clear 
from the expression of the eigenvectors that degenerate 
eigenvalues lead to degenerate eigenvectors (i.e., identical 
eigenvectors) unless the matrix Φ  is diagonal. Therefore, to 
guarantee the emergence of EPDs in a system described by a 
non-diagonal transition matrix Φ , it is sufficient to have 
degenerate eigenvalues, i.e., it is sufficient to satisfy the 
condition 

 tr( ) / 2 t )de (= ±Φ Φ . (14) 

The presented formulation is general and describes the 
occurrence of EPDs in any system described with the set of 
differential equations in (2). Without loss of generality and to 
provide a physical description of a 2×2 LTP system, we 
demonstrate all the above concepts by using very simple LC 
resonator examples.  

A. Time-periodic system without gain and loss elements 
Consider first the lossless LC resonator with time-periodic 

capacitance as depicted in Fig. 2(b); this example demonstrates 
the existence of EPDs in a simple LTP system made of a 
lossless and gainless resonator. We define the system state 
vector as ( ) [ ( ) ( )]Tt q t i t=Ψ , where q(t) is the instantaneous 
charge on the capacitor and i(t) is the inductor current as shown 
in the circuit depicted in Fig. 2(b).  

The time-variant capacitor is given by a two-level piecewise-
constant time-periodic function: C1 in the interval 0 ≤ t < T1 and 
C2 in T1 ≤ t < Tm. The time evolution of the state vector ( )tΨ  is 

 
Fig. 3. The function F of the lossless LC resonator depicted in Fig. 2(b) 
versus the capacitance C2 and the normalized modulation angular frequency 
ωm/ω0. Solid (blue) and dashed (green) contours on the color map represent 
points which satisfy the EPDs condition 1F = ±   in (16). 
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described by (1), where 1( )t =M M  for 0 ≤ t < T1 and 

2( )t =M M  for T1 ≤ t < Tm, with   

 ( )0

0 1
, 1,2

1/ 0
M j

j
j

L C

−⎡ ⎤
= =⎢ ⎥
⎢ ⎥⎣ ⎦

  (15) 

Fig. 2(a) illustrates the dispersion of the eigenfrequencies ω 
of Φ , symmetrically located with respect to the center of the 
Brillouin zone (BZ), versus the normalized angular modulation 
frequency (ωm /ω0), where 0 0 01/ L Cω = and C0 = (C1+C2)/2. 
Note that the system is periodic, so that for an eigenfrequency 
ω there correspond all the Floquet harmonics msω ω+ , where s 
is an integer. For the system matrices (15) with real-valued 
elements, it can be shown that det( 1) =Φ  which implies either 

that  21 1λ λ= =  (hence 1 2Im{ } Im{ } 0ω ω= = ) when *
2 1λ λ=

, or that 2 11/λ λ=  (hence 1 2Im{ } Im{ }ω ω= − ) when both 
eigenvalues are real. This means that at the EPDs, the 
degenerate eigenvalue 1eλ = ± , therefore eω  is purely real. 
This finding agrees with what is shown in the complex 
dispersion diagram depicted in Fig. 2(a).  The parameters of the 
LC resonator are set as L0 = 10µH, C1 = 50nF, C2 = 150nF. The 
two ω solutions coalesce for some modulation angular 
frequencies ωm and become exactly equal at the EPDs. In this 
particular example, EPDs occur at either the center of the BZ 
(Re{ω} = 0) or at the edge of the BZ (Re{ω/ωm} = ±0.5). It is 
important to point out that for a lossless and gainless system the 
imaginary part of the dispersion diagram is symmetric with 
respect to the center of the BZ and it vanishes at the EPDs, i.e., 
EPDs occur at real valued frequencies. 

In Fig. 2(b) we show the time domain simulation of the state 
vector element i(t) at one of the EPDs (ωm = 0.44ω0) assuming a 
capacitor charge initial condition of (0 ) 50 nCcq − = . It is clear 
from Fig. 2(b) that the capacitor current is growing linearly with 
time even in the absence of gain, which resembles one of the 
most important characteristics associated to the generalized 
eigenvector of a second order EPD. Note that, even though there 
is no gain element in the system, the time-periodic LC resonator 
is not isolated, and it receives energy from, or provides it to, the 
time variation process. The time-variant capacitor in this system 
can be implemented using a varactor diode where a pump signal 
changes its capacitance. 

The general condition (14) is sufficient for a system described 
by a non-diagonal 2×2 transition matrix to exhibit EPDs. In 
particular, for the lossless and gainless time-periodic LC 
resonator in Fig. 2 this sufficient condition reads 

 

( ) ( )

( ) ( )

1 1

1 2
1 1

2

2

1

2

2 2

cos cos

1 sin sin 1
2

F T T

C C
T T

C C

=

⎛ ⎞
− +

Ω Ω

Ω = ±⎜ ⎟⎜ ⎟
⎝

Ω
⎠

  (16) 

where 1/2
0( )j jL C −Ω = , with 1, 2j = , are the resonance 

frequencies of the LC resonator in the time intervals T1 and T2, 
respectively. Fig. 3 shows the function F varying the 
capacitance 

 
C2 (C1 is constant) and the normalized angular modulation 
frequency (ωm/ω0). The solid blue and dashed green contours 
represent points on the colormap where an EPD exists: the blue 
contours represent points where F = 1 which are associated with 
EPDs at the center of the BZ, while the dashed green contours 
represent points where F = −1 that are associated with EPDs at 
the edge of the BZ. 

Energy-wise, a time-periodic system (e.g., a time-periodic LC 
circuit) is not isolated, and such a system is in a continuous 
interaction with the source of time-variation. Such an interaction 
can transfer energy into/out of the system, i.e., the system will 
gain energy from or lose energy to the time-variation source. 
The procedure of periodically varying the capacitance to add 
energy to the circuit is referred to as pumping  [45,47–49], 
contrary to adding energy to the system directly from an input 
source such as a transistor, a time-invariant pump or an optically 
active medium, that are referred to in this manuscript as a time-
invariant gain mechanisms [50,51]. The average energy transfer 
into or out of an LTP component can be calculated using the 

 
Fig. 4. (a) Dispersion diagram of the eigenfrequencies (complex resonance 
frequencies ω ) of the resonator depicted in (b), versus modulation angular 
frequency  mω . The vertical dashed line represents the Im{ } 0ω =  to point 
out that the imaginary part is negative. (b) Time evolution of the inductor 
current at an EPD for the time-periodic lossy resonator with positive time-
average conductance as shown in the figure. 
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time domain solution of the multidimensional first-order 
differential equations in (2). It can be easily shown that the state 
vector of a periodically time-variant system experiencing an 
EPD grows linearly with time and therefore the average 
transferred energy to the system will have a quadratic growth. 

B. Time-periodic system with gain and loss elements 
As a second example we show that a system with time-

periodic loss and/or gain also exhibits EPDs. To demonstrate 
the emergence of EPDs in this type of time-periodic systems, 
we use an RLC resonator with time-periodic piecewise constant 
conductance, as depicted in Fig. 4(b). Analogously to the 
previous example, we assume a two-level piecewise constant 
time-periodic conductance: G1 for 0 ≤ t < T1 and G2 for T1 ≤ t < 
Tm. In general, G1 and G2 can be positive (representing loss in 
the system) or negative (representing gain). The state vector is 
defined as ( ) [ ( ) ( )]Tt q t i t=Ψ , with q(t) as the instantaneous 
charge on capacitor and i(t) as the inductor current. The constant 
system matrices of the two-time intervals are given by  

 
( )

0

0 0

1
, 1,2

1/ 0

/
M j

j
G

L

C

C
j

− −⎡ ⎤
= =⎢ ⎥
⎢ ⎥⎣ ⎦

 . (17) 

Such a system develops EPDs in two different scenarios; the 
first scenario is through using time-periodic conductance with 
non-zero time-average whereas the second one is through using 
time-periodic conductance with zero time-average, i.e., 

 1 1 2 2 0G T G T+ =   (18) 

Not to mention, a system with positive time-average 
conductance has dominant loss and a system with negative time-
average conductance has dominant gain. Moreover, a system 
with zero time-average has a time-periodic gain and loss 
balance. 

Non-zero time-average conductance. Fig. 4(a) shows the 
complex dispersion diagram of a system with positive time-
average conductance (i.e., G1T1+G2T2 > 0). The parameters of 
the LC resonator are L0 = 10µH, C0 = 100nF, G1 = 101mS, G2 = 
−99mS, T1 = T2 =Tm/2. Fig. 4(b) shows the inductor current at 
an EPD with ωm = 0.37ω0 and (0 ) 50 nCcq − = .  
Note that for all the EPDs in such system, the imaginary part of 
the eigenfrequencies is negative which is a result of the 
dominant time-average loss in the system and that leads to an 
exponential decay of the system state vector besides the linear 
algebraic growth (visible at early times) due to the degeneracy.   

Similar to the system with dominant time-periodic loss, a 
system with dominant time-periodic gain (i.e., G1T1+G2T2 < 0) 
will develop EPDs in its dispersion diagram. However, 
eigenfrequencies away from the bandgaps have a positive 
imaginary part which leads to an exponential growth of the state 
vector with time besides the linear growth at the EPD.  

Zero time-average conductance. The determinant of the 
transition matrix is 

 ( )1 1 2 2 0tr( )2 /(2 )
1e )d t( j jT G T TG C

j e e− +
== =∏ MΦ ,  (19) 

 

therefore when (18) is satisfied, det( 1) =Φ  which leads to the 
same conclusion found for the lossless/gainless LC resonator  
discussed in relation to Fig. 2. This means that at the EPDs 

1eλ = ±  and therefore eω  is purely real. 
Assuming 1 mT Tα=  then 2 (1 ) mT Tα= −  and assuming

1 0G > , then to satisfy the time-average condition (8), the 
conductance 2 1 / (1 )GG α α= − − . 

The schematic of a time-periodic gain and loss balanced LC 
resonator is depicted in Fig. 5(b) where the time-variant 
conductance is assumed to satisfy (18). The dispersion diagram 
shown in Fig. 5(a) is based on parameters L0 = 10µH, C0 = 
100nF, G1 = −G2 = 100mS and T1 = T2 = Tm/2, and modulation 
frequency 00.32mω ω=  with 0 0 01/ L Cω = . The time 
domain evolution of the inductor current ( )i t , assuming an 

initial capacitance charge (0 ) 50 nCcq − = , is shown in Fig. 
5(b). Since the system has a 2nd order EPD and a time-periodic 
gain and loss balance, we only observe a dominant linear 
growth in the current of the resonator at the EPD. 

 
Fig. 5. (a) Dispersion diagram of the eigenfrequencies (complex resonance 
frequencies ω ) of the resonator depicted in (b), versus modulation angular 
frequency  mω . (b) Algebraic growth of the inductor current at an EPD of 
the time-periodic gain-loss balanced resonator, where the conductance is 
temporally periodic with zero time-average. 
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From (4) we find the sufficient condition for EPDs to emerge 
in a system with time-variant conductance to be 

 

( ) ( )

( ) ( )

1 1

2
0 1 2

1 12
1 0

2 2

2 2
2

cos cos

1 sin sin 1
4

F T T

G G
T T

G
ω

=

⎡ ⎤
− − = ±⎢ ⎥

⎢ ⎥⎣
Ω Ω

⎦

Ω Ω

Ω Ω
  (20) 

  where 0 0 0/G C L=  and 2 2
0 01 / (4 ), 1, 2j jG G jω= − =Ω  

are the real part of the complex resonance frequencies for the 
resonator in the time intervals T1 and T2, respectively. In Fig. 
6(a) we show the function F versus conductance G1 and the 
normalized angular modulation frequency ωm/ω0 where we 
assume a zero time-average conductance with 0.6α = . There 
exists a critical value of the conductance G1, that is denoted by

{ }c 02 max 1, (1 ) /G G α α= − , beyond which both 1Ω  and 2Ω  
become purely imaginary and the system cannot exhibit EPDs. 
In Fig. 6(b), the solid blue contours (F = 1) and the dashed 
green contours (F = −1) represent points on the colormap where 
an EPD exists.  

IV. SENSITIVITY TO SYSTEM PERTURBATION 

As discussed in the introduction, the eigenvalues at the EPDs 
are extremely sensitive to the perturbations of the system 
parameters. In general, introducing a perturbation ε to any of the 
system parameters leads to a perturbed transition matrix ( )εΦ  

and perturbed eigenvalues ( )pλ ε , with p = 1, 2, …, P  where P 

is the order of the EPD. We represent ( )pλ ε  near the EPD 

eigenvalue eλ  by a single convergent Puiseux series containing 

only powers of 1/ Pε  where the Puiseux series coefficients are 
calculated using the explicit recursive formulas given in  [52]. 
For a second order EPD (P = 2), we use a first order 
approximation of ( )pλ ε  as 

 1( )( 1) e
p

pλ ε λ α ε+ −≈  , (21) 

where  

 1 0,
, /( )

e
f

ε λ λ
α ε λ ε

= =
= −∂ ∂   (22) 

 
and ( ) det, ( ) )(f ε λ ε λ= −Φ I . As an illustrative example, 
consider an LC resonator with time-variant capacitance as 
described in Fig. 2, but with a lossy inductor with quality factor 
of 100, and assume C2 is now perturbed from its nominal value 
as (1 + ε) C2. When C2 is not perturbed the system exhibits an 
EPD with an eigenvalue 0.98eλ = −  for a modulation 
frequency 00.44mω ω= . In Fig. 7(a) we show the two 
perturbed eigenvalues λ  versus the perturbation ε calculated 
from the exact eigenvalue problem (6) and by using the Puiseux 
series approximation. The most important thing to be noticed 
from Fig. 7 is that an extremely small perturbation in the 
capacitor C2 will lead to a much larger change in the 
eigenvalues of the system. This property is actually one of the 
most exceptional physical properties associated to EPDs and it 
can be exploited in designing extremely sensitive sensors [8,15]. 
The large perturbation of the eigenvalues in turn implies a sharp 
change in the complex resonance frequency of the LTP LC 
resonator as shown in Fig. 7(b). For positive but very small ε-
perturbation the imaginary part of the complex resonance 
frequency shows a sharp change while its real part is kept 

 
Fig. 7. (a) Variation of the eigenvalues away from the EPD of a lossy LC 
resonator as in Fig. 2(b) but with a lossy inductor, when the capacitor C2 is 
perturbed. (b) The complex resonance frequency ω1 exhibits large 
variations even for very small perturbations ε. 
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Fig. 6. (a) The function F in terms of the conductance G1 and the 
normalized modulation angular frequency ωm/ω0 for α = 0.6. (b) Contours 
of points which satisfy the EPD condition in (20). 
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constant. Furthermore, a very small negative ε-perturbation 
causes a rapid change of the real part of the resonance 
frequency. For example, a +0.1% perturbation in the dielectric 
permittivity of the capacitor C2 (i.e., ε = 0.001) will change the 
imaginary part of the resonance frequency by 00.34ω ; which 
implies 76% change in the quality factor of the resonator. 
Hence, this highly sensitive system can be employed to measure 
the dielectric permittivity (that can be changed by an 
environment parameter, like acidity or humidity, or a gas 
presence) with very high accuracy. 

V. CONCLUSION 

Time-periodic systems support EPDs of different orders 
induced directly by the time modulation of a parameter of the 
system. Therefore, the existence of an EPD does not require the 
presence of time-invariant gain or loss elements in the system as 
implied in all the PT-symmetry examples shown in the 
literature. However, forced time variation of a system element is 
another way to inject energy into the system, and the EPD is 
obtained by properly tuning the modulation frequency. The 
proposed way to obtain EPDs, directly induced by periodic-time 
variation, enables even single resonators to exhibit EPDs, in 
contrary to the minimum of two resonators as implied by PT-
symmetry. Indeed, in this paper, the time variation is not used to 
enhance the properties of EPDs, but rather as a new way to 
generate EPDs.  

Second order EPDs are here demonstrated analytically and 
supported with examples. We have shown the analytic sufficient 
conditions for such EPDs to exist. Also, we have demonstrated 
that in absence of any time-invariant gain and loss circuit 
elements the resonance frequency of an EPD is purely real. 
Furthermore, this property holds also when gain and loss 
elements are explicitly introduced in the system; assuming that 
the time-average of gain and loss is zero. At the second order 
EPDs, the energy inside a time-periodic resonator grows 
quadratically with time even when the resonance frequency is 
purely real, with the injected energy coming from the time 
modulation process. Moreover, we have illustrated how such 
temporally induced EPDs lead to systems where the eigenvalue 
(i.e., the complex eigenfrequency) is exceptionally sensitive to a 
perturbation of the system. This may have potential application 
in conceiving highly-sensitive devices.  

In summary, the proposed way to obtain EPDs via time 
modulation may present practical advantages compared to PT- 
symmetric systems, since a single resonator is sufficient to 
obtain an EPD as shown in this paper by just introducing time 
modulation to one of its elements. Moreover, in many 
engineering applications it is easier to tune the modulation 
frequency than realizing devices with precise gain amount as 
required in PT-symmetric systems, also because gain devices 
possess parasitic reactances that have to be included in any 
design. 
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APPENDIX: ANALITICAL TIME-DOMAIN 
SOLUTION OF THE EVOLUTION EQUATIONS 

Analytical time-domain solution of the evolution equation in 
(2) with two-level piecewise coefficient, can be obtained using 
the method explained in  [45] where the state vector ( )tΨ  at 
any time instant mt mT χ= +  , with mTχ <  is 

 ( ) ( ,0) ( ,0) (0)Ψ Φ Φ Ψm
mt T= χ   (A1) 

where (0)Ψ  is the initial condition of the state vector, and 

2 1( , )t tΦ  is the state transition matrix between the time instants 
t1 and t2. 

Let us consider first the time interval [0, T1) within which the 
system is time invariant. The transition matrix relating the state 
vector between two instants t1 and t2 belonging to [0, T1) is 
found as  [45] 

 1
2 2 111 1 1( , ) ( ) ( )t t t t−=Φ W W   (A2) 

where 1( )tW  is the Wronskian matrix of the solutions in the 
time interval [0, T1). Using the general Wronskian matrix 
properties  

 
1
( ) ( )t t

−
= −W W   (A3) 

 2 1 2 1( ) ( ) ( )t t t t= +W W W   (A4) 

the transition matrix between time instants 1t  and 2t , when they 
belong to the time interval T1 is 

1
2 11 1 1 1 1 12 1 2 1 2 1( , ) ( ) ( ) ( ) ( ) ( )t t t t t t t t−= = −− =Φ W W W W W . 

(A5) 

Analogously, the transition matrix between time instants 1t  and 

2t , when they belong to the time interval T2 is

2 1 2 22 1( , ) ( )t t t t= −Φ W . 
Accordingly, when t1 and t2 are within two adjacent different 

time intervals the state transition matrix reads as 

2 2 1 21 12 1 2 1( , ) ( , ) ( , ) ( ) ( )c c cct t t t t t t tt t= − −=Φ Φ Φ W W        (A6) 

where tc is the critical time instant at which the system  
coefficient changes (i.e., at 1ct t T= = ), and the subscripts 

1, 2j =  of W j denote the two different time intervals of length 



T1 and T2. As an example, we consider the LC resonator with 
time variant capacitor, where the two Wronskian matrices of the 
solutions associated to each time interval, jT  are given by 

 

1cos
( )

sin c

in

os

sj j
jj

j j j

t t

t t
t

Ω Ω
Ω

Ω Ω Ω

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

W   (A7) 

where 1/2
0( )j jL C −Ω =  with 1, 2j =  are the resonance 

frequencies of the LC resonator in the time intervals T1 and T2, 
respectively.  Therefore, the state transition matrices at different 
time instants χ for different pieces of the time variant capacitor 
reads as 

 1 1
11

1 1 1

1cos

sin

sin
( ,0) ( , 0)

cos

χ χ
χ χ

χ χ

⎡ ⎤Ω Ω⎢ ⎥Ω= = ⎢ ⎥
⎢ ⎥−Ω Ω Ω⎣ ⎦

Φ Φ  (A8) 

if 10 Tχ< ≤ , or  

 

1 12 1

1 1

1

2 2
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2 2 2

1 1
1

1 1 1

1

1 1

1 1

1cos ( ) ( )
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( ,0) ( , ) ( ,0)

s ( )

1
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T T

T T

T T

T T

T T

χ χ

χ χ

χ χ

=

⎡ ⎤Ω − Ω −⎢ ⎥Ω= ⎢ ⎥
⎢ ⎥−Ω Ω − Ω −⎣ ⎦
⎡ ⎤Ω Ω⎢ ⎥Ω⎢ ⎥
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Φ Φ Φ

 (A9) 

if 1 mT Tχ< ≤ . Using the state transition matrices in (A8) and 
(A9) one can find the solution to the evolution equation in (2) 
knowing the initial state of the system. Note that the derived 
transition matrix ( ,0)mTΦ obtained by substituting mTχ =  in 
(A9) is equal to the one given in (4). 
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