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Abstract Finite element simulations are conducted to investigate large elastoplastic 

deformations of rhenium under multi-megabar pressures in a diamond anvil cell (DAC), with an 

emphasis on the effects of geometric and material properties. The following published 

experimental phenomena have been reproduced: (1) the pressure distribution at the 

sample/diamond contact surface and the final sample thickness at pressure up to 300 GPa; (2) the 

cupping (i.e. appearance of a cup-like concave shape of the contact diamond-sample surface) and 

double cupping phenomena at megabar pressures; (3) three stages at the curve of the maximum 

pressure versus compressive force; (4) stages of material flow with increasing load; (5) pressure 

drop at the periphery after cupping in that region, and (6) change in direction of material flow to 

the center without change in the sign of the pressure gradient. The effect of the culet geometry, 

bevel angle, sample thickness, and sample/gasket system are analyzed in detail. The obtained 

results improve the understanding of the material mechanical response under extreme pressures 
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and large elastoplastic deformations and are beneficial for the optimum design of DAC with the 

goal of reaching the high and record high pressures once or multiple times. 

Keywords: High pressure, Diamond anvil cells, Plasticity, Finite element method, Geometric 

properties, Yield strength  

I． INTRODUCTION 

By compressing a sample between two diamond anvils in a diamond anvil cell (DAC), 

static megabar pressures are generated in experiments [1-5]. To find new physical phenomena 

and new materials, the pressure level need to be increased; meanwhile, anvils should not break 

during single or multiple experimental runs. As an important example, we refer to the recent 

discussion in Science [6-8]: Metallic hydrogen was obtained in [6] under a pressure of 495 GPa. 

It was stated in a critical comment [7] that 96% of diamonds failed while attempting to reach 350 

GPa; in particular, the method of estimation of pressure based on the applied force used in [6] 

was criticized. The response [8] asserted that the achievable pressure strongly depends on the 

geometry of the anvil, the thickness of the gasket, and the degree of cupping of the diamond (i.e. 

appearance of a cup-like concave shape of the contact diamond-sample surface). A very detailed 

experimental study of the pressure distribution and deformation of an anvil and sample in the 

megabar pressure range was presented in [3] and [9].  

Numerical modeling of the compression of a sample in DAC is related to significant 

theoretical and computational problems due to multiple physical, geometric, and contact 

nonlinearities. Geometric nonlinearity is related to large elastic and plastic deformations, 

material rotations, and displacements. Physical nonlinearities are caused by nonlinear elasticity 

rules, the plasticity of the sample, and the pressure-dependence of the yield strength. Contact 
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nonlinearities are due to the deformed surfaces and contact relative sliding with unknown sliding 

and cohesion zones. Reaching convergence of the solution to the actual one for such complex 

problems requires significant algorithmic efforts; however, these will not be discussed here.       

The finite element method (FEM) is widely used to study the stress-strain states of the 

sample and anvils in DAC [10-17]. Moss et al. found by FEM that the increase in the yield 

strength of a gasket plays the key role in achieving extreme high pressure [10]. They claimed to 

have achieved the pressure of 460 GPa experimentally by using a metal gasket with yield 

strength of 2.5 GPa. Moss and Goettel performed finite element analyses of beveled diamond 

anvils and discussed the design of a diamond anvil by changing culet geometries [11]. Merkel et 

al. [13] extended previous FEM calculations [10, 11] to simulate the experiment on compression 

of a rhenium sample up to 300 GPa [3] and to numerically study the effects of the geometric 

parameters of the sample and anvil system [15]. Coupled plastic flows and strain-induced phase 

transforms in the sample in DAC [18-20] and rotational DAC (RDAC) [21-23] were investigated, 

with assumptions of the sample with small elastic and transformational strains and the diamond 

anvils as a rigid body.  

Previous models [10-13, 15] were not based on a fully large-strain framework and were 

therefore unable to quantitatively reproduce experimental results (e.g. pressure distribution and 

sample thickness) under the extreme condition of several-megabar pressures. In most of these 

works, equations were not given and results of simulations using some available FEM codes 

were presented. Feng et al. [14, 24] recently formulated a thermodynamically-consistent system 

of equations considering large elastic and plastic deformations of a sample and large elastic 

deformation of the diamond anvil. With FEM, we successfully reproduced the experimental 

pressure distribution [3] at pressure up to 300 GPa. We also numerically revealed a pressure self-
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focusing effect [16, 24], which allows one to achieve an extremely large pressure gradient and, 

consequently, high pressure at the center of a sample. These studies were extended on a 3D 

problem on compression and torsion of a sample in RDAC under extreme pressures [16, 24].  

It is necessary to note that many material properties used in simulations, such as pressure-

dependent yield strength and higher-order elastic constants, as well as the friction coefficient, are 

not known from experiments. Their determination in the process of fitting numerical solutions to 

the experimental distributions represents a significant additional challenge.       

It is well known that geometric and material properties are essential to the determination 

of material responses under extreme high pressure. The use of beveled diamond anvils in DAC is 

the key to generating static pressures above 1 Megabar [5, 25]. Experimentally, however, the 

choice of the bevel angle is expensive due to fracture of one or both anvils [11]. Consequently, 

the FEM simulations are important for optimization of the geometry. In addition, because the 

introduction of a gasket into a DAC is a milestone in the history of DAC [25], the study of the 

system of a gasket and sample under megabar pressures by using FEM is very important. 

However, this was not done in previous work.  

In this paper, we study the effects of geometric and material properties in DAC based on 

the advanced large deformation framework developed in [14, 24]. A total system of equations is 

presented in Section II. Stresses and plastic flow for the culler radius 5 mR = μ , bevel angle 

o8.5α = , and initial sample thickness 0 20 mh = μ  are studied in Section III.B. In particular, 

experimental pressure distribution [3], double cupping (i.e. the appearance of two cup-like 

concave parts at the diamond/sample surface) [9], and cupping-related pressure drop [3, 9] were 

reproduced numerically. The transition from plastic flow from the center, to partial flow to the 
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center, and then to elastic deformation, observed experimentally under increased loading in [3,9], 

is reproduced. Deformation of the diamond anvil plays a crucial role in this phenomenon. It also 

explains why the friction stress and pressure gradient do not change sign when the velocity 

changes sign: because the relative sliding velocity with respect to diamond is either zero or 

positive. The effect of the diamond flat tip radius (the flat part at the center of the sample and 

diamond contact surface) is studied in Section III.C. By using the third-order elastic constants 

from [26], the cupping at the pressure of 300 GPa in experiments [3] was not reproduced in our 

previous simulations [14]. Thus, we artificially adjusted the third-order elastic constants in [14] 

to reproduce cupping. We found here that this discrepancy was caused by the absence of the flat 

part of the diamond in the previous simulations [14]. Here, with the flat diamond tip, we 

reproduced both pressure distribution and cupping by using the third-order elastic constants from 

[26]. We also obtained double cupping, which was observed in recent experiments [9]. The 

effect of the bevel angle is analyzed in Section III.D. Increasing the bevel angle increases the 

pressure gradient, pressure, and cupping at the center, but reduces cupping at the periphery. It is 

shown in Section III.E that the increase in sample thickness reduces the pressure gradient and 

pressure at the initial compression stage. This effect decreases and disappears at large 

compression. The sample-and-gasket system is treated for extreme pressures for the first time in 

Section III.F. Thus, in a small sample whose yield strength is twice as small at zero pressure as 

the yield strength of the gasket, the reduction in pressure is relatively small and the change in 

pressure distribution in the gasket is negligible. Section IV contains concluding remarks.  The 

obtained results improve the understanding of the material mechanical responses under extreme 

conditions of high pressures and plastic deformations and are beneficial for the optimum design 

of a DAC system. 
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II. PROBLEM FORMULATION 

II.A. Geometry and boundary conditions  

A schematic of a DAC is shown in Fig. 1a, where a normal stress nσ  is applied on the 

diamond surface and a sample is compressed by two diamond anvils. We ignore the anisotropy 

of the diamond anvil in the circumferential direction to use an axisymmetric formulation. Due to 

the axisymmetric loads and geometry of DAC and the symmetry with respect to the horizontal 

plane IJ in Fig. 1c, we consider a quarter of DAC as shown in Fig. 1b. The major geometric 

parameters for an anvil and for the contact surface between diamond and the sample are given in 

Figs. 1b and 1c, respectively. The geometry of the preindented sample is shown, along with the 

magnified central part, in Fig. 1c. One half of the sample thickness at r=0 in the initial 

undeformed configuration is 0 2h  (line CI in Fig. 1c). The undeformed shape of the contact 

surface is as follows: from point C at r=0 to point R, there is a small flat region with the radius 

0r ; from point R to point G, the contact surface is inclined with an initial bevel angle α ; at the 

periphery line, GE has an inclined angle 43.27o; the radial distance between CG is 150 mμ ; the 

radial distance IJ at the symmetry plane is 772.5 mμ , which is long enough to exclude the 

boundary effect of the right end HJ; and the thickness of the boundary HJ is 125 mμ . We will 

discuss the effects of geometric parameters by varying 0h , 0r , and α  in the range achievable 

experimentally.  

The boundary conditions for a quarter of DAC in Fig. 2b are listed as follows: 

(1) In experiments, an axial force Q is applied to the diamonds. In simulations, the 

homogeneous normal stress nσ  is applied at the top surface AB of the DAC (as also shown 
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in Fig. 1a). Because nσ  is only several GPa and simulations show that the deformation of 

anvil is negligible at AB, the total compressive force Q is nσ  multiplied by the area of the 

top surface of the anvil ( )21.05 mmπ . Preliminary calculations showed that stresses in the 

sample and at the tip of the diamond are independent of the possible heterogeneity of the 

distribution of nσ  at the surface AB. 

(2) At the z-axis (the symmetry axis 0r = ) (line AC for the anvil in Fig. 1b and line CI for the 

sample in Fig. 1c), the shear stress rzτ  and radial displacement ru  are zero.  

(3) The Coulomb friction model is applied at the contact surface (CRGE shown in Fig. 1c). 

Slipping is allowed when the friction stress reaches cμσ  ( cσ  is the normal contact stress at 

the contact surface between the diamond and the sample, and μ  is the Coulomb friction 

coefficient). Otherwise, the cohesion condition, i.e. continuity of displacements, is applied. 

At the symmetry plane 0z =  (plane IJ in Fig. 1c), the radial shear stress 0rzτ =  and the 

axial displacement 0zu = .  

(4) Other surfaces not mentioned above are stress-free. 

 

         

(a)             (b)  
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(c) 

Fig. 1. Geometric parameters of the diamond anvil cell and the sample. (a) Diamond anvil cell 
scheme, (b) a quarter of the sample and anvil in the initial undeformed state and the 
geometry of anvil, and (c) the geometry of a sample and a magnified center part of a 
sample, which is placed in the ellipse.  

Note that not only the geometry but also the boundary conditions are quite realistic. Application 

of the axial force Q has already been discussed. After the proper friction coefficient is chosen, 

the friction conditions are realistic as well; otherwise, we would not be able to reproduce the 

experimental pressure distribution in Fig. 2a. All other boundary conditions are trivial. 

 

II.B. A complete system of equations for large-strain elastoplasticity for a sample 

In this paper, the complete systems of equations for both the sample and the diamond 

anvil are summarized from [14] and [16], and computational algorithms proposed in [14] are 

used for the current models. 

Contractions of the second-order tensors { }ij= AA  and { }ij= BB  over one and two 

indices are designated as { }ij jk= A B⋅A B  and { }: ij ji= A BA B , respectively. The subscripts s and 

a designate symmetrization and anti-symmetrization, respectively, the subscripts e and p 

represent elastic and plastic deformation gradient or strain, the superscripts -1 and t represent the 

inverse and transposition of a tensor, and I is the second-order unit tensor. 

Kinematics. The motion of a material with large elastic and plastic deformations is 

described by a vector function ( )0,= tr r r , where r  and 0r  are the position vectors of material 

points in the actual configuration Ω  at time instant t  and in the reference configuration 0Ω  at 

the instant 0t , respectively. The deformation gradient  
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( )
0

, ;∂ ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ = = ⋅ ⋅
∂

T
e p e e p p e e p e e p p e e e e= =rF F F R U R U R U U V R U R I  V R U R

r
   (1) 

is decomposed into elastic eF  and plastic pF  contributions, where pF  is the deformation 

gradient obtained after a complete release of stresses in the local vicinity of each material point, 

pU  and eU  are the symmetric plastic and elastic right stretch tensors, eR  and pR  are the 

proper orthogonal elastic and plastic rotation tensors, and eV  is the elastic left stretch tensor. 

The Lagrangian and Eulerian elastic strain tensors are 

( )0.5= ⋅ −e e eE U U I ;       ( )0.5= ⋅ −e e eB V V I .                          (2) 

Decomposition of the velocity gradient 1= = +−⋅&l F F W d  into the antisymmetric spin tensor 

( )a
=W l  and symmetric deformation rate ( )s

=d l  are accepted. In combination with Eq. (1), 

we obtain the following decomposition of the deformation rate d  into elastic and plastic 

contributions: 

12 ( ) ; ( ) ; 2 ( )t
e e p p e es e e e p p s e e s

∇ ∇
−= − ⋅ + ⋅ ⋅ = ⋅ ⋅ ⋅ − ⋅& &d B  d B V D V D R U U R B = B  W B ,       (3) 

where e

∇
B  is the Jaumann objective time derivative and pD  is the plastic deformation rate. 

Elasticity rule. The following isotropic nonlinear elastic rule will be used 

(2 ) ∂Ψ= + ⋅
∂e

e

1
det

B I
F B

σ ,  (4) 

where detF  is the determinant of the tensor F, σ  is Cauchy stress, and the most popular elastic 

potential Ψ  for the extreme condition of high pressure is the third-order Murnaghan potential 

[27]:  

( ) 2 3
1 2 1 1 2 3

2 22 2
2 3

e
e

G l mI GI I mI I nIλ + +⎛ ⎞Ψ = − + − +⎜ ⎟
⎝ ⎠

B ,                            (5) 

where the second-order elastic constants are Lame constant eλ  and shear modulus G ; three third-

order elastic constants are l , m, and n ; and 1I , 2I , and 3I  in Eq. (5) are the first, second and 

third invariants of the strain tensor eB :    
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11 22 33 22 33 23 11 33 13 22 11 12

2 2 2
1 2 3; ; .= + + = − + − + − =e e e e e e e e e e e e eI B B B I B B B B B B B B B I det B             (6) 

Then the Cauchy stress from Eq. (4) is 

( ) ( ) ( ) ( )1 1 2 3
1 1 2 12 2 2 2 2 ,− −∂Ψ ⎛ ⎞∂= + ⋅ = + ⋅ + + − + +⎜ ⎟∂ ∂⎝ ⎠

e
e e e e e

e e

IJ J I G lI mI n mIλ
B

B I B I I B I B
B B

σ    (7) 

where 

22 33 23 32 23 31 33 21 21 32 22 31

3
23 31 33 21 11 33 13 31 12 31 11 32

21 32 22 31 12 31 11 32 11 22 12 21

⎛ ⎞− − −
⎜ ⎟∂ = − − −⎜ ⎟

∂ ⎜ ⎟⎜ ⎟− − −⎝ ⎠

e e e e e e e e e e e e

e e e e e e e e e e e e
e

e e e e e e e e e e e e

B B B B B B B B B B B B
I B B B B B B B B B B B B

B B B B B B B B B B B B
B

. 

 

Plasticity. The pressure-dependent J2 flow theory is used with the yield surface 

    ( )3/ 2 : , 0= − =y p qϕ σs s ,           (8) 

where s is the deviatoric Cauchy stress and yσ  is the yield strength, which depends on the mean 

pressure p and the accumulated plastic strain q defined as 

                                                                     
0.5

2 / 3 .p pq ⎛ ⎞= :⎜ ⎟
⎝ ⎠

& D D              (9) 

The plastic flow rule is presented as 

p λ=
:

sD
s s

,                        (10) 

where ( )0λ λ >  is a scalar function determined from the consistency condition ϕ = 0& .  

The traditional equilibrium equations in the current configuration are used 

∇⋅ =σ 0 .                                                   (11) 

It was found in [28] that for more than 60 materials belonging to different classes (e.g. metals, 

rocks, alloys, oxides, compacted powders), above some level of plastic strain and for a 

deformation path without sharp changes in direction (monotonous deformation), the initially-

isotropic polycrystalline materials are deformed as a perfectly plastic and isotropic material with 

a strain history-independent limiting surface of the perfect plasticity. This means that, above 

some critical q, the accumulated plastic strain q is excluded from the relationship for the yield 
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strength in Eq. (8), i.e. ( ) ( ), =y yp q pσ σ . We assume that the critical strain is reached in all 

points of the sample during its preparation (pre-indentation), and we will use the perfectly plastic 

(i.e. plastic strain-independent) model. This significantly simplifies the model and its calibration 

while still allowing us to describe experiments for rhenium. The linear dependence of yield 

strength on pressure p is accepted in this paper 

( ) 0= +y yp bpσ σ ,               (12)  

 where 0yσ  is the yield strength at the pressure p=0 and b is a parameter.  

Material parameters. Rhenium has been of particular interest due to its large bulk (K) and shear 

(G) moduli and high strength [4, 29], and it is widely used as the sample and gasket material in a 

DAC [1-4]. The following properties of rhenium are used in simulations: Elastic constants [4, 14, 

29] in Eqs. (5) and (7): 200 GPa=G  , 247 GPa=eλ , 291GPa= −l  , 662 GPa= −m and n=0, 

and plastic constants [4, 14] 0 8.00 GPayσ =  and 0.04b = . 

 

II.C. Nonlinear anisotropic elasticity for single-crystal diamond  

The traditional elasticity rule has the form 

( )⋅ ⋅ ;% t detσ = F T E F F           ( ) ∂Ψ⋅ ⋅ ; = ∂
% %tdetT = σ F = F T E F T E          ,  (13) 

where T  is the Kirchhoff stress and T%  is the second Piola-Kirchhoff stress. Because there is no 

plastic deformation in a diamond, the subscript e is dropped. Under megabar pressures, it is 

necessary to consider at least the third-order potential Ψ  with the cubic symmetry: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2 2 3 3 3
11 1 2 3 12 1 2 1 3 2 3 44 4 5 6 111 1 2 3

2 2 2 2 2 2
112 1 2 3 2 1 3 3 1 2 123 1 2 3 144 1 4 2 5 3 6

2 2 2
166 2 3 4 1 3 5 1 2 6 456 4 5 6

0.5 0.5 / 6

0.5 0.5

0.5 ,

Ψ = + + + + + + + + + + +

⎡ ⎤+ + + + + + + + + +⎣ ⎦
⎡ ⎤+ + + + + + +⎣ ⎦

c c c c

c c c

c c

η η η η η η η η η η η η η η η

η η η η η η η η η η η η η η η η η η

η η η η η η η η η η η η

 (14) 

where 1 11= Eη , 2 22= Eη , 3 33= Eη , 4 232= Eη , 5 312= Eη , and 6 122= Eη .  
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Then the second Piola-Kirchhoff stress %T  or Cauchy stress σ  can be directly obtained, based on 

Eqs. (13) and (14). Two explicit examples for the components of %T  are given below:  

( ) ( )

( ) ( )

2 2 2
11 11 1 12 2 3 111 1 112 1 2 3 2 3 123 2 3

1

2 2 2
144 4 166 5 6 12 44 6 144 3 6 166 1 2 6 456 4 5

6

/ 2 / 2

/ 2 / 2; .

∂Ψ ⎡ ⎤= = + + + + 2 + + + +⎣ ⎦∂
∂Ψ+ + + = = + + + +∂

%

%

T c c c c c

c c T c c c c

η η η η η η η η η η ηη

η η η η η η η η η η ηη
    (15) 

In this paper, the second-order elastic constants are [30]: 11 1050 GPa=c , 12 127 GPa=c , and 

44 550GPa=c , and the third-order elastic constants are [26]: 111 7603GPa= −c , 112 1909GPa= −c , 

123 835GPa= −c , 166 3938GPa= −c , 144 1438GPa=c , and 456 2316GPa= −c . 

In simulations, the friction coefficient in the Coulomb friction rule is 0.1μ = . 

 

III. RESULTS AND DISCUSSION IN THE SAMPLE UNDER EXTREME 

PRESSURES 

III.A. Overview 

Our results [14] reproduced the pressure distribution in experiments [3] up to 300 GPa. Cupping 

was observed experimentally [3] under pressure near 300 GPa, but does not appear in our 

simulations [14] when we use the third-order elastic constants from [26]. It will be found that 

this is because a very short, flat contact surface (the line CR in Fig. 1c) used in experiments was 

ignored in previous FEM simulations [14]. At the beginning of this section, we will use the flat 

part 0 5 mr = μ  and the beveled angle o8.5α = , which are taken from experiments [3]. The 

sample is assumed to be pre-indented into the initial thickness as 0 20 mh = μ  at the center (r=0), 

which is commonly used in experiments (see [1]). This set of geometric parameters ( 0 5 mr = μ , 

o8.5α = , and 0 20 mh = μ ) are used for results in Figs. 2-4. To study the effects of the radius of 
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the flat part 0r  in Figs. 5 and 6, we vary 0r  from 0 to 5 and 10 mμ , with the fixed o8.5α =  and 

0 20 mh = μ . The effects of the beveled angle in Fig. 7 are studied by comparing the results with 

o o7.5 and 9.5α =  for 0 10 mr = μ  and 0 20 mh = μ . Fig. 8 shows the effects of the initial 

thickness of the sample by comparing results for 0 20h =  and 40 mμ , with o8.5α =  and 

0 0 mr = μ . The effect of the sample strength will be studied by comparing the results of 

0 8.00 GPayσ =  and 0 4.00 GPayσ =  with the same gasket properties and geometrical parameters: 

0 10 mh = μ  with o9.5α =  and 0 10 mr = μ . 

 

III.B. Stresses and plastic flow for 0 5 mr = μ , o8.5α =  and 0 20 mh = μ  

Fig. 2 plots the distributions of pressure and shear stress under an increasing applied stress nσ . 

Our simulation results in curve 4 coinciding with experimental data in [3]. The major difference 

between the current and previous simulation results [15] is that the pressure gradient in this paper 

is much larger at the center of the sample but smaller at the periphery than that in [15].   

The distribution of shear stresses (friction stress) fτ  in Fig. 2b coincides with the distribution of 

the pressure-dependent yield strength in shear ( )y pτ  for most of the contact region with a low 

load (see curve 1 and 2). This means that the plastic friction condition ( )f y pτ τ=  is fulfilled in 

this region. While it is not included explicitly in the contact sliding condition, this indicates the 

occurrence of localized plastic flow in a thin contact layer, which is equivalent to the contact 

sliding.  With an increase of compressive loads from curve 3 to curve 5, the shear stress 

decreases at the center of the sample, and there is an increasing region where the friction stress 

fτ  is smaller than ( )y pτ . This is caused by changing the direction of the material flow as shown 
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in Fig. 3. The variation of the maximum pressure in the sample versus the applied compressive 

force or the normal applied stress nσ  is plotted in Fig. 2c. This curve in Fig. 2c qualitatively 

reproduces all three stages of corresponding experimental curve in Ref. 9. Initial linear 

dependence up to 1.5 kN (15 GPa) corresponds to low contact friction and relatively large 

sample thickness. In the range from 1.5 to 6 kN (160 GPa), friction stress reaches the yield 

strength in shear and, due to significant reduction in the sample thickness, growth in pressure 

gradient and maximum pressure accelerates. After the deflection point, pressure growth 

decelerates (a) due to slower reduction in thickness, (b) reduction of the contact friction stress 

relative to the yield strength in shear, and (c) the bending and cupping of anvils, partial plastic 

flow to the center, and transition from plastic to elastic deformations of the central part of a 

sample. Based on the trend in Fig. 2c, it is clear that further increase in pressure will require 

significant increase of the applied force, which will lead to fracture of an anvil.  

In [14], even without the flat part CR ( 0 0r = ), the pressure distribution was also 

consistent with experiments, but the cupping at the pressure near 300 GPa was not reproduced. 

With a short, flat part, case 5 in Fig. 3 clearly shows that the cupping appears at nσ =3.011 GPa, 

where the maximum pressure is 300 GPa at the center in Fig. 2a. Here, we should mention that 

cupping can cause a sudden drop of pressure distribution at the periphery, as is shown in curve 5 

at 140 mr = μ . Similar pressure drops due to cupping can be found in this paper for all other 

cases with different geometric parameters. More importantly, a similar cupping-related pressure 

drop has been observed experimentally [9].  
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Fig. 2. Distributions of pressure p (a), friction stress fτ  (solid lines), and yield strength in shear

yτ  (doted lines) (b) at the contact surface of a sample for 0 5 mr = μ  under an increasing 

applied normal stress nσ : 1.68 GPa (1), 1.96 GPa (2), 2.24 GPa (3), 2.575 GPa (4), and 

3.011 GPa (5). In (a), dotted curves 1-5 are the current simulation results, the two green 

dashed curves are the simulation results from [13], and the solid black curve represents the 

experimental results from [3]. (c) Maximum pressure in the sample versus the applied 

force or normal stress. 

 



16 
LA-UR-18-23227 

Important information can be learned from Figs. 3 and 4, which present the velocity along 

the radial direction rv  and the rate of accumulated plastic strain q& . Because time is not a 

parameter for the current rate-independent plasticity and static problem formulation, the 

magnitudes of q&  and rv  can be made arbitrary by changing the rate of loading. This does not 

change the stress and strain distribution at each load, independent of how fast it is achieved. The 

results in Figs. 3 and 4 are presented for constant 4 10.7 10 GPa s− −= × ⋅&nσ . Consequently, only the 

relative values in the distributions of q&  and rv  for any state (or load nσ ) are important. The 

radial velocity in the diamond anvils is always negative (i.e. directed toward the center), except 

at the central line z=0 where the velocity is zero, and its magnitude increases with a rising radial 

coordinate. It is found from Fig. 3 that initially, at 1.68 GPanσ = , the whole sample flows “fast” 

from the center to the periphery. With an increase in the applied force nσ , starting from the 

center of the sample, the radial velocity rv  changes direction and materials “slowly” move from 

the periphery to the center. For 3.011 GPanσ = , material motion towards the center is observed 

in the major region of a sample. 

It may seem counterintuitive that material velocity changes sign within a sample but 

contact shear stresses in Fig. 2b do not. The negative velocity rv  and its gradient along the 

thickness direction are very small (by one order of magnitude) in comparison with the material 

flows from the center to the periphery at the external part of a sample. Because plastic flow is 

incompressible, deformation in this region is either elastic or with small plastic strains. This is in 

agreement with small values of q& in this region (Fig. 4). The key point is that, due to 

deformation of diamond, relative sliding velocity at the contact surface is either zero or positive. 

This is why the sign of the contact shear stress does not change. 
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Fig. 3. Distribution of radial velocity rv  in the sample and diamond ( )0 160 mr≤ ≤ μ  with 

0 5 m= μr  under an increasing applied normal stress nσ . The normal stress nσ  is 1.68 

GPa (1), 1.96 GPa (2), 2.24 GPa (3), 2.575 GPa (4), and 3.011 GPa (5).  

 

Fig. 4 shows the distribution of the rate of accumulated plastic strain q& . Initially, at nσ  =1.68 

GPa, the entire region is under plastic straining. The accumulated plastic strain rate shows the 

shear band near the contact surface, where shear stresses reach the yield strength in shear. 

Excluding this region, q& is not very heterogeneous along the radius because the radial velocity 

increases with r while the sample thickness increases as well. As the applied stress nσ  increases 

from 1.96 GPa to 2.24 GPa, q& is nonzero but quite small in the region with negative velocity rv  

in Fig. 3. With the further increase of applied stresses, the rate of accumulated plastic strain 

significantly decreases and the location with the maximum rate of the accumulated plastic strain 

moves towards the periphery. At nσ =2.575 GPa, q&  becomes zero at the center of a sample, 
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demonstrating an unusual transition from plastic to the elastic state under an increased load. The 

region without plastic deformation grows, and q& decreases in the rest of the sample as nσ  

increases. One reason for this is that the bending of the anvil reduces the speed of the thickness 

reduction rate. As a result, the pressure and pressure gradient cannot continuously increase when 

cupping becomes significant (see also the experiment in Ref. 3); this can be explained by a 

simplified equilibrium equation (see e.g. [16, 28, 31]) 

2 fdp
dr h

τ
= − .                                          (16) 

Indeed, the thickness h  cannot be reduced further after some critical value. The final (minimum) 

sample thickness in Fig. 4 under nσ =3.011 GPa is 3.38 mμ , which is consistent with the 

experimental value of approximately 3 mμ in [3]. 

          

Fig. 4. Distributions of the rate of accumulated plastic strain q&  in the sample ( )0 160 mr≤ ≤ μ  

with 0 5 mr = μ  under an increasing applied normal stress nσ . The normal stress nσ  is 
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1.68 GPa (1), 1.96 GPa (2), 2.24 GPa (3), 2.575 GPa (4), and 3.011 GPa (5). In the 

magenta region, the plastic strain rate is exactly zero. 

 

 

III.C. Effect of the radius of the flat diamond tip 

Fig. 5 plots the distributions of pressure and the z coordinate of the contact surface for radii of 

the flat diamond tip 0r  that vary from 0 to 5 to 10 mμ  when the maximum pressure reaches 293 

GPa. Note that, in experiments, the axial force (equivalent to the normal stress nσ ) is applied. 

Thus, comparison at the same maximum pressure requires the application of different nσ  (Fig. 5). 

A shorter flat part CR indicates a longer inclined part RG in Fig. 1c, as the radial distance CG is 

fixed at 150 mμ . At a given applied stress nσ  but with different 0r , the shorter the flat diamond 

tip radius 0r  is, the faster the plastic flow along the radial direction and the thickness reduction 

are. This is because the inclined diamond surface with a positive slope instead of the flat 

diamond tip favors the material flows to the periphery. The faster thickness reduction causes a 

larger pressure and pressure gradient at the center due to the simplified equilibrium condition (16) 

and indicates that, for the same maximum pressure at the center, the applied normal stress nσ  is 

an increasing function of the radius of the flat part 0r  (Fig. 5). Fig. 5b plots the z coordinate of 

the contact surface (equal to half a thickness of sample / 2h ) for 0r  = 0, 5 and 10 mμ . The 

smaller 0r  and, consequently, nσ  lead to faster thickness reduction at the center, but smaller 

deformation of an anvil both at the center and at the periphery. Cupping near the sample center 

appears for any initially flat surface and increases with increasing 0r . At the periphery, cupping 

does not appear with 0r =0; it only appears for 0r =5, and it becomes very obvious for 10 mμ . 
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Similar to Fig. 2a, the cupping causes the pressure drop at the periphery for 0r =10 mμ in Fig. 5a, 

like in experiment [9]. Thus, for the same maximum pressure, an increase in the diamond tip 

radius essentially increases the pressure everywhere except at the center, increases the total force, 

and increases the bending of an anvil at both the center and the periphery.  
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Fig. 5. Distributions of the pressure p at the sample contact surface (a) and the z coordinate of 

diamond/sample contact surface (b) when the maximum pressure is p= 293 GPa at r=0 at 

the contact surface. The applied stress nσ  is 2.652 GPa (1), 2.849 GPa (2), and 3.061 GPa 

(3). Cupping and double cupping formation is shown. 

Very different conclusions can be made if one compares the effect of the diamond tip radius 0r  

at 0 and 10 mμ  on the distribution of pressure and the profile of contact surface at the same 

applied load (Fig. 6). Under the same applied load, the pressure distribution and thickness of the 

sample are the same everywhere except at the center of the sample. For 0r =0, material flows 

much faster at the center than for 0r =10 mμ in Fig. 6b, which causes a larger pressure gradient 

and pressure at the center of sample. With the increasing applied load nσ , the difference in 

pressure at the center for both cases becomes more obvious. At nσ =1.681 GPa, the difference in 
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pressure is only 6 GPa; at nσ =3.061 GPa, the difference in pressure becomes 21 GPa. This is 

because as the thickness reduces, the difference in 1/h increases and the pressure gradient 

linearly depends on 1/h. For example, the ratios of 1/h at r=0 between 0r =0 and 10 mμ  are 1.8 

with nσ =1.681 GPa and 2.03 with nσ =3.013 GPa. 
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(a)                                                                        (b)                                      

Fig. 6. Distributions of pressure p at the contact surface of a sample and z coordinate of the 

diamond/sample contact surface for 0 0 and10 m= μr  under three values of applied stress 

nσ : 1.681 GPa (1), 2.241 GPa (2) and 3.013 GPa (3). 

Comparing curves 2 and 3 in Fig. 6b, one concludes that, for a maximum pressure above 

250 GPa, the increase in force fails to reduce the thickness of a sample for the beveled surface 

for both 0 0 and10 mr = μ  and results in bending at the periphery of the sample. Cupping at the 

center does not occur for 0 0r = and occurs at any force under study for 0 10 mr = μ . 

 
III.D. Effect of the bevel angle 
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(a)                                                                        (b) 

Fig. 7. Distributions of pressure p at the contact surface of the sample (a) and z coordinate of 

diamond/sample contact surface (b) for 0 10 mr = μ  and two bevel angles, o o7.5 or 9.5α = , 

under three applied normal stresses nσ : 1.868 GPa (1), 2.365 GPa (2), 3.045 GPa (3). 

 

The effect of the bevel angle α  is shown in Fig. 7. With a larger beveled angle o9.5α = , the 

material flow from the center to the periphery is more intense, causing a much faster thickness 

reduction at the center than for o7.5α = . Smaller thickness of a sample at the center for o9.5α =  

causes a larger pressure gradient and pressure at the center than for o7.5α = . In addition, for an 

larger bevel angle, cupping at the periphery is postponed: at nσ =3.045 GPa, the cupping is 

obvious for o7.5α =  and does not exist for o9.5α = . In addition, cupping at the center is slightly 

larger for o9.5α = . We note that, at the periphery, the thickness is smaller for o7.5α = than for 

o9.5α =  due to the smaller initial thickness and larger diamond bending and cupping. At the 

periphery, the thickness reduction rate is also faster with a larger bevel angle. For example, the 

differences of the z coordinate at 120 mr = μ  between cases with o9.5α =  and o7.5  are 1.3 mμ , 

1.0 mμ , and 0.5 mμ  for the applied loads nσ  of 1.4 GPa, 1.75 GPa and 2.652 GPa, 

respectively. 

 

III.E. Effect of initial sample thickness 



23 
LA-UR-18-23227 

0 40 80 120

60

120

180

240

300   h0=20 μm 

  h0=40 μm

 
p 

(G
Pa

)

r (μm)

1

2

3

          0 40 80 120
0

2

4

6

8

10

  h0=20 μm 

  h0=40 μm

3

1
2

z (
μm

)
 

r (μm)

1
2

 

(a)                                                                        (b) 

Fig. 8. Distributions of pressure p at the contact surface of a sample (a) and z coordinate of the 

diamond/sample contact surface (b) for 0 0 m= μr  and initial thicknesses of 

0 20 m or 40 mh = μ μ  at the center of the sample under applied normal stress nσ : 1.4 GPa 

(1), 1.75 GPa (2), 2.652 GPa (3). 

 

In Figs. 2-7, the sample is pre-indented to the initial thickness of 20 mμ at the center. In Fig. 8, 

we compare results for 0 20 mh = μ  with those for 0 40 mh = μ . Under a small applied normal 

stress nσ =1.4 GPa, Fig. 8b shows that material flows to the periphery much faster with a larger 

initial thickness 0 40 mh = μ , because the difference of z coordinate at the center is initially 10 

mμ  and is only 1.2 mμ under nσ =1.4 GPa. Due to a smaller thickness in the deformed 

configuration, the pressure at the center with the initial thickness with 0 20 mh = μ  is 17 GPa 

larger than the pressure with 0 40 mh = μ . With the increase of the r coordinate, the difference in 

pressure distribution decreases while the difference in h undergoes practically no change. It is 

noted that the differences caused by the initial thickness significantly decrease with an increase 

of applied normal stress. At nσ =2.652 GPa, the distributions of both the pressure and thickness 

of the sample are almost the same for 0 20 m and 40 mh = μ μ . 

 

III.F. Sample-gasket system: effect of the sample strength 
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Fig. 9. Distributions of pressure p at the contact surface of a sample (a) and z coordinate of the 

diamond/sample contact surface (b) for o9.5α = , 0 10 mr = μ , and the initial sample 

thickness 0 10 mh = μ  under the applied normal stress nσ : 1.05 GPa (1), 1.4 GPa (2), 1.75 

GPa (3). For the green solid line: the cylindrical sample of the radius 10 mμ has the same  

material properties as the rhenium gasket (for 10 mr > μ ) except for 0 4.0 GPayσ = , 

keeping 0 8.0 GPayσ =  for the gasket; for the blue symbol line, the entire region (gasket 

and sample) is rhenium. Coulomb friction is used for all contact surfaces. 

 

Let us consider a sample material in the cylinder of radius 10 mμ , which is the same as the 

radius of the flat part (see the blue part of the magnified area in Fig. 1c). It has the same 

properties as the rhenium gasket, but with 0 4.0 GPayσ =  instead of 0 8.0 GPayσ =  for the 

gasket. The results are shown in Fig. 9. With a softer sample, the pressure gradient and, 

consequently, the pressure are expected to be smaller at the center of a sample because the 

friction stress ≤f yτ τ  is smaller in the equilibrium equation (16). The thickness of a softer 

sample is slightly smaller in Fig. 9b, which slightly increases the pressure gradient. However, the 

effect of a weaker friction stress dominates, causing a lower pressure gradient and pressure in a 
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weaker sample (Fig. 9a). However, the reduction is relatively small for such a small sample 

because, close to the center for any 0yσ , the friction stress decreases to zero at the symmetry axis. 

The change in pressure distribution in the gasket is negligible because small changes in stresses 

over a small sample area at fixed total force have a negligible effect on the force over the large 

gasket area.   

Note that in experiments, micro-semi balls made of nanodiamond have been placed at the 

center, allowing extreme pressures of 600 GPa [1] and 750 GPa [2] to be reached. This pressure 

increase is easily rationalized by a decrease in the sample thickness in the simplified equilibrium 

equation.   

 

IV. CONCLUDING REMARKS 

In this paper, FEM simulations are conducted to investigate large elastoplastic deformations of 

rhenium and elastic deformation of diamond under pressures up to 300 GPa in DAC, with an 

emphasis on the effects of geometric and material properties. A thermodynamically-consistent 

isotropic model for large elastic and plastic deformations of a compressed material with 

pressure-dependent yield strength and a nonlinear anisotropic model for diamond, developed in 

[14, 24], were used.    

In the paper, the following experimental phenomena have been reproduced:  

(1) the pressure distribution at the sample/diamond contact surface at pressure up to 300 

GPa in [3];  

(2) the final sample thickness around 3 mμ in experiment [3] at the pressure of 300 GPa; 

(3) the cupping phenomenon taking place at the pressure 300 GPa [3];  

(4) the double cupping phenomenon at megabar pressures in [9];  



26 
LA-UR-18-23227 

(5) three stages at the curve of the maximum pressure versus compressive force in [9];  

(6) stages of material flow with increasing load obtained in experiments [3,9];  

(7) pressure drop at the periphery after cupping in that region [9], and  

(8) change in the direction of material flow to the center without change in the sign of the 

pressure gradient in [3,9]. Note that, in contrast to our previous study [14], these confirmations 

have been obtained while utilizing the third-order elastic constants of diamonds from [26] 

without any artificial corrections. 

While our model is calibrated and shows good correspondence with experiments in [3] up 

to 300 GPa, it includes all of the necessary components (finite elastic and plastic deformations, 

pressure dependence of the yield strength, and nonlinear elasticity) to be applicable in principle 

for much higher pressure. However, comparison with experiments for much higher pressure may 

necessitate the introduction of more complex constitutive equations, particularly even higher-

order elasticity for rhenium and diamond and nonlinear pressure dependence of the yield strength. 

Therefore, the maximum pressure did not exceed 340 GPa (Fig. 7 (a)) in our simulations. 

Cupping at the center and/or periphery of the anvil is the main phenomenon at the 

megabar pressures that produces counterintuitive phenomena and limits the maximum pressure. 

Cupping is caused by large bending-type deformation of a diamond anvil and causes the 

transition from the material plastic flow from the center to the periphery to partial flow to the 

center, followed by elastic deformation without or with small plasticity, all under an increasing 

force. These processes are described and studied in detail in the paper. In particular, elastic rather 

than plastic deformation of the sample requires a significant increase in force to produce further 

reduction in the sample thickness and maximum pressure. Such an overloading of an anvil 

finally leads to its plastic deformations and fracture, which are not considered here. The modern 
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experimental way to overcome this limitation is to utilize a two-stage loading system, placing 

micro-semi balls made of nanodiamond at the center of the anvil’s tips [1,2]. A paradoxical 

result, for which the material flow to the sample center does not change the sign of the contact 

shear stress and pressure gradient, is found. This is explained by finding that, due to deformation 

of the diamond, relative contact sliding does not change sign or is absent. The distribution of the 

contact shear stresses coincides with the distribution of the pressure-dependent yield strength in 

shear, excluding regions near the center of a sample and, for the lowest load, at the periphery. 

This means that plastic friction is realized by localized plastic flow below the contact surface.  

We would like to stress that comparison of the effect of different parameters on the DAC 

mechanical behavior may strongly depend on whether the comparison is performed under the 

same applied load or maximum pressure at the center. For example, under the same applied load, 

an increase in the radius of the flat diamond tip reduces pressure and increases the sample 

thickness under the tip, but does not affect them at the beveled surface until cupping appears. 

However, at the same maximum pressure at the center, the increase in the flat tip radius increases 

pressure everywhere except at the very center, increases the total force, and increases the 

bending of an anvil at both the center and the periphery. As mentioned, introducing the flat tip 

allows us to reproduce cupping at the periphery, which is absent at the same maximum pressure 

without the flat diamond tip.  

At the same applied force, a small increase in the bevel angle increases the pressure 

gradient and pressure at the center, as well as cupping at the center, but reduces cupping at the 

periphery. Increasing the sample thickness reduces the pressure gradient and pressure at the 

initial compression stages. This effect decreases with increasing compression and disappears at 
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large compression. A small, weaker sample within the gasket slightly reduces the pressure in a 

sample and does not affect the gasket.    

 The obtained results improve the understanding of strongly-nonlinear mechanical responses of 

the DAC under extreme pressures and large elastoplastic deformations. In the future, they may 

be utilized as a tool for computational optimum design of DAC. Review of some computational 

works on the optimization of the anvil’s geometry and loading conditions is presented in [14]. 

However, optimization was based on consideration of only an anvil within linear elasticity, 

which is applicable at relatively low pressure. The main work that must be done before 

numerical optimization is possible at the megabar pressure is the development of plastic flow and 

fracture criteria for the diamond at the megabar pressures. Since high pressures can be obtained 

under very heterogeneous stress states only, it is impossible to find these criteria from an 

experiment without corresponding modeling. This should include: 

(a) the first principle simulations of stress-strain curves and all lattice instabilities which can 

lead to dislocation and crack nucleation under various complex loadings;  

(b) development of continuum models that include dislocation and crack nucleation and 

evolution, which are calibrated by atomistic simulations; and  

(c) implementing these models for diamond in simulations similar to those presented in the 

current work, performing simulations and checking fracture conditions against 

experiments. 

In the case of success, these models can be used for computational optimum design of DAC. 

There are two main goals: (a) to reach record high pressure once or multiple times and (b) to 

reach the required high pressure in the largest possible sample once or multiple times. As the 

next step, we will use some of the recent experimental results up to 400 GPa in [9] for tungsten 
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to calibrate our model and then reproduce all of the experimental results in [9]. Phase 

transformations in a sample will also be included, similar to what we did in [32] for boron nitride, 

where a lower pressure range was considered. Some other directions in a coupled modeling and 

experimental studies of the mechanical and transformation processes under high pressure are 

outlined in [33]. 
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