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Curvilinear nanomagnets can support magnetic skyrmions stabilized at a local curvature without
any intrinsic chiral interactions. Here, we propose a new mechanism to stabilize chiral Néel skyrmion
states relying on the gradient of curvature. We illustrate our approach with an example of a magnetic
thin film with perpendicular magnetic anisotropy shaped as a circular indentation. We show that
in addition to the topologically trivial ground state, there are two skyrmion states with winding
numbers ±1 and a skyrmionium state with a winding number 0. These chiral states are formed due
to the pinning of a chiral magnetic domain wall at a bend of the nanoindentation due to spatial
inhomogeneity of the curvature-induced Dzyaloshinskii–Moriya interaction. The latter emerges due
to the gradient of the local curvature at the bend. While the chirality of the skyrmion is determined
by the sign of the local curvature, its radius can be varied in a broad range by engineering the position
of the bend with respect to the center of the nanoindentation. We propose a general method, which
enables us to reduce the magnetic problem for any surface of revolution to the common planar
problem by means of proper modification of constants of anisotropy and Dzyaloshinskii–Moriya
interaction.

I. INTRODUCTION

Chiral magnetic textures such as domain walls,
skyrmions and skyrmion bubbles are considered as
promising building blocks for prospective memory and
logic devices relying on spintronics and spinorbitronics
concepts [1–4]. There is intensive work not only on the
controlled creation of these topologically non-trivial ob-
jects [4–9] but also on the manipulation of their static
and dynamic properties [4, 5, 10–13]. Primarily, most
of such activities are dedicated to flat magnetic thin
films with perpendicular magnetic anisotropy. At the
same time, sample geometry can significantly alter stat-
ics and dynamics of magnetic textures [14–18]. Recently,
it was shown that local curvature can lead to the emer-
gent magnetostatically driven chiral e↵ects that are non-
local [17–24], but also to the appearance of exchange-
driven Dzyaloshinskii–Moriya interaction (DMI) [25, 26].
The latter enables a route to realize skyrmions [27] and
field-free skyrmion lattices as a ground state [28].

Here, we demonstrate that, even in the absence of an
intrinsic DMI, the gradient of the local curvature is an
e�cient means to stabilize chiral localized magnetic ob-
jects allowing to manipulate their size at will. We em-
phasize the physical mechanism of the e↵ect to be the
pinning of a chiral magnetic domain wall on an inhomo-
geneity of the geometry-driven DMI localized at the bend
of a ferromagnetic nanomembrane. Engineering the ge-
ometry of a circular nanoindentation [Fig. 1(a)] to have
a defined curvature and distance between bends allows
one to form chiral objects with winding numbers Q of
±1 and 0. Considering their topological properties, we
refer to the objects with Q = ±1 as skyrmion states
and 0 as skyrmionium state [29, 30]. The diameter of a

skyrmion is determined by the diameter of the circular
base of the nanoindentation. The developed theoretical
formalism allows one to transfer the conclusions to flat
systems with spatially inhomogeneous DMI. In this re-
spect, we propose a new mechanism of pinning of the
magnetic domain walls on gradients of DMI in a film.

II. RESULTS

A. Model

We consider a thin 3D curved magnetic nanomem-
brane of thickness h with uniaxial, locally perpendicu-
lar anisotropy in the absence of an intrinsic DMI. The
nanomembrane is curved in a way to form a circular
nanoindentation, Fig. 1(a), where ẑ and r̂ are introduced
as longitudinal and radial axes, respectively.
A magnetic texture is controlled by three interactions:

exchange, requiring uniform magnetization in the labora-
tory reference frame; anisotropy, tracking the nanomem-
brane curvature, and local magnetostatics with the total
energy

E = h

Z 
AEex �Kum

2
n � Ms

2
(m ·Hd)

�
dS, (1)

where A is the exchange sti↵ness, Ku is the intrinsic
anisotropy along the normal n to the surface, Ms is satu-
ration magnetization and Hd is the demagnetizing field.
The competition between the exchange and other energy
contributions in (1) results in the characteristic magnetic
length ` =

p
A/K with the e↵ective anisotropy coe�-

cient K = Ku � 2⇡M2
s . The latter incorporates any in-

trinsic anisotropy Ku along the normal n to the surface



2

r̂
Ri Ro

ẑ
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FIG. 1. Sample geometry and magnetization patterns. (a) Circular nanoindentation with inner radius Ri = 10, outer
radius Ro = 15 and bending angle ↵ = 26� (curvature amplitude {0 = 0.5 and curvature half-width w = 0.75, see Appendix C
for details). A local basis is given by radial, polar and normal unit vectors {e1, e2,n}, the cone angle equals ⇡ � ↵. (b) The
e↵ective DMI coe�cient D1 plotted as function of ⇢, see Eq. (B14b). (c) Equilibrium states: topologically trivial ground state
and three types of skyrmions of di↵erent chiralities (winding number Q = ±1) and a topologically trivial skyrmionium state
(Q = 0). (d) Magnetization distribution for states shown in (c).

and local magnetostatics in the thin film limit h . ` [31–
34], see also Eq. (1). Here, we limit ourselves to the
local magnetostatic contribution only, which works well
for thin films [27, 28, 35] and e↵ects of nonlocal magne-
tostatics will be studied in a separate work. Below we
will measure all lengths in units of `.

The nanoindentation geometry is defined in the cylin-
drical reference frame (r,�, z) by the revolution of a curve
�(r) = rr̂+ z(r)ẑ around ẑ axis. The curve � generates
a surface & = &(r,�), see Fig. 1(a) and Appendix A for
details. It represents a conic frustum indentation with
an inner radius r = Ri and an outer radius r = Ro. We
will characterize & through its two principal curvatures
{1(r) and {2(r), where {1 is the normal curvature of the
generatrix �.

Surfaces of revolution support radially symmetric mag-
netization textures m(r) = sin⇥e1 + cos⇥n, see Ap-
pendix B for details. Here, the local orthonormal refer-
ence frame {e1, e2,n} is used with e1 being the unit vec-
tor along the generatrix, e2 = n⇥e1 and ⇥ = ⇥(r) 2 R.

To compare topologically nontrivial magnetization tex-
tures in flat and curvilinear samples, it is instructive to
project & to a plane in such a way as to reconstruct a pla-

nar skyrmion equation, see, e.g. Eq. (13) from Ref. [36].
We note that not every transformation will allow such
reconstruction. The only transformation, which provides
this possibility is

⇢(r) = r exp

1Z

r
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see Appendix B for details. Here we introduce a surface
polar coordinate ⇢, which allows us to obtain the same
structure of the total energy density and equation as in
the planar case. Nanomembrane bends in new coordi-
nates are located at ⇢(Ri) = R1 and ⇢(Ro) = R2. In
the surface polar reference frame, the total energy den-
sity resembles the energy of a planar film with exchange,
anisotropy and Dzyaloshinskii–Moriya interactions:

E =⇥02+
sin2 ⇥

⇢2| {z }
exchange

+K sin2 ⇥
| {z }
anisotropy

�D1⇥
0

| {z }
DMI 1

�D2
sin⇥ cos⇥

⇢| {z }
DMI 2

(3)

with prime denoting the derivative with respect to
⇢. However, instead of the typical planar magnet,
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all strengths of emergent interactions for the curved
nanomembrane become coordinate dependent. In par-
ticular, coe�cients of geometrically-induced DMI are de-
termined by local curvatures, Di / {i, i = 1, 2, see Ap-
pendix B for details. They vanish in the flat region of the
membrane: the coe�cient D1 is nonzero only in the bend
regions of the generatrix � and D2 appears only in the
inclined part of the indentation. While {1 can assume
an arbitrary value and is given by the generatrix bend
parameters only, {2 / 1/r. The e↵ective anisotropy K
is determined by {2 and the ratio r/⇢. An example of
the spatial dependence of D1 is shown in Fig. 1(b).

The Euler equation for the energy functional (3) deter-
mines an equilibrium radially symmetric magnetization
texture, described by a forced skyrmion equation

⇥00 +
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where
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⇢
({1 + {2)

0 . (4b)

The e↵ective anisotropy K and DMI D2 in Eq. (4a) are
functions of the coordinate ⇢. In the case K = const,
D2 = const, and f(⇢) = 0, Eq. (4) is reduced to a typical
skyrmion-like equation [5, 36–38]. A comparison with
this limiting case points out an analogy between the flat
and curvilinear skyrmions. At the same time we will see
that Eq. (4) results in novel properties, absent for the pla-
nar case. The important di↵erence of our work [Eq. (4)]
to the standard skyrmion equation is the presence of the
spatial dependence of the anisotropy and DMI param-
eters. Note that tuning of magnetic parameters (spa-
cial dependence of magnetocrystalline anisotropy and
Dzyaloshinskii-Moriya constant) was proposed very re-
cently in [39] as a way to build traps for skyrmions in
flat magnets.

The key novelty of the current study is the presence
of an external driving force. The forced skyrmion equa-
tion was not considered previously. A spatial-dependent
external force f(⇢) results in the absence of a strictly nor-
mal magnetization pattern. More importantly, as we see
below, it provides a new mechanism of skyrmion stabi-
lization, which results in tunable-size skyrmions.

The boundary condition for Eq. (4) at the origin is
⇥(0) = 0. The value of ⇥(1) = Q⇡ gives a winding
number of the magnetization through directions n and
�n (skyrmion chirality) as Q = ±1. The case of Q = 0
can be either a skyrmionium state (Q = 0) [29, 30] or
a topologically trivial state. Four solutions of (4) with
di↵erent Q are shown in Fig. 1(c,d) and will be discussed
below. While D2 / 1/r and can be considered as a small
parameter for wide indentations, the key role in the sta-
bilization of solutions is played by force f(⇢) depending
on D 0

1 / {0
1 which in turn depends only on the shape of

the indentation edge and is not influenced by its radius.

B. Skyrmion pinning in nanoindentation

Based on the forced skyrmion equation (4), we ob-
tain two distinct ways to control the type of magnetic
texture: (i) Geometry-induced DMI in the left-hand
side of Eq. (4a) resulting in the stabilization of small-
radius skyrmions [27]; (ii) E↵ective external driving force
originating from the inhomogeneity of the local curva-
ture (4b). In the following, we show that the latter case
allows for the formation of chiral skyrmions of tunable
radii.
For a nanoindentation geometry, Fig. 1(a), the ground

state of the system is a quasi-normal magnetization dis-
tribution indicated with a blue solid line in Fig. 1(c).
The deviation of the local magnetization from the strictly
normal direction is an exchange-driven e↵ect, forcing the
magnetization distribution to be homogeneous in the lab-
oratory reference frame. For a slow varying curvature {1

(i.e. |{0
1| ⌧ 1) and large indentation radius R1,2 � 1,

one can omit the terms inversely proportional to pow-
ers of R1,2 in Eq. (4a) and obtains ⇥(⇢) ⇡ �{0

1r/⇢.
Other possible solutions represent Néel skyrmions and a
skyrmionium. While small-radius skyrmions can appear
for an arbitrary geometry-induced DMI with the radius
governed by the DMI coe�cient [27, 28], in the present
case we obtain three magnetization textures with di↵er-
ent winding numbers Q, Fig. 1(c). Inner and outer bends
with positive and negative signs of D1, respectively, sup-
port skyrmions with Q = ±1 and a skyrmionium state
with Q = 0.
Analytically, we consider a model with a sharp bell-

shaped bend of half width w ⌧ 1 and curvature ampli-
tude {0, see Appendix C for details. Then, the curvature
can be represented as

{1(⇢) = ↵ [�(⇢�R1)� �(⇢�R2)] , (5)

with �(•) being the Dirac �-function and ↵ > 0 being the
bending angle. Both radii of the indentation are assumed
to be large, R2 > R1 � 1. Curvature (5) describes a
nanoindentation in a flat film with a flat inner part and
a right-cone lateral face. It allows us to simplify the total
energy (3) and skyrmion equation (4) with D2 = 0 and
K = 1.
A large-radius skyrmion profile can be described by a

circular domain wall ansatz

⇥sk = 2arctan [p exp(⇢�Rsk)] + (p� 1)⇡/2 (6)

with p = ±1 for outward and inward magnetization ro-
tation, respectively, and Rsk being its radius. Then the
total energy reads

E[⇥sk] =

Z
E ⇢d⇢ = 4Rsk � 2p↵

h
R1 sech(Rsk �R1)

�R2 sech(Rsk �R2)
i
.

(7)

Here, the first and second terms represent the energy of
a circular domain wall of radius Rsk and the contribution
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FIG. 2. Stability regions of skyrmions in terms of the

curvature amplitude {0 and curvature spatial localiza-

tion w. The skyrmion with Q = +1 pinned at the inner bend
of the nanoindentation with Ri = 10 and Ro = 50 is stable in
the green-shaded region. Orange line shows the correspond-
ing asymptotics for a sharp bend (8a) and three dotted curves
are isolines for ↵ of 30�, 60� and 85� [bend inclination angle,
Fig. 1(a)]. The skyrmion with Q = �1 pinned at the outer
bend of the nanomembrane with Ri = 10 and Ro = 15 is sta-
ble in the dashed region. Asymptotics (8b) is shown by the
dashed line.

of the e↵ective DMI, respectively, compare with Eq. (5)
[40]. If the domain wall is localized near R1 and R2, the
stability conditions read

p↵ >
4

R1
for the inner bend, (8a)

�p↵ >
4

R2
for the outer bend, (8b)

see Appendix C for details. Due to the di↵erent sign of
the e↵ective DMI in the inner and outer bends, skyrmions
of di↵erent chiralities can be pinned. This is also the
reason for the stabilization of a skyrmionium state with
zero total winding, see orange dashed line in Fig. 1(c).
A wider skyrmion can be pinned at the first bend with a
smaller bending angle ↵.

C. Numerical study of skyrmion stability

To model the curvature of a finite spatial localization,
we choose the first principal curvature as a sum of two
bell-shaped functions with the maximal value {0 strongly
localized in rings of radii (Ri � w,Ri + w) and (Ro �
w,Ro+w). The curvature is zero outside these rings, see
Appendix C for details.

Fig. 1(c) shows four solutions of Eq. (4a) for a concave
nanoindentation [Fig. 1(a)]: ground state (blue dashed
line), two skyrmions of di↵erent sign of Q (solid red and
green lines), and the skyrmionium state (orange dashed

line). A magnetic domain wall is pinned near the max-
imum of the curvature and slightly shifted toward the
bottom flat side of the sample. The impact of a finite
curvature is shown in Fig. 2 using the stability analysis
described in Section IV of [40]: we studied the eigen-
modes of linear excitations on the skyrmion background.
In all cases radial instability determines the di↵erent re-
gion boundaries shown in Fig. 2.
There are separate stability regions for skyrmions of

di↵erent winding numbers Q. Skyrmions with Q = +1
pinned at the inner bend of the indentation are stable
in a wide range of curvature amplitude {0 and half-
width w, see green-shaded area in Fig. 2. Skyrmions
with Q = �1 are stable in a narrow dashed-shaded area.
The upper boundary of the stability region is related to
the small enough distance between the inner and outer
bend. An increase of the curvature influences the domain
wall shape. When a critical value of {0 is reached, the
domain wall slides down completing the magnetization
reversal to the ground state. The analytically predicted
lower boundaries of the stability regions for the pinning
in the inner and outer bends (8) closely coincide with the
numerically calculated ones in a wide range of parame-
ters, see solid and dashed orange lines in Fig. 2. The
di↵erent stability regions for skyrmions with Q = ±1
are related to the e↵ective DMI in the inner and outer
bend of the nanoindentation: the sign of D1 selects the
clockwise or counter-clockwise direction of magnetization
winding.
Using the ansatz (6) with p = 1, we estimate the

energy profile (3) and energy gap allowing a skyrmion
to be pinned at a bend, see Fig. 3. We note, that the
ansatz (6) does not take into account any specific char-
acteristics of the systems and might underestimate the
pinning strength. The total energy shown in Fig. 3(a) is
a sum of four terms, shown in Figs. 3(c)–(f). Exchange
and anisotropy energies (related to the coe�cient K )
are monotonically increasing functions and cannot pin
the skyrmion. The energy Edmi 2, related to D2, shows a
small maximum, which does not contribute significantly
to the pinning e↵ect. In contrast, the energy Edmi 1, re-
lated to D1 / {1, exhibits a pronounced minimum near
R1, resulting in the appearance of a local minimum in
the total energy.
We estimate the energy gap of �E = 750 K for the

case of a nanoindentation of Co/Pt stacks (A = 10 pJ/m,
Ku = 0.3 MJ/m3, Ms = 480 kA/m, thickness of the Co
layer h= 0.6 nm) with a geometry considered in Fig. 3.

III. DISCUSSION

The geometry of a ferromagnetic film makes a signif-
icant impact on static and dynamic skyrmion proper-
ties. Finite dimensions of nanostructures can lead to the
confinement of a skyrmion [38] and skyrmion formation
under an external influence [41]. Considering curvilinear
e↵ects, an alternative way to stabilize skyrmions is to uti-
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FIG. 3. Pinning of a skyrmion on the inner bend. (a) Total energy of a skyrmion as a function of its radius Rsk for
w = 1.5 and {0 = 0.25 with Ri = 15 (bending angle ↵ = 26�). Energy profile has a minimum near R1(Ri) = 13.9. (b)
Magnified region of local minimum in E. Pinning is schematically shown with a red point moving from the right top corner
and stopped in the local energy minimum. (c)–(f) Energy profiles of exchange, e↵ective anisotropy and two e↵ective DMI, see
energy density (3). Only the energy related with D1 in (d) allows pinning, while Edmi 2 is two orders smaller in magnitude for
any finite D2 6= 0.

lize a curvature-induced DMI of interfacial type in sam-
ples with geometrically defined axis of anisotropy [25–28].

In this work we studied magnetic nanoindentations of
radial symmetry with locally perpendicular easy axis of
magnetization. We proposed a coordinate transforma-
tion allowing to incorporate the metric of the curved
surface into spatially dependent material parameters and
obtained a driven skyrmion equation with the left-hand
side in the form of a well-known description of flat sys-
tems, see e.g. [36]. Our approach allows to directly com-
pare e↵ects of curvature with well-known flat films with
intrinsic chiral interactions and uncovers two mechanisms
of skyrmion stabilization.

(i) The first mechanism is based on the appearance
of the geometry-induced Dzyaloshinskii–Moriya interac-
tion [27]. The consequence of this e↵ect is the possibility
to form small sized skyrmions in the region of maximal
curvature.

(ii) The second mechanism, addressed in this work,
governs the skyrmion size by the curvature gradient,
which results in tunable-size skyrmions.

In both these cases skyrmions are static solutions be-
cause their structure is determined by the distribution
of material parameters. The size of skyrmions of the
type (i) is limited by the characteristic magnetic length `
due to their localization in the region of the curvature
maximum, where the curvature is approximately con-
stant [27]. The spatial inhomogeneity of the DMI and
anisotropy coe�cients becomes crucial when considering
the magnetization textures of type (ii).

In contrast to skyrmions, stabilized by the intrinsic
DMI, the topologically nontrivial structures, discussed
in the current work, are not mobile. However, it is a
way to create individual skyrmions and skyrmioniums

as well as their artificial lattices at room temperature
which is important from a fundamental point of view
and applications in spintronic devices, e.g. for enhancing
the topological Hall e↵ect [42–48].
In the case of one-dimensional systems the local change

in the anisotropy is the source of a domain wall nucle-
ation [49] and attractive or repulsive pinning in a mag-
net [50]. The stabilization of circular domain walls usu-
ally appears due to magnetostatics while the size can
be also governed by the inhomogeneity of the anisotropy
[6, 8, 51]. In a curvilinear nanomembrane two e↵ec-
tive anisotropies and two e↵ective DMI appear and each
of them is related to the corresponding principal cur-
vature [25, 26]. For the radially-symmetric textures
considered in this work, one of the curvature-induced
anisotropies disappears due to the symmetry of the ob-
ject and texture, while the sum of the intrinsic anisotropy
and the second geometry-induced one is incorporated in
the coe�cient K in Eq. (4a), see expression (B14a).
The simplest way to create and annihilate a skyrmion

in the nanoindentation is via a pulse of perpendicular
spin-polarized current or magnetic field along ẑ axis. An
incomplete hysteresis loop from the initially saturated
state along�ẑ shows di↵erent switching fields for the pla-
nar parts and lateral sides of the indentation, which re-
sults in the appearance of domain walls in the indentation
edges [52]. While the coordinate-dependent anisotropy
only changes the slope of the energy landscape [Fig. 3(d)],
the first DMI coe�cient D1 depends only on the bend pa-
rameters, see (B14b), and reduces the Néel domain wall
energy of the preferred chirality during the domain wall
positioning on the bend. The second DMI coe�cient D2,
see (B14b), also can lower the domain wall energy, but it
is inversely proportional to the radius of the nanoinden-
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tation and does not significantly a↵ect the magnetization
texture (in the case of large objects). Note that the cru-
cial role is played by a spatially localized distribution of
D1 only, whose gradient results in a local energy mini-
mum for a skyrmion with respect to its radius, see Fig. 3.

The skyrmion radius is determined by the relation of
the DMI constant to the domain wall energy density
in flat systems. Therefore, large radius skyrmions can
be described by a circular domain wall ansatz [38, 40].
In contrast to this case, a bend of a ferromagnetic
nanomembrane provides a pinning potential for a circu-
lar domain wall separating flat and inclined parts. Then,
the size of a chiral texture is determined both by the area
enclosed by a bend and the e↵ective DMI exceeding the
given critical value. This is similar to the appearance
of one-dimensional chiral domain walls whose energy de-
creases proportionally to the DMI constant [38, 53].

Using a model of a circular curved nanomembrane pro-
jected to a plane (2), we demonstrated a good agreement
with the exact numerical calculations for the bend of a fi-
nite width, see Fig. 2 and Appendix C for details. Our an-
alytical model takes into account only the first curvature-
induced DMI D1 in the form of a Dirac �-function neglect-
ing the second DMI coe�cient, D2, and with the constant
anisotropy K0 = 1. The coordinate-dependent coe�-
cient D1 determines the skyrmion radius Rsk. Note, that
in this case, the skyrmion equation (4a) di↵ers from the
planar case only by the presence of a driving force (4b)
appearing after the energy variation. Therefore, this al-
lows us to predict the same properties of circular Néel
domain walls in planar films with nonzero DMI in a nar-
row circular region: Néel domain walls should be pinned
in the region with the DMI sign selecting the magnetiza-
tion rotation direction inward or outward.

The estimation of the pinning strength for a skyrmion
formed in a Co/Pt-based nanoindentation with {0 = 0.25
and w = 1.5 (bending angle ↵ ⇡ 26� with the bend
width of about 15 nm) shown in Fig. 3 leads to the en-
ergy gap of about 103 K, stabilizing the skyrmion on a
bend. This model refers to actively studied nanopat-
terned media including circular nanoindentations [54–
57] and convex structures like cones [58, 59], caps [60–
62] and spheres [27]. One can compare this predic-
tion with the experiments for caps and nanoindenta-
tions [52, 54, 56, 57] covered with perpendicularly mag-
netized Co/Pt multilayers. The presence of experimen-
tally observed single domain features localized in curved
regions is typically attributed to a (partial) exchange de-
coupling between the magnetic nanostructure and a flat
film. Here, we showed how the tilt of the anisotropy
axis on a bend of a nanomembrane can provide a sig-
nificant contribution to the domain wall pinning due to
the geometry-induced e↵ective DMI, which is strongly
localized in the bend area, see Fig 3. Note that an im-
perfect circular shape of indentation edges, e.g. elliptical
deformation, will change the boundaries of skyrmion sta-
bility regions and the instability symmetry, but does not
change our conclusions. We speculate that these objects

can be large size skyrmions discussed in this work.
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Appendix A: Surfaces of Revolution

We form the surface & by the revolution of a curve
� = rr̂ + zẑ around ẑ: &(r,�) = {r cos�, r sin�, z(r)}.
Here and below, all distances are measured in the units
of the magnetic length `. The complete definition of ge-
ometrical properties of & can be inferred through two
principal curvatures,

{1(r) =
@2rrz

Z3
, {2(r) =

@rz

rZ
, (A1)

with Z(r) =
p
1 + (@rz)2. Note, that the first principal

curvature coincides with the curvature of the generatrix
�. In the case of a surface of revolution, there is a relation
{1 = @r(r{2). The way to extend & along the normal
n without any self intersection in the surface vicinity is
to introduce coordinates along the principal directions
(radial and polar directions), e1 = @r&/|@r�| and e2 =
{� sin�, cos�, 0}. Then the normal is given by n = e1⇥
e2 and the area element is dS = rZdrd�.

Appendix B: Energy of a Curvilinear Ferromagnetic

Nanomembrane

The energy of a ferromagnetic nanomembrane reads

E = h

Z 
AEex �Kum

2
n � Ms

2
(m ·Hd)

�
dS, (10)

where A is the exchange sti↵ness, Ku > 0 is the constant
of uniaxial anisotropy, mn is the normal magnetization
component and Hd is the demagnetizing field. In the
thin film limit h . ` we incorporate the magnetostatic
e↵ects in the e↵ective anisotropy K = Ku � 2⇡M2

s [31–
34].
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It is natural to use a curvilinear reference frame, gener-
ated by the surface & for the description of the magneti-
zation pattern. This approach recovers the translational
symmetry of anisotropy for films with a uniaxial, easy-
normal anisotropy (10) [25, 26]. The exchange energy
density for an angular parametrization of the magneti-
zation texture m = sin ✓ cos� e1 + sin ✓ sin� e2 + cos ✓n
reads [25, 26]:

Eex = [r✓ � � ]2+ [sin ✓ (r��⌦)�cos ✓@�� ]2 , (B1)

with ⌦ being a spin connection with components ⌦µ =
e1 ·rµe2 for µ = 1, 2 and the vector � (�) = {1 cos� e1+
{2 sin� e2. Here, r = e1

Z @r + e2
r @� denotes a surface

‘del’ operator in its curvilinear form. In particular, for
surfaces of revolution ⌦1 = 0 and ⌦ := ⌦2 = �1/(rZ).

The static Landau–Lifshitz equations have the follow-
ing form

r2✓ � sin ✓ cos ✓
h
1� (@�� )2 + (r��⌦)2

i

+ cos 2✓ (r��⌦) · @�� �r · � = 0,
(B2a)

r ·
�
sin2 ✓r�

�
+ sin2 ✓ [(2r✓ � � ) · @�� �r ·⌦]

� sin ✓ cos ✓ [2r✓ ·⌦ +r · @�� + (r��⌦) · � ] = 0.
(B2b)

There exists a class of azimuthally symmetric solutions

✓ = ✓(r), � = 0,⇡, cos� = ±1. (B3)

For this class of solutions, it is convenient to use another
angular parametrization:

m = sin⇥(r)e1 + cos⇥(r)n, ⇥ 2 R (B4)

to reduce the number of independent variables. Then the
energy density (B1) reads

Eex =
(@r⇥)2

Z2
� 2{1@r⇥

Z
+ {2

1 + {2
2

+ (⌦2 � {2
2) sin

2 ⇥+ 2⌦{2 sin⇥ cos⇥.
(B5)

Now, we want to find such a transformation of vari-
ables which incorporates the e↵ects of curvature in (B5)
and reduces its analytical form to a standard expression
of the exchange energy of the flat magnet in the polar
reference frame. We start with the case of an isotropic
magnet, K = 0. The ground state of the model is the
homogeneous (in the physical space) state. We limit our-
selves to the homogeneous magnetization distributions
along z-axis with mh = Chẑ:

cos⇥h =
Ch

Z
, sin⇥h =

Ch@rz

Z
, (B6)

with Ch = ±1.
It is instructive to represent the energy functional (B5)

in terms of the angle  , which characterizes the deviation
from the homogeneous state

⇥(r) = ⇥h(r) +  (r). (B7)

The exchange energy density in the  –notation has a
simple form

Eex =
(@r )2

Z2
+

sin2  

r2
. (B8)

By minimizing this energy one gets the static equations

r

Z

d

dr

✓
r

Z

d 

dr

◆
� sin cos = 0. (B9)

Let us map the revolution surface to the plane by intro-
ducing the surface polar coordinate ⇢ = ⇢(r) as follows

⇢(r) = r exp

1Z

r

2

41�

s

1 +

✓
dz

d⇣

◆2
3

5 d⇣

⇣
. (20)

Such a transformation allows to rewrite (B9) in the form

 00 +
1

⇢
 0 � 1

⇢2
sin cos = 0, (B10)

which is well known [63] to describe radially symmetric
magnetic textures for an isotropic planar ferromagnet.
Figure 4(a) shows the relation between the surface polar
coordinate ⇢ and the distance to the symmetry axis r.
The dependence ⇢(r) has the limiting values ⇢(0) = 0 and
⇢(1) = 1; far from the center of the nanoindentation
⇢(r) = r.
We look for a skyrmion solution of the equation (B9),

which satisfies the boundary conditions

 (r = 0) =  (⇢ = 0) = ⇡,

 (r = 1) =  (⇢ = 1) = 0.
(B11)

The corresponding solution of Eq. (B10) is the well–
known Belavin–Polyakov skyrmion solution [64]

tan
 bp

2
=

R

⇢
, R = const,

⇥bp(⇢) = ⇥h(⇢) +  bp(⇢).
(B12)

The energy of the Belavin–Polyakov skyrmion E = 8⇡Ah
does not depend on its radius, which results in the
skyrmion instability. An e�cient way for the static sta-
bilization of the skyrmion structure is to take into ac-
count both the anisotropy and DMI. In our case both
interactions appear e↵ectively due to the curvature of
the nanomembrane and they are coordinate-dependent.
The energy (10) for the radially symmetric solu-

tion (B4) up to a constant reads

E=
E

2⇡Ah
=

Z
E ⇢d⇢ , (B13)

with the energy density

E =⇥02+
sin2 ⇥

⇢2| {z }
exchange

+K sin2 ⇥
| {z }
anisotropy

�D1⇥
0

| {z }
DMI 1

�D2
sin⇥ cos⇥

⇢| {z }
DMI 2

, (30)
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FIG. 4. Characteristics of the nanomembrane geometry. (a) A relation between the distance to the axis r of the sample
and the surface polar coordinate ⇢ according to Eq. (2). The dependence ⇢(r) is shown with a line, bisecting the quadrant,
with a dashed line. The plot is built for parameters taken from Fig. 1. Here, R1 ⇡ 9.59 and R2 ⇡ 14.99. (b) Bending angle ↵
for di↵erent spatial localizations w of the curvature.
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FIG. 5. E↵ective coe�cients of the energy of the ra-

dially symmetric solution. E↵ective anisotropy (B14a)
and the two DMI coe�cients (B14b) as a function of the ⇢
coordinate for the sample parameters shown in Fig. 1.

where coe�cients are functions of the principal curva-
tures of the nanomembrane {1(⇢) and {2(⇢). The pa-
rameter K characterizes the geometrically-induced ex-
change driven anisotropy

K =
r2

⇢2
�
1� 2{2

2

�
, (B14a)

with r = r(⇢) here and below. Parameters D1 and D2 can
be treated as parameters of the geometrically-induced
exchange driven DMI:

D1 =
2r{1

⇢
, D2 = 2r0{2. (B14b)

There is a striking correspondence between the en-
ergy density of the nanoindentation (30) and the energy

density of a chiral skyrmion in a planar magnet with
an intrinsic DMI [36]. Nevertheless, it is important to
stress that all these e↵ective interactions are character-
ized by the spatial-dependent parameters, K (⇢), D1(⇢)
and D2(⇢). The typical spatial distribution of these pa-
rameters is shown in Fig. 5. The first DMI coe�cient
D1 / {1(⇢). The second DMI coe�cient D2 / {2 is
nonzero only in the tilted part of the nanoindentation.

Appendix C: Model of a Nanoindentation

We model a nanoindentation with a flat inner part con-
sidering a sharp indent of a conic frustum shape in the
flat film

zsh(r) =

8
><

>:

0, when r < Ri

(r �Ri) tan↵, when Ri  r  Ro

z0, when r > Ro ,

(C1)

with tan↵ = z0/(Ro � Ri). Now we project this conic
frustum to the surface, using the mapping (20)

r(⇢) =

8
>>>>><

>>>>>:

Ri

R1
⇢, when ⇢ < R1,

R2

✓
⇢

R2

◆cos↵

, when R1 < ⇢ < R2,

⇢, when ⇢ > R2 ,

(C2)
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with R1 = Ro(Ri/Ro)sec↵ < R2 and R2 = Ro. Then the
principal curvatures of the nanomembrane are given by

{1(⇢) = ↵ [�(⇢�R1)� �(⇢�R2)] , (50)

{2(⇢) =

8
>>>>>>>>><

>>>>>>>>>:

0, when ⇢ < R1 and ⇢ > R2,

↵ cos↵

R2

✓
R2

⇢

◆cos↵

, when R1 < ⇢ < R2,

↵ cos(↵/2)

2R1
, when ⇢ = R1,

↵ cos(↵/2)

2R2
, when ⇢ = R2 ,

(C3)

with �(•) being the Dirac �-function.
We assume that both R1 and R2 are large enough to

omit all terms of the order 1/⇢ and higher in the energy
density (30). Then, the expression (30) can be written as

E0 =⇥02 + K0 sin
2 ⇥

� 2↵
r

⇢


R1

Ri
�(⇢�R1)� �(⇢�R2)

�
⇥0,

(C4)

where

K0 =

8
>>>>>><

>>>>>>:

✓
R2

Ri

◆2(sec↵�1)

, when ⇢ < R1,

✓
R2

⇢

◆2(1�cos↵)

, when R1  ⇢  R2,

1, when ⇢ > R2.

(C5)

This expression can be simplified to K0 ⇡ 1 in a wide
range of ratios R1/R2 for small angles ↵ and in a wide
range of ↵ if inner and outer radii R1 and R2 are com-
parable, see Fig. 5.
Applying here the circular domain wall ansatz (6), we

obtain the total energy (7). The condition for the exis-
tence of a local minimum in (7) gives expressions (8).
Now to take into account the finite localization region

of the curvature, we smooth the shape (C1) using the
convolution of the sharp conic frustum zsh(r) with the
mollifier gw(r)

gw(⇣) =

8
<

:

Cg

w
exp

✓
w2

⇣2 � w2

◆
when �w  ⇣  w,

0 otherwise,
(C6)

in the following way:

z(r) =

min{r,w}Z

�w

gw(⇣)zsh(r � ⇣)d⇣. (C7)

Here, Cg ⇡ 2.25 from the condition
R w
�w gw(⇣)d⇣ = 1.

Mollifying (C7) guarantees that the first principal cur-
vature {1(r) is nonzero only in a region of 2w around
the bend. The bending angle as a function of w and
curvature amplitude {0 is shown in Fig. 4(b). All lines
asymptotically tend to ↵ = 90�.
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[43] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer,
A. Rosch, A. Neubauer, R. Georgii, and P. Böni,
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