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Micropumps are microfluidic components which are widely used in applications such as chemical
analysis, biological sensing and micro-robots. However, one obstacle in developing micropumps is
the extremely low efficiency relative to their macro-scale counterparts. This paper presents a dy-
namic sealing method for external gear pumps to reduce the volumetric losses through the clearance
between the tips of gears and the housing by using magneto-rheological (MR) fluids. By mitigating
these losses, we are able to achieve high efficiency and high volumetric accuracy with current me-
chanical architectures and manufacturing tolerances. Static and dynamic sealing using MR fluids
are investigated theoretically and experimentally. Two Mason numbers Mn (p) and Mn (Ω) which
are defined in terms of pressure gradient of the flow and velocity of the moving boundary respec-
tively are used to characterize and evaluate the sealing performance. A range of magnetic field
intensities is explored to determine optimal sealing effectiveness, where effectiveness is evaluated
using the ratio of volumetric loss and friction factor. Finally, we quantify the effectiveness of this
dynamic sealing method under different working conditions for gear pumps.

I. INTRODUCTION

Micropumps are miniaturized pumping devices that
are usually manufactured by MEMS micromachining
technologies [1, 2]. In recent years, the target applica-
tions have expanded owing to the integration of novel
physical principles and the invention of new fabrication
methods. Micropumps are commonly used in chemical
analyses, biological sensing, drug delivery and micro-
robots [3–5].

Unfortunately, miniaturization comes at a cost and
nearly all micropumps suffer from low efficiency. The
reported efficiencies of the available micropump technolo-
gies are shown in Fig. 1. Typically, the overall efficiency
of a micropump is determined by a combination of four
components: volumetric efficiency, hydraulic efficiency,
mechanical efficiency and electrical efficiency. Out of
these four, volumetric losses and hydraulic losses dom-
inate at small scales. As the size of the system decreases,
the volumetric efficiency decreases since the same dimen-
sional and geometric tolerances result in a larger frac-
tional loss. Furthermore, in terms of hydraulic efficiency,
the Reynolds number decreases as the system’s size de-
creases, resulting in larger viscous losses.

For external gear pumps, the volumetric losses are
roughly proportional to the pressure gradient assuming a
quasi-steady fully developed low Reynolds number flow
across the clearance between the housing and the gear
tips [19]. Thus, the efficiency may be extremely low when
the pump is operating under high pressure gradient con-
ditions. The volumetric leakage between the tips of the
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gears and across the side plates is typically considered to
comprise the largest proportion of the total efficiency loss
in external gear pumps [20, 21]. Various end wear plates
have been studied and designed to reduce the leakage

FIG. 1. Review of efficiency versus maximum pressure for ex-
isting small-scale pumping strategies. The size of the symbol
depicts the characteristic length scale of the pump package;
the location of the center depicts the effeciency versus the
pressure. For reference, Sim et. al is 72 mm3 and Kargov et. al
is 18.5 cm3. Pumps shown here include: Sim et. al: Microp-
ump with flap valves [6], Kim et. al: Electromagnetic pump
[7], Yun et. al: Surface-tension driven pump [8], Richter et. al:
Electrohydrodynamic pump [9], Tsai et. al: Thermal-bubble-
actuated pump [10], Kargov et. al: Gear pump [11], Gros-
jean et. al: Thermopneumatic pump [12], Schomburg et. al:
Pneumatic chamber pump [13], Van de Pol et. al: Thermop-
neumatic pump [14], Zengerle et. al: Electrostatic pump [15],
Shen et. al: Electromagnetic pump [16], Yao et. al: Electroos-
motic pump [17], Reichmuth et. al: electrokinetic pump [18].
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across the side plates [22]. However, studies that con-
sider volumetric losses between the tip of the gear teeth
and the housing are relatively rare. Sealing is even more
challenging for micro-scale gear pumps due to the limits
of manufacturing precision. With precise manufactur-
ing techniques and tight tolerances, the volumetric loss
could be reduced. But in that case the mechanical fric-
tion between the housing and the gears will increase and
small clearances may also make the pump more vulner-
able to vibrations. Therefore, we propose to develop a
dynamic sealing method using magneto-rheological (MR)
fluids that can operate with the current mechanical ar-
chitectures and manufacturing tolerances.

Magnetorheological (MR) fluids are materials that ex-
hibit a reversible change in rheological properties with
the application of an external magnetic field, which can
result in a rich range of physical properties [23–26]. In
engineering applications, they were initially used by Ja-
cob Rabinow in the design of a clutch in the late 1940s
[27]. In more recent years, MR fluids have found further
applications and commercial success [28]. The most com-
mon application is a mechanical damper, which yields
appealing features such as low-power consumption, force
controllability and rapid response [29, 30]. In particu-
lar, automotive dampers with these properties have been
widely investigated [29, 31, 32]. The other common use
of MR fluids is the development of MR valves. In addi-
tion, high efficiency, miniaturized MR valves have been
achieved [33, 34].

A schematic of a typical external gear pump is shown
in Fig. 2. The pressure of the outlet is larger than that of
the inlet, resulting in back-flow across the gap between
the tips of the gears and the pump housing, as shown in
Fig. 2 (b). Subjecting MR fluid to an external magnetic
field causes magnetic-induced dipoles to aggregate in the
vicinity of the housing, which prevents back-flow (Fig. 2
(c)). This design has the potential to control the clear-
ance between the housing and gear tips without requiring
high precision manufacturing techniques.

Previous research primarily focused on MR fluids in
either Couette flow or Poiseuille flow, usually within the
scope of high shear stress which arises from either a large
pressure differential or large exerted force [24, 26–35]. By
contrast, much less is known about the physics of MR flu-
ids subject to the combination of Couette and Poiseuille
flow. In this study, we investigate the performance of
dynamic seals of MR fluid chains subject to shear-driven
flows from gear motion and simultaneously to pressure-
driven flows from back-flow. We compare experimental
results to a model which incorporates two dimensionless
Mason numbers, one from Couette flow and one from
Poiseuille flow.

II. METHOD

A. Experiments for MR Fluid in Poiseuille Flow or
Couette Flow

In order to visualize the effect of Poiseuille flow on the
morphology of the MR chains, we designed a experimen-
tal system specialized for visualization. We built a micro-
channel network made of a silicon slide, which is laser-cut
and sandwiched between two transparent acrylic plates.
MR fluid is from Lord. The carrier fluid of the MR fluids
is silicone oil (Gelest, 100cSt). The volume fraction of
MR particles is diluted to be 1%. The particles of MR
fluids are made of iron with a surfactant coating to mit-
igate agglomeration; the diameter of the particles ranges
between 1 µm to 20 µm. The fluid exhibits paramagnetic
behavior. The flow was driven by a pressure gradient
using a syringe pump to control the flow rate. Typi-
cal structures in the channel, i.e., chains of particles for
different flow rates are displayed in Fig. 3 (Top). The im-
ages suggest that the deformation of the magnetic chains
increases as flow rate increases until the magnetic chains
finally collapse. Note that with low flow rate, magnetic
chains tend to aggregate in bunches with very little de-
formation. These chains appear to attach in the vicinity
of the walls of the channel. As the flow rate increases,
the chains are more clearly deformed and segregated.

To observe the deformation of MR chains under Cou-
ette flow, we built another experimental system. We run
the experiments without an adverse pressure gradient.
Results are shown in Fig. 3 (Bottom); the left black area
of each figure depicts a roughened stationary surface, and
the black line on the upper right depicts the surface of a
disk. As the rotational speed of the disk increases, the

FIG. 2. (a) Schematic of an external gear pump; (b) Vol-
umetric loss caused by back-flow in-between the gear tooth
and the housing (indicated by the dashed arrow); (c) Pro-
posed dynamic sealing method using MR fluids in presence of
magnetic field B.
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FIG. 3. (Top) Deformation of chains of induced dipoles in
Poiseuille flow. (Bottom) Deformation of chains of induced
dipoles in Couette flow. (The contrast of the pictures has
been enhanced.) (Top) Flow rates from the left to the right:
0.1 ml/min, 1 ml/min, 10 ml/min. Channel width: 0.7 mm.
(Bottom) Rotational speed from the left to the right: 0 rps,
0.4 rps, 0.8 rps. Radius of the disk: 25 mm, Channel width:
0.7 mm.

density of magnetic brushes decreases and the curvature
of the chains increases.

B. Experiments for MR Fluid in Poiseuille-Couette
Flow

To model the interaction between the gear tooth and
the housing, we built a simplified experimental system,
as shown in Fig. 4. Panel (a) depicts a schematic of
the underlying design, where fluid enters the inlet on the
left, then bifurcates into two slots. The slot is used to
mimic the clearance between the tip of the gears and the
housing. A rotating disk is utilized to mimic one gear
tooth.

Fig. 4 (b) and (c) show snapshots of the experimental
model system, which mainly consists of a frame, a mo-
tor, a disk, two pitot tubes, a magnet and two pressure
sensors. The frame, which is designed to secure other
components, contains a cavity, which connects the tube
fitting, the pitot tube and the tube connected to the slots
in the middle. A laser cut acrylic disk, driven by the mo-
tor, is sandwiched between two transparent plates with
slots to secure the magnet. The carrier fluid of the MR
fluids is silicone oil (Gelest, 100 cSt). MR fluid is from
Lord. The volume fraction of MR particles is diluted to
be 10%. The magnets have a surface field of 1895 Gauss
(NdFeB, Grade N42, 2.44 oz.). Details of the magnetic
field are included in Appendix B.

We used a variable voltage power supply to power both
the sensors and the motor (Pololu 12 V), using voltages of
10.5 V and from 0 V to 40 V respectively. Pressure data
acquired from the sensors were sent to Labview via Na-
tional Instruments I/O. Motor speed was acquired from
the encoder of the motor and sent to the Arduino built-in
serial monitor via Arduino Uno.

FIG. 4. (a) Schematic of the experiment designed to study
the dynamic sealing performance using MR fluid; (b) Top
view of the experimental setup. (c) Perspective view of the
experimental setup. 1: pitot tube, 2: motor, 3: pressure
sensor, 4: frame, 5: disk (inside), 6: magnet.

III. RESULTS AND DISCUSSION

A. Model for MR Fluid in Poiseuille-Couette Flow

The experimental setup, shown in Fig. 4, can be mod-
eled as two slots in parallel in the presence of variable
magnetic field intensity. A schematic of one slot is shown
in Fig. 5. This half can be simplified as a straight chan-
nel with the reference frame attached shown in the partial
enlarged view in Fig. 5, based on the fact that the aspect
ratio δ/R = 2 mm/50 mm � 1 (see Appendix B). Thus,
we consider two straight slots in parallel. The theoreti-
cal results are calculated numerically to account for the
square channel cross-section [36]. The Reynolds number

Reδ = ρUδ
µ = 0.05� 1, so the inertia of the MR fluid is

negligible.
The flow is driven by both a pressure gradient and a

moving wall. In the limit of low Reynolds number, the
conservation of momentum equation for steady, laminar
flow, in the x-direction, reduces to:

dp

dx
=
dτyx
dy

, (1)

where p is the mechanical pressure, τyx is the shear stress.
The MR fluid is modeled as a Bingham fluid (see Ap-

pendix C for other constitutive relationships). Due to the
distribution of magnetic field intensity, the yield stress is
larger in the slot closer to the magnet than that in the fur-
ther one. The constitutive relationship can be expressed
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FIG. 5. Schematic of one slot. In the experiment, the radius
of the inner annuli is R = 50 mm, the width of the slot is δ = 2
mm, the height is h = 4 mm. The inner annulus rotates at
angular velocity of ΩR; the outer annulus is stationary. P1

and P2 denote different pressures.

as:

τyx =

(
µ+

τy(θ)

|γ̇|

)
γ̇; |τ | > τy(θ)

γ̇ = 0; |τ | ≤ τy(θ),

(2)

where µ is the effective viscosity of the MR fluid, τy(θ) is
the yield stress, and γ̇ is the shear rate. We furthermore
have the following boundary conditions on the inner and
outer walls of the channel:

vx|y=0 = U

vx|y=δ = 0,
(3)

where vx is the velocity of the fluid in x-direction and U
is the velocity of the inner wall.

To characterize the behavior of the dipole chains, we
use the Mason number, which has been commonly con-
sidered in prior studies [37–40]. In our study, we de-
fine two Mason numbers: one which is the ratio between
the shear forces and the magnetic interaction forces in
Poiseuille flow, and another one for Couette flow. The
magnetic interaction forces are characterized by the yield
stress τy [41, 42].

Mn (p) =
δ

τy

(
−dp
dx

)
Mn (Ω) =

τyδ

µRΩ
.

(4)

To non-dimensionlize the governing equation, the other
dimensionless variables are defined as follows:

y∗ =
y

δ
; τ∗ =

τyx
τy

; v∗ =
vx
RΩ

;U∗ =
RΩ

|RΩ|
. (5)

Thus, U∗ is either 1 or -1. Substituting the dimensionless
variables into the conservation of momentum equation

FIG. 6. Schematic of the profiles for velocity, shear stress and
plug zone of Poiseuille-Couette flow of MR fluid in both slots,
exposed in larger magnetic field intensity (left) and smaller
magnetic field intensity (right) respectively, as pressure gra-
dient ∇P increases. δ indicates the width of the channel; the
arrow in the profile plots indicates the velocity U of the mov-
ing wall. pL1 and pL2 represent the transition pressure from
the one-region mode to the two-region mode and from the
two-region mode to the three-region mode respectively, in the
presence of larger magnetic field intensity; pS1 and pS2 repre-
sent those in the presence of smaller magnetic field intensity.

and the constitutive equation yields:

dτ∗

dy∗
+Mn (p) = 0;

τ∗ =
1

Mn (Ω)

dv∗

dy∗
+ sgn

(
dv∗

dy∗

)
; |τ∗| > 1

dv∗

dy∗
= 0; |τ∗| ≤ 1.

(6)

The boundary conditions become:

v∗|y∗=0 = U∗; v∗|y∗=1 = 0. (7)

The velocity profiles (see Appendix A for details) can
be computed from the governing equation and the asso-
ciated boundary conditions, and can be categorized into
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three modes: (i) a one-region mode, (ii) a two-region
mode and (iii) a three-region mode [43, 44]. (i) The one-
region mode occurs when the pressure gradient is small
and the velocity of the boundary is relatively large. The
fluid stress is larger than the yield stress of the Bingham
fluid across the entire slot, so MR chains cannot form.
The velocity profile in the one-region mode is identical
to that of a Newtonian fluid in Poiseuille-Couette flow.
(ii) The two-region mode occurs as the pressure gradient
increases, which increases the slope of the stress distri-
bution. In the region where the fluid stress is smaller
than the yield stress, a plug zone will occur, where MR
chains form and the velocity profile resembles plug flow.
In two-region mode, the plug zone is anchored to the
surface nearest the magnet, whereas in the region at the
opposing surface the MR particles are prevented from
aggregating, similarly to one-region mode. (iii) Finally,
the three-region mode occurs as the pressure gradient in-
creases even further. Under such conditions, the plug
zone will detach from the wall and move to the middle of
the channel, surrounded by Newtonian regions on either
side. Considering these three types of modes for the two
slots in our experimental study, there are four possible
combinations of velocity profiles in this study, as shown
in Fig. 6. The slot closest to the magnet is in the pres-
ence of a higher magnetic field, resulting in a larger yield
stress τLy.

The average velocity of the fluid in the one-region mode
is given by:

v∗ =
1

12
Mn (Ω)Mn (p) +

1

2
U∗. (8)

The average velocity of the fluid in the two-region mode
depends on the sign of Mn(p) and Mn(Ω). When Mn(p)
has the same sign as M(Ω), we have:

v∗ = U∗ − U∗

3

√
2U∗

Mn (Ω)Mn (p)
. (9)

and when Mn(p) has the opposite sign to Mn(Ω), we
have:

v∗ =
U∗

3

√
−2U∗

Mn (Ω)Mn (p)
. (10)

The average velocity of the fluid in the three-region mode
is given by:

v∗ =
1

12
Mn (Ω)Mn (p)

(
1− 3

|Mn (p) |
+

4

|Mn (p) |3

)
+
U∗

2
± 1

Mn(Ω)(2∓Mn(p))2
.

(11)

The transition pressure from the one-region mode to the
two-region mode and from the two-region mode to the
three-region mode can also be computed and are found

FIG. 7. Experimental and theoretical results. Pressure dif-
ferential (psi) as a function of rotational speed (rps), for flow
rates from 0.1 ml/min to 0.4 ml/min. Each point corresponds
to the mean from three iterations of experiments, with error
bars indicating standard deviation. i : one-region mode; ii :
two-region mode; iii : three-region mode.

FIG. 8. Experimental data and theoretical results of two lim-
iting cases of Poiseuille flow of MR fluids (a) as Bingham fluid
when rotational speed of the disk is zero, and (b) in one-region
mode when the rotational speed is sufficiently large. Flow
rates (ml/min) as a function of pressure differential (psi).

to be quantities Mn(p)R1 and Mn(p)R2 respectively:

Mn(p)R1 =
2

Mn(Ω)
(12)

Mn(p)R2 = 2 +
1

Mn(Ω)
+

√
1

Mn(Ω)
2 +

4

Mn(Ω)
.(13)

B. Experimental Results for MR Fluid in
Poiseuille-Couette Flow

We investigate the performance of the dynamic seals
using the experimental setup shown in Fig. 4 (b). The
flow rate is controlled by a syringe pump, ranging from
0.1 ml/min to 0.8 ml/min. For each given flow rate, the
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rotational speed of the motor is varied from 0 rps to 0.8
rps. The pressure differential is given by two pressure
sensors located at the inlet and the outlet. The results are
shown in Fig. 7 (a). As the rotational speed increases, the
pressure differential decreases abruptly from the static
state to the dynamic state, and settles to a steady state.

We apply numerical methods to calculate the velocity
profile in the rectangular cross-section, and integrate the
velocity profile in the cross-section to get the total flow
rate. We first consider Couette flow as a simple example.
In the case of two parallel infinite plates, the velocity de-
creases linearly away from the moving wall. In the exper-
imental setup, as shown in Fig. 4 and Fig. 5, the aspect
ratio h : δ = 4 mm: 2 mm= 2 : 1 with a clearance 0.127
mm due to the gasket for sealing. In our experiments, a
significant pressure loss occurs due to the Poiseuille flow
between the sensors and the inlet and outlet, four 90◦-
elbows and the cavities which connect the pitot tube and
the two tubings (see Appendix B).

A comparison of our mathematical Bingham model
with experimental measurements is shown in Fig. 8. One
limiting condition occurs when the rotational speed is
zero, which corresponds to the classic Poseuille flow for a
Bingham fluid. In our experiment, this condition can be
treated as two slots for Bingham Poiseuille flow in par-
allel with different yield stresses τy(θ) (Fig. 8 (a)). The
other limiting condition occurs when the rotational speed
of the disk is fast enough so that the flow in both slots
are in the one-region mode. Thus, the velocity profile of
MR fluid is identical as that of Poiseuille-Couette flow
of a Newtonian fluid. Because the directions of the Cou-
ette flow are opposite in the parallel slots, the flow rate
induced by Couette flow is canceled out. Thus, the flow
rate as a function of pressure gradient is linear, as shown
in Fig. 8 (b).

C. Optimal Magnetic Field Intensity

Regarding the design of external gear pumps, we con-
sider two performance metrics which evaluate the per-
formance of dynamic seals. The first performance met-
ric is given by the ratio of volumetric flow rate loss to
the nominal volumetric flow rate of the gear pump. The
nominal volumetric flow rate is proportional to the an-
gular speed of the gear. Therefore, the dimensionless

group u∗ =
v

RΩ
can be used to characterize the seal-

ing effectiveness of MR fluid, where v is the average ve-
locity of the back-flow rate in the clearance of the gear
pump, RΩ is proportional to the volumetric flow rate
pumped by the gear pump. As shown in Fig. 9 (a), to
achieve higher effectiveness, u∗ should be designed to be
as small as possible. Mn(p)R1 is the transition point of
the velocity profile from the one-region mode to the two-
region mode for both slots, because Mn(p)RS1 equals
Mn(p)RL1. Mn(p)SR2, Mn(p)LR2 are the transition
points of the velocity profile from the two-region mode
to the three-region mode for the slots in the presence of

FIG. 9. (a) Ratio of volumetric loss to the nominal flow rate
of a gear pump as a function of Mn(p), for Mn(Ω) equal 0.5,
1, 1.5, 2, 2.5. The arrow indicates the direction Mn(Ω) in-
creases. (b) Friction factor as a function of Mn(p), for Mn(Ω)
equal 0.5, 1, 1.5, 2, 2.5. The arrow indicates the direction
Mn(Ω) increases. i : one-region mode; ii : two-region mode;
iii : three-region mode. The dot lines indicate the transition
for the velocity profile to transit from one mode to another.

larger and smaller magnetic field intensity respectively.
We find that when Mn(p) is larger than Mn(p)SR2, u∗

dramatically increases. Thus, to ensure a small volumet-
ric loss, Mn(p) should be smaller than Mn(p)SR2.

The second performance metric comes from the energy
loss in both of the slots, which can be characterized by the

friction factor f =
p

1
2ρv

2
. To achieve the optimal sealing

performance, the friction factor needs to be maximized,
indicating that the back-flow between the gear teeth and
the housing will experience as much energy loss as possi-
ble. As shown in Fig. 9 (b), the maximum friction factor
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FIG. 10. Optimal magnetic field intensity (T). The solid lines
indicate the magnetic field intensity distribution from 0.01 T
to 0.03 T that one should select to minimize volumetric losses
at a given rotational speed and pressure drop. Shaded area
indicates the percentage of the reduction in volumetric loss
from Φ = 90% (white) to 0% (black).

can be achieved around Mn(p)SR2, which is the Mn(p) of
the transition point from two-region mode to three-region
mode for the slot in presence of the smaller magnetic field
intensity.

Upon considering the two performance metrics, we find
that the optimal sealing performance can be achieved at
the transition of the two-region mode to the three-region
mode. Thus, at any given nominal work condition of the
external gear pump, the magnetic field intensity can be
tuned to make the yield stress satisfy Eq. (13), which can
be expressed explicitly by the following equation:

τy =
1

2

(
dp

dx
δ

)2

− 2µ
dp

dx
RΩ

dp

dx
δ −

√
2µ
dp

dx
RΩ

. (14)

The relationship between magnetic field intensity (B)
and yield stress (Pa) of MR fluid has been studied in
prior studies: [26]

lgB =
4

7
lg τy +

4

7
lg
(
9× 10−4

)
, (15)

where B is the magnetic field intensity, τy is the yield
stress.

We define a ratio Φ as a metric for the effectiveness of
dynamic seals using MR fluid:

Φ =
QOil −QMR

QOil
, (16)

where QOil is the volumetric loss using the Newtonian
pump oil, QMR is the volumetric loss using MR fluid
with the same viscosity as the Newtonian pump oil.

The optimal magnetic field intensity is shown in
Fig. 10. It suggests that dynamic sealing using rheo-
logical fluid will achieve the optimal sealing effectiveness
under a high pressure gradient and relatively low rota-
tional speed, which would reduce the volumetric loss by
over 90%.

IV. CONCLUSION

Volumetric loss accounts for a large portion of the ex-
tremely low efficiency of small-scale gear pumps. In order
to reduce the volumetric loss without introducing larger
friction, tighter manufacturing tolerances, or vulnerabil-
ity to vibrations, we introduced a method where mag-
netorheological fluid is activated in the vicinity of the
clearance between gear and housing to create a dynamic
seal.

We verified the Bingham fluid model for MR fluids,
and have accounted for the combined Poiseuille-Couette
flow at low Reynolds number in the application of sealing
in external gear pumps. We furthermore found four pos-
sible combinations of the velocity profiles given by two
modified Mason numbers Mn (p) and Mn (Ω).

We determined the dependence of optimal magnetic
field intensity on the pressure gradient and rotational
speed of the gear. The optimal magnetic field intensity
corresponds to the transition for the velocity profile of
MR fluid to transit from the three-region mode to the
two-region mode. Our dynamic sealing method using
MR fluid reduces volumetric loss above 90% when the
pressure gradient is large; that is, when the hydraulic
actuation system is under heavy load at low speed. Be-
sides application for reducing the volumetric loss in the
clearance, our method can also be applied for reducing
the loss between the housing and the sides of gears for
all types of gear pumps.
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Appendix A: Velocity profiles

Velocity profiles can be obtained analytically for all
of the three types of modes for Bingham fluids. Based
on Eqn. 6, the dimensionless form of the velocity profile
v∗(y∗) can be solved for by separating the variables and



8

integrating from y∗ = 0 to y∗ = 1:

v∗(y∗) =− 1

2
Mn(Ω)Mn(p)y∗2 + U∗

−Mn(Ω)

(
τ∗(y∗)|y∗=0 + sgn

(
du∗

dy∗

))
y∗

(A1)

v∗(y∗) =− 1

2
Mn(Ω)Mn(p)y∗2 +

1

2
Mn(Ω)Mn(p)

−Mn(Ω)

(
τ∗(y∗)|y∗=0 + sgn

(
du∗

dy∗

))
y∗

+Mn(Ω)

(
τ∗(y∗)|y∗=0 + sgn

(
du∗

dy∗

))
.

(A2)

The velocity profile v∗(y∗) close to and further away from
the moving boundary are given by Eqn. A1 and Eqn. A2
respectively. The unknowns are the shear stress at the
boundary τ∗(y∗)|y∗=0 and the locations which determine
the region for the plug zone.

In the one-region mode, there is no plug zone. The
velocity profile of a Bingham fluid is identical to that
of a Newtonian fluid (see Fig. 6 (a) and (e)). When
0 ≤ y∗ ≤ 1,

v∗(y∗) =− 1

2
Mn(Ω)Mn(p)y∗2

+ (−U∗ +
1

2
Mn(Ω)Mn(p))y∗ + U∗.

(A3)

Integrating the velocity v∗(y) over the cross-section gives
the total flow rate. The average velocity of the fluid in
the one-region mode is given by Eqn. 8.

Similarly, the velocity profile can be explicitly obtained
in the two-region mode and three-region mode. For ex-
ample, in the two-region mode, the Bingham model pre-
dicts two types of velocity profiles, depending on the di-
rection of the pressure gradient and the moving bound-
ary, as shown in Fig. 6 (b) (or(c)) and (f). Using
the local frame xyz, we require that the shear stress
τ = ±τy (τ∗ = ±1) at the boundary of the plug
zone. In Fig. 6 (b) or (c), Mn(Ω) ∗ Mn(p) < 0 and
the plug zone is attached to the stationary boundary.
When

√
−2U∗/Mn(Ω)Mn(P ) ≤ y∗ ≤ 1, v∗ = 0; when

0 ≤ y∗ <
√
−2U∗/Mn(Ω)Mn(P ),

v∗(y∗) =− 1

2
Mn(Ω)Mn(p)y∗2

+
1

2

√
−2Mn(Ω)Mn(p)y∗ + U∗.

(A4)

In Fig. 6 (f), Mn(Ω) ∗ Mn(p) < 0 and the plug
zone is attached to the moving boundary. When 0 ≤
y∗ ≤ 1 −

√
2U∗/Mn(Ω)Mn(P ), v∗(y∗) = U∗; when

FIG. 11. Magnetic field intensity (T) as a function of θ (de-
gree). Each point corresponds to the mean from three it-
erations of experiments, with error bars indicating standard
deviation. θ is defined in Fig. 5. For 40◦ < θ < 90◦, the error
bars are smaller than the data point markers.

1−
√

2U∗/Mn(Ω)Mn(P ) < y∗ ≤ 1,

v∗(y∗) =− 1

2
Mn(Ω)Mn(p)y∗2

−Mn(Ω)Mn(p)(1−
√

2U∗/Mn(Ω)Mn(P ))y∗

−Mn(Ω)Mn(p)(1−
√

2U∗/Mn(Ω)Mn(P ))

− 1

2
Mn(Ω)Mn(p).

(A5)

Integrating the velocity v∗(y) over the cross-section gives
the total flow rate. The average velocity of the fluid in
the two-region mode is given by Eqn. 9 and Eqn. 10.

Appendix B: Parameter approximation and
simulation

In order to determine the yield stress of the Bingham
fluid as a function of θ (see Fig. 5) along the annular
channels, we used a Hall effect Gauss/Tesla meter (Sypris
5100s) to measure the magnetic field intensity at 76 lo-
cations uniformly distributed along the annular channels
at r = 51 mm. The sensitivity of the Gauss/Tesla me-
ter is 0.001 T. To estimate the yield stress, we used the
maximum absolute measured value as the magnitude of
the magnetic field at each location (Fig. 11). Thus, in
our simulation, we divided the annular channel into 76
elements. In each element, we approximated the mag-
netic field intensity to be constant; the yield stress τy
was determined by the local magnetic field intensity as a
function of θ [26].

In our simulation, we utilized two slots to approximate
two annular channels, given that the aspect ratio δ/R = 2
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mm/50 mm � 1. To test this approximation, we com-
pared the ratio of the flow rate in a slot Qs to the flow
rate in an annular channel Qa, subject to the same pres-
sure gradient and boundary condition. In the one-region
mode, the velocity profile of a Bingham fluid is identical
to that of a Newtonian fluid. In both cases, the flow rate
in the one-region mode can be obtained analytically as
the following:

Qs =
1

µ

(
−∂p
∂x

)
(R2 −R1)3

12
+

1

2
(Ω1R1+Ω2R2)(R2−R1),

(B1)
where Qs is the flow rate of a Bingham fluid confined in
a slot, µ is the viscosity of the MR fluid when no exter-
nal magnetic field is present, ∂p∂x is the pressure gradient,
R1 and R2 are the radii of the inner cylinder and outer
cylinder respectively, Ω1 and Ω2 are the rotational speed
of the inner cylinder and outer cylinder respectively. The
flow rate of a Bingham fluid confined in an annular chan-
nel in the one-region mode is given by:

Qa =
1

µ

∂p

∂θ

[
1

4
r2 ln r − 1

4
r2
]r=R2

r=R1

+
1

2

(Ω1R
2
1 − Ω2R

2
2)− (α1R1 − α2R2)

R2
1 −R2

2

r2|R2

R1

+
(Ω1 − Ω2)− (α1/R1 − α2/R2)

1/R2
1 − 1/R2

2

ln r|R2

R1
,

(B2)

where

α1 =
1

µ

∂p

∂θ

(
1

2
R1 lnR1 −

1

4
R1

)
α2 =

1

µ

∂p

∂θ

(
1

2
R2 lnR2 −

1

4
R2

)
.

(B3)

We define a ratio ε as a metric for the error to account for
the substitution of a slot channel for an annular channel:

ε =
Qs −Qa
Qa

× 100%. (B4)

The ratio Qs/Qa as a function of the pressure gradient
and the rotational speed of the inner disk is plotted in
Fig. 12. As the pressure gradient increases, the error of
the approximation approaches 2.0%. As the rotational
speed of the disk increases, the error of the approxi-
mation decreases. Within the range of parameters used
in our experiments, the error was within 2.0%. In this
study, we opted to use slot approximation, because in the
Cartesian coordinates, the flow rates of a Bingham fluid
in Poiseuille-Coutte flow in all circumstances have ana-
lytical forms, which highlight the fluid physical behavior
governed by the two Mason numbers Mn(Ω) and Mn(p).

In our experiments, the total flow rate of the two slots
were controlled by the syringe pump. Four groups of
experiments were conducted with flow rates controlled to
be 0.1 ml/min, 0.2 ml/min, 0.3 ml/min and 0.4 ml/min.

FIG. 12. Contour plot of the error ε (%) of using a slot ap-
proximation as a function of the pressure differential (psi) and
rotational speed (rps).

In each group of experiments, we varied the rotational
speed of the disk, ranging from 0 rps to 0.8 rps. In our
simulation, to keep the total flow rate of the two slots
to be constant, the pressure difference between the inlet
and the outlet needed to be obtained as a function of
the rotational speed of the disk. As shown in Eqn. 11,
no explicit form of p∗ as a function of Mn(Ω) can be
obtained. We generated the total flow rates as a function
of Mn(Ω) ranging from 0 rps to 0.8 rps and of pressure
difference p ranging from 0 psi to 0.2 psi, and calculated
the total flow rate for each combination of Mn(Ω) and p.
We then explored the data set and searched for the total
flow rate which was closest to 0.1 ml/min, 0.2 ml/min, 0.3
ml/min and 0.4 ml/min, and recorded the corresponding
combination of the pressure difference and the rotational
speed of the disk.

We take a numerical approach to calculate the velocity
profile in the rectangular cross-section, and integrate the
velocity profile in the cross-section to get the total flow
rate. We first consider Couette flow as a simple example.
In the case of two parallel infinite plates, the velocity de-
creases linearly away from the moving wall. In our exper-
imental setup, as shown in Fig. 4 and Fig. 5, the channels
are annular with a rectangular cross-section. The aspect
ratio h : δ = 4 mm: 2 mm= 2 : 1 with a clearance 0.127
mm due to the gasket for sealing. We applied a finite
element method to solve the boundary value problem of
the Couette flow using Persson’s code [45]. The ratio
of the average velocity of the Couette flow confined in
the channels of our experimental setup to that confined
in two parallel infinite plates over the same height h is
0.241 : 0.5 = 0.482. Pressure losses between the sen-
sors and the inlet and outlet were taken into account.
In our experiments, a significant pressure loss occurs due
to the Poiseuille flow between the sensors and the inlet
and outlet, four 90◦-elbows and the cavities which con-
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FIG. 13. Three types of models for MR fluids. (a) Shear
stress τ versus shear rate γ̇ for three types of viscoplastic
models. (b) Experimental and theoretical results of Poiseuille
flow of MR fluids. Pressure differential (psi) versus flow rate
(ml/min).

nects the pitot tube and the two tubings. The distance
between the pressure sensor and the outlet of the frame
is L1 = 50 mm, the distance between the outlet of the
frame and the outlet of the channel is L2 = 38 mm; the
inner diameter of the tube is d1 = 3.0 mm. The length
of the tube fitting is L3 = 14 mm; the inner diameter of
the tube fitting is d2 = 2.1 mm. The Reynolds number
Red = ρUd

µ ∼ 10−3 � 1, so inertial effects are negli-

gible. For elbows, the pressure loss is estimated from
an empirical equation using an equivelant length method
[46]. In particular, for 90◦-elbows, the equivalent length
is Leq = 16d [46]. Hence, the additional pressure drop
Ploss due to the tubing, the tube fitting and the elbows
can be estimated as:

Ploss =
128µQ

π

(
2L1 + 2L2 + 4Leq

d41
+

2L3

d42

)
, (B5)

where µ is the viscosity of the MR fluid when no external
magnetic field is present, and Q is the flow rate controlled
by the syringe pump.

Appendix C: Other models for MR fluids

Finally, we considered two alternate constitutive re-
lationships, the Casson model and the Herschel-Bulkley
model for MR fluids. Casson model is widely used for
particle-laden fluids. In cardiovascular investigations, the
Casson fluid model is capable of redicting the rheological
behavior of blood in narrow arteries at low shear rates
[47–50]; in the oil industry, researchers apply a modified
Casson equation to model the rheological behavior of a
waxy crude oil [51]. The constitutive relationship of Cas-

son model is given by:

√
τyx =

√
τy +

√
µγ̇; |τ | > τy

γ̇ = 0; |τ | ≤ τy,
(C1)

where τ is the shear stress, τy is the yield stress, µ is
the plastic viscosity, γ̇ is the shear rate (see Fig. 13 (a)).
Using the Cartesian coordinates xyz in Fig. 5, the veloc-
ity profile of the Poiseuille flow of a Casson fluid can be
obtained analytically. When 0 ≤ y∗ ≤ 1/2− 1/Mn(p),

v∗(y∗) =− Mn(Ω)

2Mn(p)
(Mn(p)y∗ − τ∗0 )

2

+
4Mn(Ω)

3Mn(p)
(−Mn(p)y∗ + τ∗0 )

3
2

− Mn(Ω)

Mn(p)
(Mn(p)y∗ + τ∗0 )

+
Mn(Ω)

Mn(p)

(
τ∗20
2
− 4τ∗0

3
2

3
+ τ∗0

)
,

(C2)

where τ∗0 is the dimensionless shear stress at y∗ = 0. Sim-
ilarly, the velocity profile v∗(y) can be computed when
1/2− 1/Mn(p) ≤ y∗ ≤ 1.

The Herschel-Bulkley model provides a generalized
model for a non-Newtonian fluid, especially for shear-
thinning and shear-thickening fluids with a yield stress
[52, 53]. The constitutive relationship is given by:

τyx = τy +Kγ̇n; |τ | > τy

γ̇ = 0; |τ | ≤ τy,
, (C3)

where K is the consistency index, and n is the powerlaw
index (see Fig. 13 (a)). Using the Cartesian coordinates
xyz in Fig. 5, the velocity profile of the Poiseuille flow
of a Herschel-Bulkley fluid can be obtained analytically.
When 0 ≤ y∗ ≤ 1/2− 1/Mn(p),

v∗(y∗) =− n

n+ 1

Mn(Ωk)

Mn(p)
(Mn(p)y∗ + τ∗0 − 1)

n+1
n

+
n

n+ 1

Mn(Ωk)

Mn(p)
(τ∗0 − 1)

n+1
n ,

(C4)

where τ∗0 is the dimensionless shear stress at y∗ = 0,
Mn(Ωk) is redefined as:

Mn(Ωk) =
(τy
K

) 1
n δ

RΩ
. (C5)

Similarly, the velocity profile v∗(y) can be solved for when
≤ 1/2− 1/Mn(p) ≤ y∗ ≤ 1.

In order to test the alternative models for MR fluids,
we compared the theoretical results with the experimen-
tal data under Poiseuille flow, as shown in Fig. 13 (b).
The theoretical results predicted by Casson model devi-
ate significantly from the experimental data. Using the
Herschel-Bulkley model, we find n = 0.985, K = 0.85µ
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by fitting. The powerlaw index n ≈ 1 indicates that the
MR fluid in our study does not exhibit a significant shear-

thinning or shear-thickening behavior. In light of these
results, we retained the Bingham model for MR fluids in
this investigation.
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