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We propose nonreciprocal phonon lasing in a coupled cavity system composed of an optome-
chanical and a spinning resonator. We show that the optical Sagnac effect leads to significant
modifications in both the mechanical gain and the power threshold for phonon lasing. More im-
portantly, the phonon lasing in this system is unidirectional, that is the phonon lasing takes place
when the coupled system is driven in one direction but not the other. Our work establishes the
potential of spinning optomechanical devices for low-power mechanical isolation and unidirectional
amplification. This provides a new route, well within the reach of current experimental abilities, to
operate cavity optomechanical devices for such a wide range of applications as directional phonon
switches, invisible sound sensing, and topological or chiral acoustics.

PACS numbers: 42.50.-p, 03.75.Pp, 03.70.+k

I. INTRODUCTION

Cavity optomechanics (COM) [1–3] is playing an in-
creasingly important role in making and steering on-chip
devices, such as long-lived quantum memory [4], trans-
ducers [5–7], motion sensing [8–10], and phonon lasing
[11–18]. Phonon lasing, or coherent mechanical amplifi-
cation, exhibits similar properties as those of an optical
laser, such as threshold, gain saturation, and linewidth
narrowing in the lasing regime [19–22], as demonstrated
in experiments with trapped ions, nano-beams, super-
lattices, resonators, or electromechanical devices [11–18].
It provides coherent acoustic sources to drive phononic
devices for practical applications in e.g., audio filtering,
acoustic imaging, or topological sound control [23–27].
COM-based ultralow-threshold phonon lasers, featuring
a continuously tunable gain spectrum to selectively am-
plify phonon modes, from radio frequency to microwave
rates [16–18], provide a particularly attractive setting to
explore quantum acoustic effects, such as two-mode me-
chanical correlations [14] or phononic sub-Poissonian dis-
tributions [15].

In parallel, nonreciprocal optics [28, 29] has emerged
as an indispensable tool for such a wide range of appli-
cations as invisibility cloaking, noise-free sensing, direc-
tional lasing, or one-way optical communications [30–35].
Directional transmission of light has been achieved by us-
ing optical nonlinearities or dynamically-modulated me-
dia [36–43]. As a crucial element in signal readout and in-
formation processing, directional optical amplifiers (with
minimal noises from the output port) have also been pro-
posed and studied, in microwave circuits [44, 45] or a non-
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Hermitian time-Floquet device [46]. In a recent experi-
ment, a reconfigurable optical device was demonstrated
[47], having switchable functions as either a circulator
or a directional amplifier [48, 49]. Directional amplifica-
tion of microwave signals has also been experimentally
demonstrated in a multi-mode COM system [50]. These
abilities, allowing directional transmission and amplifica-
tions of optical signals [51–55], are fundamental for the
emerging fields of chiral quantum optics and topological
photonics [56].

As in optical systems [44–49], directional emissions and
amplifications of phonons are particularly important in
mechanical engineering [57–66], such as acoustic sens-
ing or computing [23–26]. Here we propose a strategy
to achieve a nonreciprocal mechanical amplifier by cou-
pling a COM resonator to a purely optical spinning res-
onator. We show that by exploiting the optical Sagnac
effect [67–69], both the mechanical gain and the phonon-
lasing threshold can be significantly altered. In particu-
lar, by driving the COM resonator from the left or the
right side, coherent emission of phonons is enhanced or
completely suppressed, enabling a highly-tunable non-
reciprocal phonon laser. This provides a key element
for applications of COM devices in e.g., chiral quantum
acoustics or topological phononics [25, 26].

We note that very recently, by spinning a whispering-
gallery-mode (WGM) optical resonator, nonreciprocal
transmission with 99.6% rectification was observed for
photons, without any magnetic field or optical nonlinear-
ity [70]. By spinning a shape-deformed resonator, purely-
optical effects such as mode coupling [71] and broken
chiral symmetry [72] have also been revealed. Such spin-
ning devices also can be useful in nano-particle sensing
[73] or single-photon control [74]. For sound, excellent
isolation was demonstrated even earlier by using a circu-
lating fluid [75]. In recent experiments, chiral mechanical
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FIG. 1: (a) Schematic illustration of a nonreciprocal phonon
laser composed of a spinning optical resonator coupled to a
COM resonator. For the CCW rotation, driving the system
from the left (with ∆sag > 0) enhances the mechanical gain.
The inset shows the equivalent two-level system model for
phonon lasing where the transitions between supermodes are
mediated by phonons. (b) Driving the system from the right
(with ∆sag < 0) suppresses or even completely blocks the
phonon-lasing process.

cooling was also realized via nonreciprocal Brillouin scat-
tering [58, 62–64]. Here, as another necessary element,
we show that nonreciprocal amplifications of phonons can
be achieved by utilizing optical Sagnac effect induced by
a spinning resonator [70]. This opens up a new route
to operate nonreciprocal COM devices for applications
in e.g., backaction-immune force sensing [11] and chiral
acoustic engineering [76, 77].

II. MODEL AND SOLUTIONS

We consider two coupled resonators, one of which
is purely optical and the other supports a mechanical
breathing mode (frequency ωm and effective mass m)
when pumped by light at frequency ωL and amplitude
εL. Evanescent coupling between these resonators ex-
ists in the 1550 nm band, and the laser is coupled into
and out of the resonator via a waveguide (see Fig. 1).
The two resonators share the same resonance frequency
ωc for the stationary case. The decay rates of the COM
resonator and the optical resonator are γ1 and γ2, respec-
tively, which are related to the optical quality factors Q1

and Q2, i.e., γ1,2 = ωc/Q1,2. This compound system,
utilized to observe phonon lasing experimentally [16, 17],
can be further tuned by spinning the optical resonator
with speed Ω, due to the Ω-dependent optical Sagnac ef-
fect. An immediate consequence of this effect is that for
the counter-clockwise (CCW) rotation denoted by Ω > 0,
phonon lasing can be enhanced or blocked by driving the
system from the left or the right (or equivalently, for the
clockwise (CW) rotation denoted by Ω < 0, the phonon
lasing is enhanced by driving the system from the right
and it is blocked when the drive is from the left). This, as
aforementioned, indicates a highly-tunable nonreciprocal
phonon laser by flexibly tuning the rotation speed and
drive direction.
In a spinning resonator, the CW or CCW optical

mode experiences different refractive indices [70], i.e.,

n± = n[1 ± r2Ω(n
−2 − 1)/c], where n and r2 denote,

respectively, the refractive index and the radius of the
resonator, and c is the speed of light in vacuum. As a re-
sult, the frequencies of the CW and CCW modes of the
resonator experience Sagnac-Fizeau shifts [78, 79]. For
light propagating in the same, or opposite, direction of
the spinning resonator, we have

ωc → ωc ∓ |∆sag|,

with

∆sag = ±Ω
nr2ωc

c

(

1− 1

n2
− λ

n

dn

dλ

)

, (1)

where λ = c/ωc is the optical wavelength. The dispersion
term (λ/n)(dn/dλ) denotes the Lorentz correction to the
Fresnel-Fizeau drag coefficient, characterizing the rela-
tivistic origin of the Sagnac effect [78]. This term, rela-
tively small in typical materials, is confirmed to be safely
ignored in the recent experiment [70]. In such a device,
light is dragged by the spinning resonator, leading to non-
reciprocal transmissions for optical counter-propagating
modes (see Ref. [70] for more details). Below we show
that for our COM system, this leads to distinct changes
of the radiation pressure on the mechanical mode, hence
resulting in a nonreciprocal phonon laser.
As shown in Fig. 1, spinning the resonator along the

CCW direction and driving the device from the left or the
right, induces an optical red or blue shift, i.e., ∆sag > 0
or ∆sag < 0. The Hamiltonian of the system, in a frame
rotating at the frequency ωL, can be written as (~ = 1)

H = H0 +Hint +Hdr,

H0 = −∆La
†
1a1 − (∆L +∆sag)a

†
2a2 + ωmb†b,

Hint = −ζx0a
†
1a1(b

† + b) + J(a†1a2 + a†2a1),

Hdr = i(εLa
†
1 − ε∗La1). (2)

H0 is the free Hamiltonian where the first and second
terms describe the optical modes in the COM resonator
and the spinning resonator, respectively; and the third
term denotes the energy of the mechanical mode. Hint

is the interaction Hamiltonian where the first term de-
scribes the coupling between the optical and mechanical
mode in the optomechanical resonator; and the second
term describes the coupling between the optical modes
of the resonators. Note that ∆L = ωL − ωc is the detun-
ing between the drive laser and the resonance frequency
of the resonator, a1 and a2 denote the optical annihila-
tion operators of the resonators (coupled with the optical

strength J), x0 =
√

~/2mωm, b is the mechanical anni-
hilation operator, ζ = ωc/r1 denotes the COM coupling
strength, and r1 is the radius of the COM resonator. Fi-
nally, Hdr denotes the drive which is fed into the coupled
resonator system through the waveguide (see Fig. 1), with
the driving amplitude

εL =
√

2γ1Pin/~ωL,
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and the input power Pin.
The Heisenberg equations of motion of this compound

system are then written as

ȧ1 = (i∆L − γ1)a1 + iζx0(b+ b†)a1 − iJa2 + εL,

ȧ2 = [i(∆L +∆sag)− γ2]a2 − iJa1,

ḃ = −(iωm + γm)b + iζx0a
†
1a1. (3)

Here, γm is the damping rate of the mechanical mode.
We remark that as already confirmed in the experiment
on optomechanical phonon laser [16], for a strong pump
field, the quantum noise terms can be safely ignored,
if one only concerns about the mean-number behaviors
(i.e., the threshold feature of the mechanical gain or the
phonon amplifications). Setting all the derivatives of
Eq. (3) as zero, the steady-state solutions of the system
can be readily derived as

a1,s =
εL

γ1 − (i∆L + ζxs) + J2/[γ2 − i(∆L ± |∆sag|)]
,

a2,s =
Ja1,s

∆L ± |∆sag|+ iγ2
, bs =

ζx0|a1,s|2
ωm − iγm

, (4)

where xs = x0(bs + b∗s) is the steady-state mechanical
displacement. Combining these expressions gives the bal-
ance equation of the radiation and spring forces

m(ω2
m + γ2

m)xs = ~ζ|a1,s|2.

The displacement xs is determined from the optical den-
sity |a1,s|2 inside the COM resonator, which clearly de-
pends on ∆sag (see also Fig. 2, e.g., both |a1,s|2 and xs

become significantly different for ∆sag > 0 or ∆sag < 0).
Also the ratio η of the steady-sate mechanical displace-
ment xs for spinning and no spinning the resonator is
given by

η>,< ≡ xs(∆sag > 0, < 0)

xs(Ω = 0)
.

In close analogy to an optical laser, a coherent emission
of phonons can be achieved with compound resonators
through inversion of the two optical supermodes [16, 17].
This leads to a phonon laser at the breathing mode with
frequency ωm, above the threshold power Pth ∼ 7µW,
according to Grudinin et al. [16].

By using the supermode operators a± = (a1±a2)/
√
2,

H0 and Hdr in Eq. (2) can be written as

H0 = ω+a
†
+a+ + ω−a

†
−a− + ωmb†b,

Hdr =
i√
2
[εL(a

†
+ + a†−)−H.c.], (5)

with the supermode frequencies

ω± = −∆L − 1

2
∆sag ± J.

Under the rotating-wave approximation [16, 20], the in-
teraction Hamiltonian can be written as

Hint =− ζx0

2
(a†+a−b+ b†a†−a+)

+
∆sag

2
(a†+a− + a†−a+). (6)

Besides the first term which describes the absorption and
emission of phonons (as in a conventional COM system)
[16], Hint in Eq. (6) includes an additional Ω-dependent
term which implies that the coupling between the opti-
cal supermodes depends on the Sagnac effect. The second
term in Eq. (6) is the reason for the striking modifications
in the phonon-lasing process, which is very different from
the ordinary cases without the coupling of supermodes
[16]. We note that in general, the supermode operators

a± = (a1±a2)/
√
2 are defined for coupled cavities sharing

the same resonant frequency. These operators can still
be used here due to the fact that the Sagnac shift in our
system is much smaller than the optical detuning and the
optical coupling rate. It is possible to introduce another
transformation to diagonalize the two-mode system, such
as that in a recent work on phonon laser [18]. We have
confirmed that, since the Sagnac shift is ∆sag/ωm ≃ 0.1
for Ω = 6 kHz, i.e., much smaller than ∆L and J , this
transformation can be safely reduced to the above oper-
ators as we used.
In the supermode picture, we can define the ladder

operator and population inversion operator of the optical
supermodes as [16]

p = a†−a+, δn = a†+a+ − a†−a−,

respectively. The equations of motion of the system then
become

ḃ =− (γm + iωm)b+
iζx0

2
p,

ṗ =− 2(γ + iJ)p+
i

2
(∆sag − ζx0b)δn

+
1√
2
(ε∗La+ + εLa

†
−), (7)

with γ = (γ1 + γ2)/2. By using the standard procedures
(see Appendix B for more details), we can easily obtain
the mechanical gain, i.e., G = G0 + G, where

G0 =
(ζx0)

2γδn

2(2J − ωm)2 + 8γ2
, (8)

and

G =
|εL|2(ζx0)

2(ωm − 2J)(∆sag + 2∆L)γ

4 [β2 + (2∆L +∆sag)2γ2] [(2J − ωm)2 + 4γ2]
, (9)

with

β ≃ J2 + γ2 −∆2
L +

(ζx0)
2nb

4
−∆sag∆L, (10)
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in consideration of ∆sag ≪ ∆L, J and ζx0/∆L ≪ 1. The
population inversion δn can also be derived as

δn ≃ 2J |εL|2
β2
0 + 4γ2∆2

L

(∆L +∆sag) , (11)

with β0 = β(∆sag = 0). We have confirmed that the con-
dition ζx0/∆L ≪ 1 is valid for the range of parameters
used in this work. However, in the numerical simula-
tions, we have not used this approximation and thus the
presented results are valid for the general case. Different
from the conventional phonon-laser system where both
resonators are stationary [16], besides the term G0, we
also have a new term G that depends on both ∆sag and
∆L. This indicates that by tuning Ω and ∆L together,
the mechanical gain G could be made very different for
∆sag > 0 or ∆sag < 0.
We note that the non-negative mechanical gain G de-

creases the effective damping rate of the mechanical mode
γeff = γm −G. Initially, this leads to heating of the me-
chanical oscillator, and parametric instabilities can oc-
cur for γeff < 0. In this situation, an initial fluctuation
of the mechanical displacement can grow exponentially
until the oscillation amplitude is saturated due to the
nonlinear effects, which results in a steady-state regime
with a fixed oscillation amplitude (i.e., the phonon-lasing
regime) [3, 16]. In practice, the in-phase and quadrature
components of the mechanical motion mode, as well as
its power spectral density, can be experimentally mea-
sured, from which a transition from a thermal state be-
low threshold to a coherent state above threshold can be
demonstrated, as the linear gain is turned on and allowed
to increase until the phonon laser reaches the steady state
[15].

III. NUMERICAL RESULTS AND

DISCUSSIONS

Figure 2(a) shows the steady-state populations of in-
tracavity photons as a function of the optical detun-
ing. As in relevant experiments [16, 70, 80], the pa-
rameter values are taken as: n = 1.48, r1 = 34.5µm,
Q1 = 9.7× 107, r2 = 4.75mm, Q2 = 3× 107, m = 50ng,
γm = 0.24MHz, ωm = 2π × 23.4MHz, Ω = 6 kHz, and
thus ∆sag/ωm ∼ 0.1. It is seen that spinning the res-
onator increases the intracavity photon number |a1,s|2
when ∆sag > 0 or decreases it when ∆sag < 0, com-
pared to the stationary resonator case (Ω = 0). This
change in the intracavity photon number then modifies
the radiation pressure. Thus, we can tune (increase or
decrease) the strength of optomechanical interactions ef-
fectively by tuning the speed and direction of the rotation
of the resonator. Intuitively, this direction-dependent
feature for the intracavity photon number (and also the
resulting radiation pressure) can be well understood by
the motion-induced different refractive indices for the
counter-propagating modes, as demonstrated very re-
cently in a spinning resonator [70] (see also similar phe-
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FIG. 2: (a) The steady-state photon number |a1,s|
2 as a func-

tion of the optical detuning ∆L. The dependence of |a1,s|
2

on the spinning speed Ω is clearly seen. (b) The mechanical
displacement amplification factor η versus ∆L. Parameters
are chosen as Ω = 6kHz, J/ωm = 0.5, and Pin = 10µW.

nomena in a moving optical lattice [81] or in an acoustic
device with a circulating fluid [75]).

Figure 2(b) shows the mechanical displacement ampli-
fication factor η. Note that xs is enhanced in the red de-
tuning regime for ∆sag > 0, or the blue detuning regime
for ∆sag < 0, which is due to the enhanced COM interac-
tion. The amplified displacement indicates an enhance-
ment of the phonon generation.

We show in Fig. 3 the mechanical gain G as a function
of the optical detuning ∆L, for different values of Ω. In
the stationary resonator case (Ω = 0), the peak position
of G is always the same regardless of the direction of
the driving light: we have G > γm around ∆L/ωm ∼ 0.5,
corresponding to a conventional phonon laser in the blue-
detuning regime [16]. In contrast, spinning the resonator
leads to a red or blue shift also for the mechanical gain
G, with ∆sag > 0 or ∆sag < 0, respectively. Due to
these shifts, by tuning ∆L (e.g., ∆L/ωm ∼ 0.45 in the
specific example of Fig. 3), the mechanical gain can be
enhanced for ∆sag > 0, while significantly suppressed
(i.e., G < γm) for ∆sag < 0.

The underlying physics can be explained as follows.
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at ∆L/ωm = 0.45. The other parameters are the same as
those in Fig. 2.

Spinning the resonator results in opposite shifts of the
counter-propagating WGMs, leading to nonreciprocal
light transmission [70]. For the ∆sag > 0 case, the driving
light is in the resonators, inducing an enhanced radiation
pressure, which corresponds to an enhanced population
inversion [see Eq. (11)]. As a result, the mechanical gain
is enhanced. For the ∆sag < 0 case, on the other hand,
the driving light is transmitted out of the resonators,
inducing a weakened radiation pressure, so that the me-
chanical gain is nearly zero, i.e., no phonon lasing. Thus,
our system provides a new route to control the behavior
of phonon lasing.
Once the mechanical gain is obtained, the stimulated

emitted phonon number Nb can be calculated, i.e.,

Nb = exp[2(G− γm)/γm], (12)

which characterizes the performance of the phonon laser.
Figure 4(a) shows Nb with ∆L/ωm = 0.45 and Ω = 6kHz
[corresponding to the maximal value of the mechanical
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FIG. 4: (a) The stimulated emitted phonon number Nb as
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spond to the threshold power Pth, which is determined by the
threshold condition G = γm. (b) Dependence of the isolation
parameter R on the optical detuning ∆L and the rotation
speed Ω. The isolation parameter R can be maximized as
R ∼ 10 dB for ∆L/ωm = 0.45 and Ω = 6kHz [red point
in Fig. 3(a)]. The parameters are J/ωm = 0.5 in (a,b), and
Pin = 10µW in (b).

gain in Fig. 3(a)]. From the threshold condition for the
phonon lasing Nb = 1, i.e., G = γm, we can easily derive
the threshold pump power [16]. For J/ωm = 0.5, we
substitute Eqs. (8) and (11) into the threshold condition,
and then obtain

Pth ≈ 2~γγmωc[M + γ2(2∆L +∆sag)
2]

γ1J(ζx0)2(∆L +∆sag)
, (13)

with

M = (J2 + γ2 −∆2
L −∆sag∆L)

2,

in which we have used |bs|2 ≪ 1 at the threshold. We
can see that the Sagnac effect has a significant impact on
the threshold. For ∆sag > 0, the threshold power can be
reduced to 6.03µW, which is attributed to the enhance-
ment of the mechanical gain. It is obvious that more
phonons can be generated with larger pump powers. For
∆sag < 0, the mechanical gain is blocked at ∆L/ωm =
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0.45, so that a larger input power is needed to achieve the
phonon laser. We note that the threshold power is up to
about 26.6µW for a stationary system (Ω = 0). However,
at the resonance point (∆L/ωm = 0.5), the threshold for
phonon lasing is 6.53µW, which approaches the thresh-
old of about 7µW reported in experiments [16].
An optimal spinning speed should be chosen to obtain a

considerable phonon number. In order to clearly see the
effect of the spinning speed on the stimulated emitted
phonon number, we introduce the isolation parameter
[42, 60]

R = 10 log10
Nb(Ω > 0)

Nb(Ω < 0)
. (14)

Acoustic nonreciprocity can be achieved for R 6= 0 or

Nb(∆sag > 0) 6= Nb(∆sag < 0),

indicating that the spinning COM system is driven from
two different directions.
Figure 4(b) shows R versus the optical detuning and

spinning speed. Nonreciprocity emerges for the two de-
tuning regions around ∆L/ωm ∼ 0.45 and ∆L/ωm ∼
0.55. For ∆L/ωm = 0.5, we have R ∼ 0 implying
a reciprocal system. The nonreciprocity becomes obvi-
ous for the spinning resonator, which is an inevitable
result from the difference between δn(∆sag > 0) and
δn(∆sag < 0). Phonon lasing is favorable to be gener-
ated in the ∆sag > 0 regime and is always suppressed for
∆sag < 0. This brings about the convenience of turning
on or off the phonon lasing just by changing the driving
direction. We note that optical nonreciprocity has been
demonstrated in a pure optical system by spinning the
resonator [70]. In our spinning COM device, nonrecip-
rocal phonon lasing can be realized due to the optical
Sagnac effect, which can change the radiation pressure
in the COM devices.

IV. SUMMARY

In summary, we have studied theoretically the role of
rotation in engineering a nonreciprocal phonon laser. We
show that in our system, consisting of a COM resonator
coupled to a spinning optical resonator [16, 70], the opti-
cal Sagnac effect strongly modifies not only the intracav-
ity optical intensities but also the mechanical gain and
the phonon-lasing threshold. As a result, the thresh-
old pump power can be reduced or raised, depending on
whether the drive is input in the same or opposite di-
rection of the spinning resonator. Our results, i.e., con-
trolling the behavior of a phonon laser by using a spin-
ning resonator, shed new light on engineering COM or
other acoustic devices, such as COM transducers or mo-
tion sensors. In our future works, we will further study
e.g. purely quantum correlations of emitted phonons, in
which quantum noise terms should be included, or a non-
reciprocal phonon laser operating at an exceptional point
[18].
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APPENDIX A: DERIVATION OF THE

HAMILTONIAN

We consider two coupled WGM resonators, as shown in
Fig. 1. One resonator supports a mechanical mode with
frequency ωm and effective mass m, which is pumped by
a driving field at frequency ωL. The other resonator is
purely optical, which can spin. The optical modes in the
COM and optical resonators are denoted as a1 and a2,
respectively.
The two cavities share the same resonance frequency

(denoted as ωc) for the stationary case. The resonance
frequency of the spinning optical resonator can be shifted,
as a result of the Sagnac effect. Therefore, the free Hamil-
tonian describing the optical and mechanical modes can
be written as (~ = 1)

H ′
0 = ωca

†
1a1 + (ωc −∆sag)a

†
2a2 + ωmb†b, (15)

where b is the mechanical annihilation operator, and ∆sag

is the frequency shift induced by the Sagnac effect. For
the resonator spinning along the CCW direction, ∆sag >
0 or ∆sag < 0 corresponds to the driving field from the
left or the right.
In this system, we consider the coupling between the

optical and mechanical mode in the COM resonator, and
the evanescent coupling between the two resonators. The
interaction Hamiltonian can be written as

H ′
int = −ζx0a

†
1a1(b

† + b) + J(a†1a2 + a†2a1), (16)

where ζ = ωc/r1 denotes the COM coupling strength, J

is the optical coupling strength, and x0 =
√

~/2mωm.
The driving field is fed into the COM resonator through
the waveguide. Then the driving Hamiltonian reads

H ′
dr = i(εLe

−iωLta†1 − ε∗Le
iωLta1), (17)

where εL =
√

2γ1Pin/~ωL is the driving amplitude with
the input power Pin and the optical loss rate γ1.
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The total Hamiltonian of the system can be written as

H ′ = H ′
0 +H ′

int +H ′
dr.

By using the unitary transformation

U = e−iωLt(a†
1
a1+a

†
2
a2),

the Hamiltonian H ′ can be transformed into the rotating
frame, i.e.,

H = U †H ′U − iU †∂U

∂t
.

Then we have

H = H0 +Hint +Hdr,

H0 = −∆La
†
1a1 − (∆L +∆sag)a

†
2a2 + ωmb†b,

Hint = −ζx0a
†
1a1(b

† + b) + J(a†1a2 + a†2a1),

Hdr = i(εLa
†
1 − ε∗La1), (18)

where ∆L = ωL − ωc is the detuning of the driving field.
This Hamiltonian sets the stage for our calculations of
the mechanical gain and the threshold power.
We then introduce the supermode operators a± =

(a1 ± a2)/
√
2, which satisfy the commutation relations

[a+, a
†
+] = [a−, a

†
−] = 1, [a+, a

†
−] = 0.

H0 and Hdr in Eq. (18) can be written as

H0 = ω+a
†
+a+ + ω−a

†
−a− + ωmb†b,

Hdr =
i√
2
[εL(a

†
+ + a†−)−H.c.], (19)

with the frequencies ω± = −∆L − 1
2∆sag ± J, and Hint

can be transformed to

Hint =H0
int +H1

int

=− ζx0

2
[(a†+a+ + a†−a−) + (a†+a− + a†−a+)](b

† + b)

+
∆sag

2
(a†+a− + a†−a+). (20)

In the rotating frame with respect to H0, we have

H0
int =− ζx0

2

[

a†+a−be
i(2J−ωm)t + a+a

†
−b

†e−i(2J−ωm)t

+ a†+a−b
†ei(2J+ωm)t + a+a

†
−be

−i(2J+ωm)t
]

+ (a†+a+ + a†−a−)(b
†eiωmt + be−iωmt)

]

.

Under the rotating-wave approximation condition

2J + ωm, ωm ≫ |2J − ωm|,

the terms a†+a−b
†ei(2J+ωm)t, a+a

†
−be

−i(2J+ωm)t and also

(a†+a++a†−a−)(b
†eiωmt+be−iωmt) can be omitted, in com-

parison with the near-resonance terms a†+a−be
i(2J−ωm)t

and a+a
†
−b

†e−i(2J−ωm)t [16]. Therefore, we have a sim-
plified interaction Hamiltonian

Hint =− ζx0

2
(a†+a−b+ b†a†−a+)

+
∆sag

2
(a†+a− + a†−a+). (21)

APPENDIX B: DERIVATION OF THE

MECHANICAL GAIN

In the supermode picture, the equations of motion of
the system can be written as

ȧ+ = −(iω+ + γ)a+ +
i

2
(ζx0b−∆sag)a− +

εL√
2
,

ȧ− = −(iω− + γ)a− +
i

2
(ζx0b

† −∆sag)a+ +
εL√
2
,

ḃ = −(iωm + γm)b +
iζx0

2
a+a

†
−. (22)

We can define the ladder operator and population inver-
sion operator as

p = a†−a+, δn = a†+a+ − a†−a−,

respectively. The equations of the system then read

ḃ =− (γm + iωm)b+
iζx0

2
p,

ṗ =− 2(γ + iJ)p+
i

2
(∆sag − ζx0b)δn

+
1√
2
(ε∗La+ + εLa

†
−). (23)

By setting the time derivatives of a± and p as zero
with γ ≫ γm, we obtain the steady-state values of the
system, i.e.,

p =

√
2(ε∗La+ + εLa

†
−)− i(ζx0b−∆sag)δn

2i(2J − ωm) + 4γ
,

a+ =
εL(2iω− + 2γ + iζx0b− i∆sag)

2
√
2[β − i(2∆L +∆sag)γ]

,

a− =
εL(2iω+ + 2γ + iζx0b

† − i∆sag)

2
√
2[β − i(2∆L +∆sag)γ]

, (24)

with

β =β0 −∆sag

[

∆L +
ζx0

2
Re(b)

]

,

β0 =J2 + γ2 −∆2
L +

(ζx0)
2nb

4
,

and the phonon number nb = b†b. Substituting Eq. (24)
into the dynamical equation of b in Eq. (23) results in

ḃ = (−iωm − iω′ +G− γm)b+D, (25)
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where

ω′ =
(ζx0)

2(2J − ωm)δn

4(2J − ωm)2 + 16γ2

+
(ζx0)

2|εL|2γ2(2∆L +∆sag)

[2(2J − ωm)2 + 8γ2][β2 + (2∆L +∆sag)2γ2]
,

D =
ζx0∆sagδn

4i(2J − ωm) + 8γ

+
iζx0β(γ − iJ)|εL|2

[2i(2J − ωm) + 4γ][β2 + (2∆L +∆sag)2γ2]

+
iζx0γ|εL|2(2∆L +∆sag)(∆L +∆sag)

[2i(2J − ωm) + 4γ][β2 + (2∆L +∆sag)2γ2]
,

and the mechanical gain is G = G0 + G, with

G0 =
(ζx0)

2γδn

2(2J − ωm)2 + 8γ2
, (26)

G =
|εL|2(ζx0)

2(ωm − 2J)(∆sag + 2∆L)γ

4 [β2 + (2∆L +∆sag)2γ2] [(2J − ωm)2 + 4γ2]
,

where δn can be expressed as

δn =
|εL|2 [2J(∆L +∆sag)− γζx0Im(b)− Jζx0Re(b)]

β2 + γ2(2∆L +∆sag)2
.

In consideration of ∆sag ≪ ∆L, J and ζx0/∆L ≪ 1, we
have

δn ≃ |εL|2 [2J(∆L +∆sag)− γζx0Im(b)− Jζx0Re(b)]

β2
0 + 4γ2∆L(∆L −∆sag) + β0∆sag[∆L + ζx0Re(b)]

≃|εL|2 ·
2J∆L − γζx0Im(b)− Jζx0Re(b)− 2J∆sag

β2
0 + 4γ2∆2

L

·
[

1− β0∆sag(2∆L + ζx0Re(b))− 8γ2∆L∆sag

β2
0 + 4γ2∆2

L

]

≃|εL|2[2J∆L − Jζx0Re(b)− γζx0Im(b)]

β2
0 + 4γ2∆2

L

·
(

1 +
2∆sagβ0∆L

β2
0 + 4γ2∆2

L

)

+
2∆sagJ |εL|2
β2
0 + 4γ2∆2

L

≃ 2J |εL|2
β2
0 + 4γ2∆2

L

(∆L +∆sag),

in which we have used β ≃ β0 −∆sag∆L.

APPENDIX C: EXPERIMENTAL FEASIBILITY

OF THE SPINNING RESONATOR

The resonator can be mounted on a turbine, which
spins the resonator, as in a very recent experiment [70].
In this experiment, the resonator with the radius r =
4.75mm can spin with the stability of its axis, reaching
the rotation frequency 3 kHz. In our calculations, the ro-
tation speed is chosen according to this experiment [70].
For example, the Sagnac shift is ∆sag = 14.6MHz for
Ω = 6 kHz, leading to ∆sag/ωm ∼ 0.1.
By positioning the resonator near a single-mode fiber,

the light can be coupled into or out the resonator evanes-
cently through the tapered region. In the device, aero-
dynamic processes lead to a stable resonator-fiber cou-
pling, which can be explained as follows. A fast spin-
ning resonator can drag air into the region between the
cavity and the taper, forming a boundary layer of air.
Due to the air pressure on the surface of the taper facing
the resonator, the taper flies at a height above the res-
onator, which can be several nanometers. If some per-
turbation induces the taper rising higher than the stable
equilibrium height, it floats back to its original position
[70]. The self-adjustment of the taper separation from
the spinning resonator enables critical coupling of light
into the cavity, by which counter-circulating lights ex-
perience optical drags identical in size, but opposite in
sign. This experiment also confirms that the taper did
not touch or stick to the rotating resonator even if the
taper is pushed towards it, which is in contrast to the
situation for a stationary resonator (i.e., the taper can
stick to the resonator through van der Waals forces and
thus needs to be pulled back to break the connection).
Other factors, including intermolecular forces, lubricant
compressibility, tapered-fiber stiffness and wrap angle of
the fiber, may affect the resonator-waveguide coupling.
However, these factors are confirmed to be negligible in
the experiment. In our scheme, the spinning resonator
is coupled with the stationary COM resonator, instead
of the fiber, in which stationary coupling of the two res-
onators can also be achieved.
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