
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Acoustic Illusion Using Materials with Isotropic and Positive
Parameters

Yichao Liu and Sailing He
Phys. Rev. Applied 10, 064036 — Published 14 December 2018

DOI: 10.1103/PhysRevApplied.10.064036

http://dx.doi.org/10.1103/PhysRevApplied.10.064036


Acoustic illusion using materials with isotropic and positive 
parameters 

Yichao Liu1 & Sailing He1, 2,*  
1 National Engineering Research Center for Optical Instruments, Centre for Optical and 
Electromagnetic Research, JORCEP, College of Optical Science and Engineering, East 

Building #5, Zijingang Campus, Zhejiang University, Hangzhou 310058, China 
2 Department of Electromagnetic Engineering, School of Electrical Engineering, Royal 

Institute of Technology (KTH), S-100 44 Stockholm, Sweden 

Acoustic illusion devices are usually designed using transformation optics. In this article, 
a new method is proposed to achieve acoustic illusions without external devices by 
elaborately manipulating the acoustic scattering potential of an object. The proposed method 
in this article is more of a “cosmetic operation” for an object, which modifies the scattered 
acoustic pressure distribution of the object to mimic another object by exchanging their 
scattering potentials in two symmetrical areas in the wave vector domain. The advantage of 
this method is the simplicity of material parameters: only positive isotropic mass density and 
bulk modulus are required, which is impossible in the conventional method of using 
transformation optics due to the complex material requirements (anisotropic and negative 
index parameters). 

I. INTRODUCTION 

Illusion effects, usually exist in rare natural phenomenon, 
have long attracted people’s attention and played a major 
role in science fictions and movies. Artificial illusion 
effects are referred to some techniques people have been 
looking for to make one object conceal itself or resemble 
another object by giving a detector some tricking signals. 
This technique has been staying in the conceptual level 
until transformation optics[1,2] (TO) was proposed, 
especially the pioneer works in illusion optics and 
complementary media[3-5], which show a possible method 
to design conceptual illusion devices using metamaterials. 
TO is a mathematical tool to calculate the electromagnetic 
parameters of one device with predefined functions by 
relating the material parameters and its spatial geometry 
based on the invariance of Maxwell’s equations. Many 
novel optical devices have been designed using TO, such 
as invisibility cloaks[6-12], super-lenses[13-15], 
concentrators[16-18], rotators[16,19], and illusion 
devices[20-23], etc. See reference [24-26] for a review. TO 
has also been used to design novel acoustic devices, such 
as acoustic invisibility cloaks[27-29], acoustic 
concentrators[30], acoustic rotators[31], and acoustic 
illusions[32,33]. The key idea of TO to design illusion 
devices (including acoustic and optical illusion) is using 
complementary media to cancel the scattering of the 
original object and giving the detector a scattering pattern 
of a new object. However, illusion devices designed using 
TO have many difficulties in their real implementation 
because its essential “superlens” part requires some 
negative index metamaterials. 

In addition to the method of TO, there are some other 
mechanics to produce acoustic illusions, and the most 
intuitive case is for a synthesized acoustic signal 
(containing different voices within different frequency 
ranges), different people will hear different voices. This is 
because ears of different people act as acoustic filters with 
different passbands. In the present paper, instead of 
manipulating acoustic signals in the frequency domain, we 

modify as little as possible the material parameters (mass 
density or bulk modulus) in the wave vector domain to 
change the acoustic scattering potential for acoustic 
illusions. There are also some other illusion and cloaking 
methods for acoustic waves, such as scattering 
cancellation[34-36] and Fabry-Pérot resonance[37]. A new 
way to artificially manipulate electromagnetic waves has 
been proposed in 2015 by using spatial Kramers–Kronig 
(KK) media[38], followed by some experimental 
demonstration[39,40] to show a perfect absorber. A similar 
method is adopted for cloaking devices[41]. While for 
acoustics waves, no similar concept has been proposed. In 
the present paper, we propose a method by modifying 
materials in a wave vector space by deriving the related 
theory directly in acoustic wave equation (for ideal fluids) 
for illusion. Note that one advantage of our method is the 
material could have no gain or loss, which simplifies the 
material parameters. 

II. THEORY 

Now we show the design method for acoustic illusions. 
Considering the two-dimensional case. When the material 
parameters (mass density and bulk modulus) have no 
drastic change, the acoustic wave equation is given by 
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where p(ρ) is the total acoustic pressure, k0 is the wave 
vector in the background material, and γρ, γκ are the 
relative mass density and relative compressibility 
coefficient (reciprocal of the relative bulk modulus γκ=1/κr) 
with respect to a reference background, respectively, i.e. 
γρ=ρ/ρ0, κr=κ/κ0, ρ\κ and ρ0\κ0 are the mass density\bulk 
modulus of the material and background, respectively. We 
can rewrite the above equation as 
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where V(ρ) represents the acoustic scattering potential and 
is defined by 

( )= 1V ρ κγ γ −ρ                 (3) 



Assuming the incident acoustic wave is a plane wave 
( ) i

ip e ⋅= ik ρρ with incident wave vector of ki, the scattered 
wave, ps(ρ)= p(ρ) - pi(ρ), can be calculated using Green’s 
function  
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two-dimensional Green’s function. 
Now we simplify the above equation using Born 
approximation, i.e. using pi(ρ′) to replace p(ρ′) in Eq. (4), 
and the far field approximation 
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where ks denotes the scattered wave vector. Then the 
scattered wave can be expressed as 
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From the above equation, we find the scattered wave is a 
cylindrical wave, and the amplitude is determined by
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i sk k ρ . We know the Fourier 

transformation of the scattering potential is 
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Therefore,  
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We can see the amplitude of the far field scattered wave is 
associated with the Fourier components of the scattering 
potential. Therefore, we can control the scattered acoustic 
wave by modifying the relative mass density and bulk 
modulus (the scattering potential) in the wave vector 
domain to give illusion effects. 

Figure 1 shows the basic principle of the above idea to 
create acoustic illusions. Assuming we consider two 
objects: a fish with its acoustic scattering potential V1(x, y) 
(defined in Eq. (3)) in Fig. 1(a), and a squid with its 
acoustic scattering potential V2(x, y) in Fig. 1(f). In the 
wave vector domain, their Fourier components can be 
denoted by V1(kx, ky) and V2(kx, ky), in Fig. 1(b) and Fig. 
1(g), respectively. From Eq. (8) we know for a plane wave 
with incident direction of ki, the amplitude of the scattered 
wave f(ki, ks) = V(ks - ki) can be denoted as a circle with 
its center of (-ki_x, -ki_y) and radius of ki. For a frequency 
band, e.g. k i0~k i1, the scattering amplitude can be denoted 
as a crescent region between two circles with centers of (-k 

i0_x, -k i0_y), (-k i1_x, -k i1_y) and radii of ki0, ki1, respectively. 
The main idea for acoustic illusion is shown in Fig. 1(c) 
and Fig. 1(h), where we exchange the two crescent regions 
(acoustic scattering potential) with each other. Therefore, 
the scattered acoustic pressure distributions for the fish and 
squid are exchanged. When transformed to the space 
domain by an inverse Fourier transformation, we find that 
the acoustic scattering potentials are not significantly 
changed, i.e. when we touch or see the fish\squid, it is still 
a fish\squid (shown in Fig. 1(d) and Fig. 1(i)). However, 
the far field scattered acoustic pressure distribution 

(related to f(ki, ks)) are exchanged, i.e. when we detect the 
scattered acoustic pressure, we find that it changes to a 
squid\fish (shown in Fig. 1(e) and Fig. 1(j)). Note we use 
two symmetrical crescent regions (corresponding to two 
wave vectors of ±ki) in Fig. 1 to ensure the bidirectional 
illusion effect and also to avoid the imaginary part (no gain 
or loss) of the acoustic scattering potential (because 
symmetrical scattering potentials satisfying V(-kx, -ky) = 
V(kx, ky) in the wave vector domain would have no 
imaginary parts after the inverse Fourier transformation). 

 

 
Fig.1. Schematic diagram of acoustic illusions by modifying the 
acoustic scattering potential. The original two objects are (a) a 
fish and (f) a squid. (b) and (g) are the Fourier transformations of 
the acoustic scattering potentials, denoted as V1(kx, ky) and V2(kx, 
ky) in the wave vector domain. The two crescent regions with 
dotted lines represent the scattering amplitudes with two incident 
directions k0, –k0, and within a wavelength band of 2π/ki1~2π/ki0 . 
By exchanging the crescent regions in (b) and (g), the acoustic 
scattering potentials in the wave vector domain are changed to (c) 
and (h). The corresponding scattering potentials in the space 
domain are (d) and (i). (e) and (j) are the illusions when a 
detector/ear detects the acoustic pressure. 

III. SIMULATION 

Example I: Changing one object into another object. 
In the first example, we use simulations to show how to 
use the above method to create an acoustic illusion by 
changing one object to another object. The background 
material we use is air (with acoustic speed of

0 0 0/v κ ρ= ). The two objects we choose here are a 
capsule shape with length of 6λ0 and width of 0.6λ0 and an 
isosceles triangle with base of 1.5λ0, height of 3λ0 
(λ0=0.34m). These two objects are placed at the central 
origin of a simulation region (with size of 20λ0×20λ0, 
surrounded by PML). For simplicity, we assume the mass 
density is the same as the background, and the relative 
compressibility coefficient γκ= V(ρ)+ 1 for the objects and 
the background are 1.5 and 1, respectively, which are 
shown in Fig. 2a and Fig. 2c. Note we can also modify the 
mass density since the key factor determining the scattered 
acoustic pressure is V(ρ)=γκγρ-1. The corresponding 
acoustic scattering potentials in the wave vector domain 
are shown in Fig. 2(e) and Fig. 2(g). An incident acoustic 
plane wave with wavelength of λ0 impinges from the top 
on the objects and results in the total acoustic pressure 
distributions (ps) shown in Fig. 2(i) and Fig. 2(k). To get 
the illusion effect, we exchange the two regions of the 
acoustic scattering potential in the wave vector domain in 
Fig. 2(e) and Fig. 2(g) with each other to form two 
recombined scattering potentials, shown in Fig. 2(f) and 
Fig. 2(h). The upper part of the two symmetrical regions 



we choose here is within two circles with their centers of 
(0, 1.15k0), (0, 0.85k0) and radii of 1.25 k0, 0.75 k0 
(k0=2π/λ0), which correspond to an acoustic wavelength 
range of 0.80λ0~1.33λ0. The relative compressibility 
coefficient corresponding to the two recombined scattering 
potentials in the space domain are shown in Fig. 2(b) and 
Fig. 2(d), where we can see moderate modification of the 
original objects. The total acoustic pressure distributions 
under the same incident wave are shown in Fig. 2(j) and 
Fig. 2(l). We can see that the achieved illusion effects are 
good: the modified capsule shape (Fig. 2(j)) has the same 
pressure distributions as the original isosceles triangle (Fig. 
2(k)) and the modified isosceles triangle (Fig. 2(l)) has the 
same pressure distributions as the original capsule shape 
(Fig. 2(i)). Therefore, we have changed one object to 
another object in terms of acoustic detection. 

 
Fig. 2. Changing one object into another object. The relative 
compressibility coefficient of (a) the original capsule shape, (b) 
the modified capsule shape, (c) the original isosceles triangle and 
(d) the modified isosceles triangle. (e)-(h) are the corresponding 
acoustic scattering potentials in the wave vector domain. (i)-(l) 
are the corresponding total acoustic pressure distributions. 

 
Example II: Acoustic self-cloaking effect. 
One specific example of acoustic illusion is acoustic 
invisibility cloaks. Here we show an acoustic self-cloaking 
effect using the above method. The simulation 
configuration is similar to Example I, and the only 
difference is the object, which is replaced by three English 
letters “ZJU” (Abbreviations of Zhejiang University). The 
relative compressibility coefficients of the letters and 
background are 1.5 and 1, respectively (shown in Fig. 3(a)). 
The acoustic scattering potential in wave vector domain is 
shown in Fig. 3(b). In order to get a cloaking effect, we set 
to zero the scattering potential in the two symmetrical 
regions, whose upper part is within two circles with their 
centers of (0, 1.15k0), (0, 0.85k0) and radii of 1.25 k0, 0.75 
k0 (see Fig. 3(e)). The corresponding relative 
compressibility coefficients have also been modified to Fig. 
3(d), which can be obtained by an inverse Fourier 
transform. The total acoustic pressure distribution before 
and after we modify the acoustic scattering potential are 
shown in Fig. 3(c) and (f), respectively. We can see the 
scattered acoustic waves are greatly suppressed, and good 
cloaking effect is achieved. 

 
 

Fig. 3. Acoustic self-cloaking effect. The relative compressibility 
coefficient of (a) the original object and (d) the modified object. 
(b) and (e) are the corresponding acoustic scattering potentials in 
the wave vector domain. (c) and (e) are the corresponding total 
acoustic pressure distributions. 

 

IV. DISCUSSION 

Now, we discuss the bandwidth of the acoustic illusion 
device and the influence of the direction of the incident 
acoustic wave. In general, the frequency band can be 
infinitely large and can work under arbitrary incident 
directions, as long as we make enough modifications to the 
scattering potential. However, these operations will change 
the object completely to another object, which will 
diminish the significance of the illusion. Therefore, the key 
idea of this method is: for an acoustic detection within a 
specified frequency band and limited incident angles, we 
can let the detector get desired acoustic signal as we do not 
want to change the original object significantly. In the 
present article, we designed a kind of illusion device which 
has a bidirectional illusion effect within a specified 
frequency band. Now we use simulations to show the 
bandwidth and the bidirectional effect. The configuration 
of the simulation is the same as Example I. Figure 4 shows 
the total acoustic pressure distributions of the objects in 
Example I and II under the impinging of three incident 
acoustic waves at a wavelength of 1.2λ0, 1.0λ0, and 0.8λ0. 
We can see that good illusion effects remain when the 
working frequency is within our predesigned frequency 
band. We also show the bidirectional illusion effects in Fig. 
5. Our numerical results for the total acoustic pressure 
distributions of the objects in Example I and II show good 
illusion effects for both incident plane waves from the top 
and the bottom. 

 



 
Fig. 4. Total acoustic pressure distributions of the objects in 
Examples I and II with incident acoustic waves of different 
frequencies. The three rows represent three wavelengths: 
(a)-(e)1.2λ0, (f)-(j)1.0λ0, and (k)-(o)0.8λ0. The five columns 
(from left to right) represent: the original isosceles triangle, the 
original capsule shape, the modified capsule shape, the original 
“ZJU”, and the modified “ZJU”, respectively. 

 

 
Fig. 5. Total acoustic pressure distributions with different 
incident directions. Scattering patterns of (a) (b) the original 
isosceles triangle, (c) (d) the original “ZJU”, (e) (f) the modified 
capsule shape, and (g) (h) the modified “ZJU”, under the 
impinging from (a, c, e, g) the top and (b, d, f, h) the bottom.  
 
Here we show how to design an illusion device working 
under a point source. The objects are the same as in 
example I, and the only difference is the plane wave is 
changed to a point source, which is placed at x=-3λ0, 
y=6λ0 (shown in Fig. 6). For a point source, the incident 
wave vector is no longer a fixed vector, but over a range of 
directions, e.g. from π/2 to 3π/4 in this case. Therefore, in 
this case we should modify in a larger region shown in the 
inset of Fig. 6 (d), e.g., we rotate anticlockwisely the two 
crescent regions in Fig. 2(f) by 45 degrees so that the 
whole k-region from π/2 to 3π/4 will be covered. The 
relative compressibility coefficient is shown in Fig. 6(d). 
Fortunately this further modification does not change 
much of the relative compressibility coefficient in Fig. 6(c). 
The distributions of the total acoustic pressure amplitude 
are shown in Fig. 6(e)-(h), corresponding to the capsule 
shape, the triangle, the modified capsule shape for 
bidirectional illusion, and the modified capsule shape for a 
point source illusion, respectively. We can see that the 
compressibility coefficient distributions of Fig. 6(d) and (b) 
give similar scattering patterns in Fig. 6(h) and (f), while 
the compressibility coefficient distribution of Fig. 6(c) gives 
different scattering (Fig. 6(g)). This verifies our illusion 
design for a point source.  

 
 

 
Fig. 6. The case of a point source. The relative compressibility 
coefficient of (a) the original capsule shape, (b) the original 
isosceles triangle, (c) the modified capsule shape for bidirectional 
illusion and (d) the modified capsule shape for a point source 
illusion. (e)-(h) are the corresponding amplitude of the total 
acoustic pressure. 
 
From the theory and simulation part, we know the illusion 
device is infinitely extended in space. However, we can 
truncate it at a proper boundary as long as the relative 
compressibility coefficient outside the boundary is very 
close to 1. Such a truncation is the same for cloaking and 
illusion. Figure 7 shows the truncated illusion device 
(using the sample in example II). Figure 7 (a)-(d) represent 
the original self-cloaking device, the truncated device by a 
circle (with a radius of 6λ0), the truncated device by a 
smaller circle (with a radius of 4λ0), and the original object 
without cloak, respectively. We can see from Fig. 7 (e)-(g) 
that the truncated cloaks still have good performance. This 
is because almost all of the major modifications occur near 
the object, and the modifications in the far region are very 
small and consequently have negligible contribution to the 
illusion effect. 
 

Fig. 7. (a)-(d) the relative compressibility coefficient, and (e)-(h) 
the total acoustic pressure distributions for the original 
self-cloaking device and the truncated ones. (a) The original 
self-cloaking device; (b) Truncated radius of 6λ0; (c) Truncated 
radius of 4λ0; (d) Original object without cloak. 
 
Note although both our method and the conformal 
mapping w=1/z have similar crescent regions, the crescent 
regions in the present paper represent a k-region (or 
frequency region), while in conformal transformation 
optics the crescent region usually represents a deformed 
space region at a fixed frequency. Therefore, we cannot 
make a similar design using conformal transformation 
optics [24]. 

V. UNDERWATER ACOUSTIC ILLUSION WITH 
NATURAL MATERIALS  



Before we draw a conclusion, we discuss some potential 
applications of the proposed method in this section. One 
potential application is for underwater illusions. The 
acoustic velocity in gasoline (v1=1250 m/s) is smaller than 
that in water (vb=1482 m/s), and thus a special shape of 
gasoline in water can be detected using acoustic waves. 
Now we show how to change a capsule shape of gasoline 
to a triangle shape by using only two natural materials: 
gasoline and linseed oil (v2=1770 m/s of acoustic velocity). 
The acoustic scattering potential can be rewritten as  

2

1( )= 1
r
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where vr is the relative velocity defined by vr=v/vb. Figure 
8 (a) and (b) show the original capsule shape and triangle 
with scattering potential of V=0.2. We can easily obtain the 
scattering potential of the modified capsule (with the same 
scattering pattern as the triangle) using the same method as 
in example I. We find the scattering potential of the 
modified capsule range from -0.09 to 0.34. These values 
can be realized using effective medium theory. We use unit 
cells with side length of 1/5λ0. The gasoline or linseed oil 
is filled inside a square with side length of 1/5λ0f (f is the 
filling factor), and the remaining part is filled with water. 
The effective scattering potential can be calculated as  

Veff=f 2V                  (10) 
where V is the scattering potential of gasoline or linseed oil. 
Note that in the above formula we have dropped the item 
of +(1-f2)Vwater because Vwater=0. The scattering potentials 
for gasoline and linseed oil are 0.406 and -0.300, 
respectively, which can be easily obtained from Eq. (9). 
Using the effective medium theory, i.e. Eq. (10), we can 
easily construct the unit cell of the modified capsule shape, 
i.e. determine the filling factor (we have neglected some 
unit cell structures when f is too small), which is shown in 
Fig. 8 (c). A detailed structure is given in the inset. We can 
see although the modified scattering potential extend to the 
whole space in Fig. 2(b), in real application it can be 
truncated to a small region, as shown in Fig. 8(c). Figure 
8(d)-(f) are the corresponding total acoustic pressure 
distributions, from which we can see clearly a good 
illusion effect. 
 

 
Fig. 8. (a)-(c) The unit cell structures of the original objects. (a) 
capsule shape, (b) triangle shape and (c) the modified capsule 
shape. (d)-(f) the corresponding total acoustic pressure 
distributions. 

VI. CONCLUSION 

Our method can be extended for EM waves by using the 

refractive index to represent the scattering potential. For 
elastic waves, when we neglect the coupling between 
different wave types, we can obtain a similar differential 
equation for longitudinal wave or transversal wave, then 
we can adopt a similar method to design illusion devises 
for elastic waves and seismic waves. In conclusion, we 
have developed a method to design acoustic illusion 
devices by manipulating the acoustic scattering potential in 
the wave vector domain. This method greatly simplifies 
the material parameters compared with the method of TO 
and puts illusion devices one step closer to real application. 
Our method could pave the way for the design of modern 
acoustic illusion devices (incl. camouflage for 
anti-sonar-detection).  
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