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The performance of an on-chip Terahertz (THz) source based on the Dyakonov-Shur (DS) insta-
bility is analytically and numerically investigated. The impact of non-ideal termination impedances
at the source and the drain of a III-V-semiconductor-based High-Electron-Mobility-Transistor
(HEMT)-like plasmonic cavity is first studied in the linear approximation of the hydrodynamic
model. Then, a multi-physics simulation platform that self-consistently solves the full hydrodynamic
model and Maxwell’s equations is developed and utilized to numerically investigate the effects of
the finite termination impedances on the DS instability, the generated plasmonic current and the
radiated THz electromagnetic signals in the steady state. The results show that non-ideal bound-
ary conditions at the cavity terminations can drastically impact the DS instability and reduce the
generated and radiated THz EM signals.

I. INTRODUCTION

Over the last decades, wireless data traffic has drasti-
cally increased due to a change in the way today’s society
creates, shares and consumes information. The massive
growth in the total number of mobile connected devices
(over 8.0 billion in 2016) has been accompanied by an
increasing demand for higher wireless data rates (ap-
proaching the 1 Terabit-per-second mark) [1]. To sat-
isfy such demand, sophisticated communication schemes
(e.g., massive MIMO) as well as new spectral bands are
needed. In this context, Terahertz (THz)-band (0.1–
10 THz) communication is envisioned as a key wireless
technology for future communication networks [2, 3].

For many years, the lack of compact high-power sig-
nal sources and high-sensitivity detectors able to work
at room temperature has hampered the use of the THz
band in practical communication systems. To date, dif-
ferent technologies are being considered to close the so-
called THz gap. In an electronic approach, the lim-
its of standard silicon CMOS technology [4], silicon-
germanium BiCMOS technology [5], and III-V semicon-
ductor HEMT, mHEMT and HBT technologies [6] are
being pushed to reach the 1 THz mark. These systems
commonly rely on frequency-multiplying chains to up-
convert a multi-GHz local oscillator to THz frequencies.
Power loss due to the generation of non-desired harmon-
ics and limited gain of these devices when approaching
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true THz frequencies hamper the energy efficiency and
limit the feasibility of this approach for higher frequen-
cies. In an optics or optoelectronic approach, besides pho-
toconductive antennas [7] and optical downconversion
systems [8], which would require separate on-chip optical
sources, quantum cascade lasers (QCLs) [9] are potential
candidates for high-power THz-band signal generation.
These lasers can yield THz emission across a broad spec-
trum, offering output in the range of tens of milliwatts at
cryogenic temperatures. However, they suffer from poor
performance at room temperature.

In parallel to these approaches, a promising alterna-
tive to realizing THz communications is to leverage the
properties of plasmonic materials to develop compact on-
chip THz sources. Among others, a III–V semiconductor-
based HEMT-like structure, with a 2D electron gas
(2DEG) channel that is formed at a high-quality het-
erointerface, can be utilized to electrically excite 2D plas-
mons at THz frequencies. In particular, when a dc cur-
rent is passed through the HEMT channel, spontaneously
excited plasmons drift with the 2D electron fluid. The
electron drift causes the Doppler shift in the plasmon
dispersion. Plasmon reflection from the channel bound-
aries reverses the Doppler shift and may result in the
amplification of the plasma wave amplitude. Dyakonov
and Shur [10] have shown that if the plasmon reflection
conditions at the opposite ends of the channel (the drain
and the source boundaries) are asymmetric, the instabil-
ity may be developed when the amplitude of the plasma
wave increases exponentially, provided that the plasma
wave gain exceeds the damping losses - the Dyakonov-
Shur (DS) instability. In the non-linear regime, the plas-
monic system is stabilized, and in the steady state the
power provided by the external dc circuit is balanced by
the combined losses due to scattering and electromag-
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netic (EM) radiation at the plasmon frequency in the
THz range.

The DS instability has been studied experimentally in
a number of publications [11–15]. For typical HEMT pa-
rameters, the frequency of the unstable plasma modes lies
in the THz range, and significant effort has focused on
implementing a THz transmitter based on this effect [15].
These efforts have been largely unsuccessful because the
EM power radiated into free space has proved to be too
weak for practical use [14, 15]. One of the main rea-
sons behind this problem is the complexity introduced
when creating the asymmetric boundary conditions in
the HEMT.

Effect of the non-ideal boundary conditions on the DS
instability was also considered in a number of publica-
tions [16–19]. Most of the studies [16, 17] have been
concerned with the effect of the interface between the 2D
electron channel and 3D metal drain and source contacts
on the electron density and electric potential in the 2D
channel near the contact. This effect is important for
calculations of the plasmon spectrum in the 2D electron
channel of finite length (plasmonic cavity). However, the
interfaces at the opposite sides of the 2D electron chan-
nel are technologically identical and do not contribute
to the asymmetry necessary for the DS instability. The
asymmetry stems from the different ac electric links (dis-
placement currents) between the 2D channel and sur-
rounding electrodes at the opposite edges of the chan-
nel. These links can be described in terms of the com-
plex impedances. In the original paper by Dyakonov and
Shur [10], it has been assumed that the impedance be-
tween the source and the gate approaches zero ohm, and
the impedance between the drain and the gate tends to
infinity, something which practically cannot be realized.
Similarly, in a wireless communication system, the need
to attach the source to a modulator or ultimately an an-
tenna will further modify such impedance.

The effect of the finite gate-source and gate-drain
impedances on the increment of the DS instability was
first considered in the early paper by Cheremisin and
Samsonidze [18]. These authors derived general expres-
sion for the instability increment valid at arbitrary values
of the terminating impedances and demonstrated that
the instability retains as long as the value of the gate-
drain impedance exceeds the value of the gate-source one.
Also, effect of the finite capacitive impedances between
the source and drain contacts and the gate on the perfor-
mance of the plasmonic THz detector based on the field
effect transistor was considered in the very recent paper
by Svintsov [19].

In this paper, we analytically and numerically investi-
gate the HEMT-like on-chip THz transmitter based on
the DS instability and impact of the non-ideal bound-
ary conditions at the source and drain contacts on its
performance. First, using the transmission line analogy
we develop a new analytical model for the DS instabil-
ity in the 2D electron layer with finite impedances at
the source and drain (Sec. II). We derive expression for

the complex plasma frequency and demonstrate how the
DS instability frequency and increment depend on the
finite terminating impedances and other parameters of
the HEMT structure. Then, we develop a comprehensive
finite-difference time-domain numerical solver that con-
sistently solves the hydrodynamic model equations and
Maxwell’s equations (Sec. III). By utilizing this tool, we
numerically validate the developed analytical model and
study the impact of non-ideal boundary conditions at the
source and drain of the device on the generated and radi-
ated EM fields in the steady state. Our results show that
non-ideal boundary conditions can not only reduce the
generated power by the THz source, but can effectively
prevent the instability from arising. We quantitatively
show that, provided that the source impedance is much
lower than the HEMT intrinsic impedance and both are
much lower than the drain impedance, the DS instability
will develop and the HEMT structure, in steady state,
becomes a THz transmitter. These results emphasize
the need to engineer the drain and source impedances,
in addition to the drift velocity and the electron relax-
ation time, to enable DS-instability-based on-chip THz
sources.

II. ANALYTICAL MODEL

A. Basic Equations

Collective plasma excitations in the two-dimensional
2DEG in the HEMT conduction channel with a DC
electric current can be described by the hydrodynamic
model [20]. In this model, the 2DEG is characterized
by the local electron density n (r, t) and velocity v (r, t)
obeying the Euler and continuity equations. For a plas-
mon propagating in the x direction in the 2DEG layer
positioned in the plane z = 0 these equations are:

∂v

∂t
+ v

∂v

∂x
= − e

m∗e
Ex −

1

nm∗e

∂P

∂x
− v

τ
, (1)

∂n

∂t
+
∂ (nv)

∂x
= 0. (2)

Here, P stands for the local pressure in the 2D electron
fluid, Ex is the x component of the self-consistent elec-
tric field in the channel and −e and m∗e are the electron
charge and effective mass, respectively. A phenomeno-
logical damping term included into the Euler equation in
Eq. (1) accounts for the collisional damping of the plas-
mon with the characteristic relaxation time τ . At typical
electron densities, the 2DEG in the HEMT channel re-
mains degenerate in the broad range of temperatures up
to the room temperature. In the degenerate limit, the
2D electron pressure P in Eq. (1) depends on the elec-
tron density n as

P =
π~2n2

2m∗e
. (3)
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Equations (1) and (2) should be solved together with
Maxwell’s equations for the plasmon EM field to obtain
the self-consistent solution. This will be numerically done
in Sec. III. In this section, in order to provide an intu-
itive analytical model, we limit our consideration of the
plasma oscillations to the linear analysis sufficient to de-
termine conditions necessary for triggering the plasma in-
stability and growth of the amplitude of the plasma wave.
In this case, the EM field can be found in the quasi-static
approximation by using the Poisson equation for the self-
consistent electric potential ϕ (r, t) of the plasma wave

∇2
x,z(ϕ) =

en

ε0ε
δ(z), (4)

Ex = −∂ϕ (x, z = 0)

∂x
, (5)

where ε is the relative permittivity of the surrounding
medium.

We linearize Eqs. (1)-(3) with respect to the small fluc-
tuations of the electron density δn (x, t) and average ve-
locity δv (x, t) assuming that n = n0 + δn, v = v0 + δv,
where n0 is the equilibrium electron density and v0 is the
constant electron drift velocity due to DC source-drain
bias. For one Fourier Harmonic δn, δv, ϕ ∝ e−ikx+iωt

we obtain the system of linear algebraic equations for
the charge density ρ = −eδn and electric current density
j = −e (n0δv + v0δn) in the plasma wave which should
be solved together with the Poisson equation connecting
ρ and φ. Electric potential is connected with the fluc-
tuation of electron density by Eq. (4). When the ideal
metal gate is separated by the distance d from the chan-
nel, Eq. (4) yields the following relation between ϕ and
ρ [21]:

ϕ =
ρ

|k|εε0 (1 + coth |k|d)
. (6)

A non-trivial solution for j and ϕ exists only if:

(ω − kv0)

(
ω − kv0 −

i

τ

)
=

e2n0|k|
m∗eεε0 (1 + coth |k|d)

+
1

2
k2v2

vF ,

(7)

where vF is the Fermi velocity in the degenerate 2DEG.
The last equation is the dispersion equation for the drift-
ing plasmon in the gated 2D electron channel. It can be
further simplified if we assume that the collisional damp-
ing is small ωτ � 1 and the gate-to-channel separation
d is much smaller than the plasmon wavelength kd� 1.
As shown below, the typical plasmon wavelength is of the
order of the source-drain distance so the last assumption
is justified. With these assumptions, the drifting plasmon
dispersion law takes simple form

ω = (v0 ± vp) k +
i

2τ
, (8)

where sign ± corresponds to the Doppler-shifted acoustic

plasmons propagating in the opposite directions, and

vp =

√
e2n0d

ε0εm∗e
+
v2
F

2
(9)

is the plasmon velocity in the absence of the drift. This
last result differs from the well-known expression for the

velocity of the gated plasmon [21] by the correction
v2F
2 .

This correction results from the inclusion of the pressure
term into the Euler equation.

The general expressions for the voltage V (x, t) =
ϕ (x, z = 0, t) and the current I (x, t) = j (x, t)W in the
plasma wave of frequency ω propagating in the gated
channel of width W are

V (x, t) = C1e
−ik+x+iωt + C2e

−ik−x+iωt, (10)

I (x, t) =
C1

Z0

(
1 +

v0

vp

)
e−ik+x+iωt−

C2

Z0

(
1− v0

vp

)
e−ik−x+iωt,

(11)

where k± =
(ω− i

2τ )
(v0±vp) are the complex wave numbers of

the plasma wave propagating in the direction of the drift
(+) and in the opposite direction (−), and Z0 = d

εε0vpW
.

Constants C1 and C2 are determined by the boundary
conditions.

B. The Dyakonov-Shur Instability

The physical mechanism of the DS instability described
in the Introduction is based on the asymmetric reflection
of the drifting plasma waves at the opposite ends of the
plasmonic cavity formed in the gated region of the 2D
conduction channel in the HEMT. The very general de-
scription of this reflection can be obtained by introduc-
ing the terminating complex impedances between the 2D
channel and the gate at the ends of the plasmonic cav-
ity. This approach is based on the analogy between the
plasma wave propagation in the gated 2D channel and
an ac signal propagation in the transmission line [22].

We assume that an ac link between the 2D channel
and the gate is purely reactive and choose the terminat-
ing impedances as iZS and iZD where subscripts “S” and
“D” refer to the source and drain sides of the plasmonic
cavity and ZS , ZD have real values. In this approxi-
mation, we neglect the resistive part of the terminat-
ing impedances responsible for the leakage of the plasma
wave from the cavity to the source and drain contacts
with the loss of the real power. Now the boundary con-
ditions for the plasma waves in the plasmonic cavity of
length L with terminating impedances iZS at x = 0 and
iZD at x = L are:

V (0, t) = −iZSI (0, t) , (12)

V (L, t) = iZDI (L, t) , (13)
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These conditions connect the local values of the plas-
monic current and the electric potential at the source
and the drain edges of the plasmonic cavity. The oppo-
site signs in the right hand sides of these two equations
are due to the reversed directions of the currents at the
opposite ends of an isolated cavity. The boundary condi-
tions (12) and (13) are valid as long as the gate-channel
separation is small in compared with the plasma wave-
length, kd� 1. In this limit, the TEM-like plasma wave
propagates in the channel and can be described in the ap-
proximation of the local gate-channel capacitance when
the current in the gate mimics the channel current but
with the opposite sign [23]. Eqs (10)-(13) solved together
determine the dispersion equation of the plasma modes
in the cavity as

e

2
(ω− i

2τ
)L

vp

(
1−

v20
v2p

)
=

[
1− iZD

Z0

(
1 + v0

vp

)] [
1− iZS

Z0

(
1− v0

vp

)]
[
1 + iZD

Z0

(
1− v0

vp

)] [
1 + iZS

Z0

(
1 + v0

vp

)] .
(14)

The last equation yields complex plasma frequency ω =
ω′ + iω′′. In the practically important limit v0

vp
� 1 , we

obtain

ω′ =
vp
L

(πn− ϕS − ϕD) , n = 1, 2, ... (15)

ω′′ = −
[
v0

L

(
cos2 ϕS − cos2 ϕD

)
− 1

2τ

]
, (16)

where

tanϕD,S =
|ZD,S |
Z0

. (17)

It follows from Eqs. (15)-(17) that both the plasma
frequency ω′ and the plasma wave increment/decrement
ω′′ strongly depend on the values of the terminating
impedances ZD and ZS . The frequency shift depend

on the ratio
|ZD,S |
Z0

, and the plasma frequency may sig-
nificantly deviate from its ideal values at ZS = 0 and
ZD = ∞. The magnitude of ω′′ depends on the rela-
tive values of |ZD| and |ZS | but also strongly depends

on the
|ZD,S |
Z0

ratio. The impedance Z0 can be inter-
preted as the characteristic impedance of the plasmonic
transmission line [22]. Inequality ω′′ < 0 is the condi-
tion of the DS instability in the plasma wave. It follows
from Eqs. (15) and (16) that the DS instability occurs
only if |ZD| > |ZS | [18] at the drift velocities v0 larger
than some threshold value increasing at short relaxation
times. The proper tuning of the terminating impedances
with respect to Z0 may increase the instability increment.
Expression for the instability increment with boundary
conditions (12),(13) was first derived in Ref. [18] at ar-
bitrary values of v0

vp
. This expression can be reduced to

Eq. (16) at v0
vp
� 1. The ideal case corresponding to

ZS = 0, ZD → ∞, was considered in the original paper
by Dyakonov and Shur [10]. In this limit, Eqs. (15)-(17)
reproduce the results found in this paper at v0 � vp.

III. NUMERICAL ANALYSIS OF THE DS
INSTABILITY IN SEMICONDUCTOR HEMTS

The analytical solutions were obtained within the first
order perturbation theory and, thus, only valid when the
fluctuations are small. Less restrictive numerical simu-
lations, which can capture the impact of the geometry,
additional plasma damping due to finite electron momen-
tum relaxation time, and the finite values of the termi-
nating impedances, are needed for comprehensive study
of the HEMT THz device performance. The growing
plasma oscillations are stabilized due to the non-linear
processes [24, 25], and in the final steady state the plas-
monic power gain is balanced by the emitted EM ra-
diation and scattering losses. In this case, the plasma
wave amplitude is not small, and the perturbation the-
ory is not applicable. Also, the full system of Maxwell’s
equations should be used to describe the electromagnetic
radiation in the steady state. Numerical simulations of
the DS instability have been reported in Refs. [25, 26].
The authors of Ref. [26] consider the DS instability in
the ungated transistor structure ignoring effects of the
gate and terminating impedances on the instability. In
Ref. [25], numerical solution of the hydrodynamic equa-
tions together with the Poisson equation in the gated
transistor structure is presented. In this approach, ef-
fect of the EM radiation is not included directly into the
numerical formalism and the estimates of the radiated
EM power were performed indirectly based on the anal-
ysis of the static current-voltage characteristics. Below
we present our analysis of the performance of the HEMT
THz emitter based on the numerical solution of the hy-
drodynamic equations together with the full system of
Maxwell’s equations. We analyze the final steady state of
the HEMT THz emitter including effects of the plasmon
collisional damping and finite terminating impedances,
determine the EM radiation pattern and directly calcu-
late the emitted EM power.

A. Multi-physics Simulation Platform

To numerically analyze plasma waves in the on-chip
THz source, the hydrodynamic model equations describ-
ing the evolution of the electron density n, velocity v
and current density j = −env in the 2DEG layer and
Maxwell’s equations describing the evolution of the elec-
tric E and magnetic H fields have to be self-consistently
solved together. Since existing commercial tools cannot
simultaneously solve both hydrodynamic and Maxwell’s
equations in the time domain, we have developed a finite-
difference time-domain (FDTD) multi-physics simulation
platform. In the developed platform, the electron dynam-
ics in the 2DEG layer is described by solving the hydro-
dynamic model equations Eqs. (1) and (2). To compute
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Ex in Eq. (1), we now solve Maxwell’s equations

∇×EEE = −µ0
∂HHH

∂t
, (18)

∇×HHH = JJJ + εε0
∂EEE

∂t
. (19)

Here EEE = Exx̂ + Ey ŷ and HHH = Hz ẑ refer to the elec-
tric and magnetic fields vectors, respectively, the current
density vector JJJ = Jxx̂ is related to the surface current
density j in the 2DEG as Jx = j

t2DEG
where t2DEG is the

thickness of the 2DEG layer.
Stabilizing a fully explicit discretization of the govern-

ing equations for such a highly non-linear system of dif-
ferential equations as the hydrodynamic model equations
is a critical task. A slight change in the discretization
strategy may cause computational instability and direct
application of common discretization methods does not
lead to the physically correct results. The order in how
the various quantities (n, v, j, EEE, HHH) are updated is
also of crucial importance. In our analysis, we follow the
methodology introduced in [27] to simulate the 2DEG as
a 1D system and utilize the up-wind approach to stabilize
the discretization of the system. Then, we use a homoge-
neous and uniform mesh to generalize to two dimensions
for the EM solver [28–30]. In the Appendix, we provide
the derivation of the finite-element discretization of the
governing equations and the conditions for the system to
be numerically stable.

In Fig. 1, we illustrate the reference structure simu-
lated in our analysis. It consists of a HEMT-like struc-
ture, built with a III-V semiconductor material with per-
mittivity ε and metallic gate and source and drain con-
tacts with conductivity σ. The 2DEG layer is character-
ized by the electron density n, velocity v, effective elec-
tron mass m∗e, and electron momentum relaxation time τ .
It is positioned at a distance d under the gate, and has an
effective thickness t2DEG. The impedances between the
source and the gate and the drain and the gate are given
by ZS and ZD, respectively. The HEMT is considered to
be in an air-filled box delimited by a Perfectly Matched
Layer. The latter is needed to emulate an infinite space
when solving Maxwell’s equations and prevents artificial
reflections at the box boundaries.

B. Numerical Results

In this section, we numerically investigate the behav-
ior of the DS plasma instability in the gated InGaAs-
based HEMT structure shown in Fig. 1, with 2DEG chan-
nel length L = 110 nm, gate length Lg = 100 nm ex-
tended from source to drain with 5 nm separation from
ohmic contacts at source and drain. We consider the
gate and source and drain contacts to be made of a
nearly ideal metal with σ = 107 S/m, channel depth
d = 20 nm, channel width W=100 µm, 2DEG layer
thickness t2DEG=5 nm, ε=13, m∗e = 0.04m0. We initial-
ize the whole channel with equilibrium electron density

FIG. 1: Schematic of the HEMT structure used for
numerical simulations.

n0 = 2.2 × 1015 m−2 and constant drift velocity v0, and
apply initial excitation by doubling the electron density
at the channel length of 5 nm next to the drain contact.
Then we record the time dependence of the plasmonic ac
current in the 2DEG channel. Our numerical algorithm
including the implementation of different boundary con-
ditions is described in detail in the Appendix.

1. Impact of Drift Velocity v0 and Relaxation Time τ

In this numerical study, we assumed the ideal bound-
ary conditions ZS=0, ZD = ∞ and recorded the time
dependence of the plasmonic ac current near the drain
contacts after initial excitation. It follows from Eq. (16)
that under the ideal boundary conditions the instabil-
ity occurs when the electron transit time in the HEMT
τtr = L/v0 is shorter than 2τ [10]. Our numerical results
are presented in Fig. 2.

In Figs. 2a through 2c we assumed v0 = 4×105 m/s so
that the electron transit time τtr=0.275 ps, and recorded
the current signal at different values of the electron re-
laxation time. For the values of τ=0.01 ps and τ=0.1 ps
in Figs. 2a and 2b respectively, we have τtr > 2τ , and
the plasmonic current signal decays rapidly after the ini-
tial excitation because the power losses due to random
electron scattering exceed the power gain due to plasmon
reflections from the asymmetric boundaries. In Fig. 2c,
the value of τ is 1ps and τtr < 2τ . In this case, the
power gain at the plasmon reflections from the asymmet-
ric boundaries starts to exceed the scattering losses, and
the DS instability develops. The oscillating THz plas-
monic current stabilizes at some finite amplitude with
the combined losses due to scattering and EM radiation
balancing the power gain.

Decreasing electron drift velocity makes electron tran-
sit time longer and the instability eventually disappears.
This is shown in Figs. 2d and 2e where we recorded the
time dependence of the current at τ=1 ps but v0 =
1 × 105 m/s and v0 = 0.2 × 105 m/s, respectively. In
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(a) τ = 0.01 ps, v0 = 4 × 105 m/s
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(b) τ = 0.1 ps, v0 = 4 × 105 m/s
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(c) τ = 1 ps, v0 = 4 × 105 m/s
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(d) τ = 1 ps, v0 = 1 × 105 m/s
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(e) τ = 1 ps, v0 = 0.2 × 105 m/s

FIG. 2: Plasmonic THz current density J as a function of time at different drift velocities v0 and electron relaxation
times τ . The gate-source impedance ZS = 0, the gate-drain impedance ZD =∞.

Fig. 2d the value of τtr=1.1 ps is less than 2τ and the in-
stability still exists. However, with further decrease of v0

the DS instability disappears as shown in Fig. 2e where
τtr=5.5 ps.

2. Impact of Source and Drain Impedances

In the HEMT plasmonic cavity formed in the 2D chan-
nel between the source and the drain terminal, the DS
instability is maximized under the ideal boundary con-
ditions ZS = 0, ZD = ∞. As shown in Eq. (16), the
finite source-gate and drain-gate impedances suppress
the instability. These impedances are the result of the
shunt capacitances always present between the gate and
the HEMT source/drain terminals. Calculations show
that in the HEMT structures these capacitances are in
the range of tens of femtofarads [11]. At Terahertz fre-
quencies, this corresponds to the impedances lying in
the range of tens of ohms. These impedances effectively
shunt much larger inductive impedances of the bonding
wires and define terminating impedances at the ends of
the plasmonic cavity [19]. We studied numerically the im-
pact of the finite gate-source (CS) and gate-drain (CD)
capacitances on the DS instability in the HEMT struc-
ture shown in Fig. 1. In this case, the boundary condi-

tions conforming with Eqs. (12) and (13) are as follows

I (0, t) = −CS
∂V (0, t)

∂t
, (20)

I (L, t) = CD
∂V (L, t)

∂t
, (21)

where V (x, t) is connected to n (x, t) as V (x, t) =
−en (x, t)/Cgc. Here Cgc = εε0/d is the gate-channel
capacitance per unit area.

In our numerical simulations, we take v0 = 4×105 m/s
and τ=1 ps and record plasmonic current near the drain
contact as a function of time. The results are presented
in Fig. 3.

In Fig. 3a, we assumed that CS = CD=1 fF. In this
case, the boundaries become symmetric (ZS = ZD), the
power gain disappears, and the ac plasmonic current
rapidly decays due to random scattering of electrons. In
Figs. 3b and 3c, asymmetry is introduced by assuming
that CS =5 fF and 10 fF, respectively, and CD=1 fF so
that ZD > ZS . The power gain due to plasmon reflec-
tions from the asymmetric boundaries exceeds the damp-
ing losses, and the DS instability develops with finite
plasmonic current in the final steady state. If the value
of CS is kept constant, and asymmetry is introduced by
increasing the value of CD so that ZD < ZS the cur-
rent continues to decay as predicted by Eq. (16). This is
shown in Figs. 3d and 3e where CS=1 fF and CD=5 fF
and 10 fF, respectively.

Rigorous numerical solution of the non-linear hydro-
dynamic equations together with the full system of
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FIG. 3: Plasmonic THz current density J as a function of time at different values of the gate-source (CS) and the
gate-drain (CD) capacitances. Electron drift velocity v0 = 4× 105 m/s, electron relaxation time τ=1 ps

Maxwell’s equations is in good qualitative agreement
with the results of the linear perturbation analysis of the
hydrodynamic equations within quasi-static model of the
EM field presented in Sec. II. However, the full numer-
ical solution goes beyond the linear response and allows
analysis of the final steady state of the radiating HEMT
system including the structure of the radiated THz EM
field. This analysis is presented in the next section.

C. Generated Electromagnetic Fields

In this section, we examine the performance of a
HEMT-like structure as a THz EM source based on the
DS instability by analyzing the properties of the gen-
erated fields and the impact of the source and drain
impedances on the radiated power.

In Figs. 4a and 4b, the electric field vector components
Ex and Ey respectively, are plotted for the radiating
HEMT in the steady state with τ=1ps, v0 = 4×105 m/s
and ideal boundary conditions corresponding to Fig. 2c.
The plots show that the plasma wave in the 2DEG chan-
nel generates an EM wave in the space between the gate
and 2DEG channel, which leaks through the gaps be-
tween the source/drain contacts and the gate and prop-
agates eventually over the entire simulation region.

The EM power P radiated by the THz source at any
given frequency can be calculated by integrating the nor-
mal component of the Pointing vector over a continuous

boundary that encircles the device as:

P =
1

2

∫
C

Re
{
Ẽ̃ẼE × H̃∗H̃∗H̃∗

}
nnndl, (22)

where nnn is the unit vector normal to the boundary and Ẽ̃ẼE

and H̃̃H̃H are complex Fourier transforms of the electric and
magnetic field vectors in the time domain at the integra-
tion boundary C shown in Fig. 1. In our analysis, we
disregard the transient time until the generated currents
and fields become stable (approximately the first 2 ps in
Figs. 2 and 3).

In Fig. 5, we show the radiated EM power spectrum for
both ideal and non-ideal (CS = 10 fF, CD = 1 fF) bound-
ary conditions at τ=1 ps and v0 = 4 × 105 m/s. Reso-
nant peaks in the power spectrum occur at the frequen-
cies of plasmons confined in the HEMT cavity with the
largest peak at the fundamental frequency of 2.27 THz
and much weaker peaks at higher harmonics. The value
of the fundamental plasma frequency estimated from the
power spectrum is about 10% larger than the one pre-
dicted by the theoretical model in Eq. (14) indicating the
difference between simple theoretical model and more ac-
curate numerical simulation accounting for complicated
spatial distribution of the EM fields in the finite semi-
conductor structure, see Fig. 4.

At the fundamental frequency, the radiated EM power
per unit channel width shown in Fig. 5 is about 9 ×
10−8 W/µm under the ideal boundary conditions. In this
case, the total radiated power from the device can be esti-
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FIG. 4: Electric fields resulting from the DS instability corresponding to Fig. 2c
(ideal boundary conditions, τ = 1 ps, v0 = 4× 105 m/s).

FIG. 5: The radiated EM power spectrum for ideal
boundary conditions (blue) and non-ideal boundary
conditions (CS = 10 fF, CD = 1 fF) (red), τ=1 ps,
v0 = 4× 105 m/s. Inset: the same power spectrum in
linear scale, showing the power loss due to non-ideal

boundary conditions.

mated as 9×10−8 W/µm ×100µm= 9µW. The non-ideal
boundary conditions decrease the instability increment in
Eq. (16) and result in the decreased radiated EM power.
This is shown in the inset in Fig. 5 where the radiated
power spectrum is plotted in the linear scale making this
difference more clear. When the non-ideal boundary con-
ditions are used the reduction in the radiated power at
the fundamental frequency is about 4.2× 10−8 W/µm or
46.7%.

IV. CONCLUDING REMARKS

In this paper, we have analytically and numerically
investigated the performance of an on-chip HEMT THz
transmitter based on the DS instability. We found con-

ditions of instability and its dependence on the various
parameters in the realistic finite size HEMT semiconduc-
tor structures with metal source, drain, and gate con-
tacts. We also analyzed numerically the HEMT trans-
mitter performance in a steady radiating state and found
the EM field distribution and the radiated power in dif-
ferent regimes.

Our study shows that finite non-ideal drain-gate and
source-gate impedances can reduce the strength and even
entirely suppress the DS instability when the differ-
ence between their values and the ideal ones increases.
Similarly, the radiated EM power also decreases un-
der non-ideal boundary conditions. These results high-
light the need to precisely engineer the source and drain
impedances in order to enable the DS instability-based
on-chip THz source and are important for its experimen-
tal realization.

The developed numerical multi-physics simulation
platform allows for self-consistent solution of the hydro-
dynamic model equations and Maxwell’s equations in an
air-enclosed HEMT-type structure and can be easily ex-
tended to simulate different electronic, plasmonic and
electromagnetic devices and structures.
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APPENDIX: FINITE-DIFFERENCE
TIME-DOMAIN MULTI-PHYSICS SIMULATION

PLATFORM

The numerical results presented in the paper have
been obtained by means of a home-built Finite-
Difference Time-Domain (FDTD) platform that consis-
tently solves the hydrodynamic model (HDM) equations
and Maxwell’s equations. In this section, we describe
the implementation of the platform, including the dis-
cretization of the scenario under analysis as well as the
discretization of the governing equations.

PML

Air

L

Drain

d

Gate

InGaAs
2D Electron Gas

Source Drain 

1D discretization 

2D uniform 
discretization
Δx = Δy

FIG. 6: Schematic of the reference structure and its
discretized (meshed) equivalent.

A. Discretization of the Scenario

The first step involves the discretization of the de-
vice under analysis. In Fig. 6, we illustrate the refer-
ence structure and its meshed equivalent. It consists of a
HEMT-like structure, built with a III-V semiconductor
material with permittivity ε and metallic gate and source
and drain contacts with conductivity σ. The 2DEG layer
is characterized by the electron density n, velocity v, ef-
fective electron mass m∗e, and electron momentum relax-
ation time τ . It is positioned at a distance d under the
gate, and has a thickness t2DEG. The HEMT is consid-
ered to be in an air-filled box delimited by a Perfectly
Matched Layer (PML). The latter is needed to emulate
an infinite space when solving Maxwell’s equations and
prevents artificial reflections at the box boundaries [29].

The mesh size along the 2DEG layer is determined
by the Debye length criteria inside the semiconductorTo
ensure numerical stability, ∆t < ∆x/c, where c is the
speed of light. In our scenario, we consider ∆x = 5 nm
and ∆t = 10−17 s. In addition, we define ∆y = ∆x,
and, thus, the thickness of the 2DEG is effectively set to
t2DEG =5 nm.

B. Discretization of the Hydrodynamic Model
Equations in the 2DEG Channel

The second step involves the discretization of the HDM
equations, which, for convenience, we rewrite as follows:

∂n

∂t
+
∂ĵ

∂x
= 0, (A1)

∂ĵ

∂t
+ v

∂ĵ

∂x
+ ĵ

∂v

∂t
= − ne

m∗e
Ex − n

π~2

m∗2e

exp
(
EF
kT

)
exp

(
EF
kT

)
− 1

∂n

∂x
− ĵ

τ
,

(A2)

where ĵ = nv is the particle current density in the
HEMT channel, Ex is the electric field along the channel,

EF = π~2n
m∗
e

is the 2D gas Fermi energy, T is the system

temperature, k is the Boltzmann constant and τ is the
plasmon relaxation time.

i i+1i-1

i+3/2i-1/2 i+1/2i-3/2

i+2i-2

FIG. 7: Location of boundary and center cells for
vectorial and scalar quantities, respectively.

We follow the methodology introduced in [27] to dis-
cretize and solve the HDM equations in the N = L

∆x cells
Ci corresponding to the 2DEG (Fig. 6). Scalar quantities
such as the electron density n are located at the centre of
the cells (sub-index i), whereas vectorial quantities like

the current density ĵ and v are located at the boundaries
of the cells (sub-indexes i± 1

2 , see Fig. 7).

First, the values of ni and ĵi+ 1
2

are initialized to n0

and j0, respectively, where n0 is the equilibrium electron
density and v0 is the constant electron drift velocity due
to DC source-drain bias. Then, the value of ni at the next
time instant is computed from the discretized continuity
equation (Eq. (A1)) as follows:

nt+1
i − nti

∆t
= −

ĵt
i+ 1

2

− ĵt
i− 1

2

∆x
, (A3)

nt+1
i = nti −

∆t

∆x

(
ĵti+ 1

2
− ĵti− 1

2

)
. (A4)

Next, we compute the value of the electron density ni± 1
2

at the boundaries of the cells by following the upwind
approach, which is defined as follows:

nti+ 1
2

=

{
3
2n

t
i − 1

2n
t
i−1 if jt

i+ 1
2

> 0,
3
2n

t
i+1 − 1

2n
t
i+2 if jt

i+ 1
2

< 0,
(A5)

i.e., the electron density is extrapolated from neighboring
points in the direction of the electron flow. The upwind
extrapolation of the electron density which is given by
the weighting factors 3

2 and − 1
2 is improving the accu-

racy of the scheme compared to the usual upwind choice
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ni± 1
2

= ni where simply the neighboring value in upwind

direction is used.
We can now compute the electron velocity as

vti+ 1
2

=
ĵt
i+ 1

2

nt
i+ 1

2

. (A6)

At this point, we can discretize the impulse balance
(Eq. (A2)), mostly by means of central differences. The
stability of the scheme is improved if the current density
is first updated by [27]:

ĵt+1
i+ 1

2

− ĵt
i+ 1

2

∆t
=

− e

m∗e
nti+ 1

2
Eti+ 1

2

− n π~
2

m∗2e

exp
(
EF
kT

)
exp

(
EF
kT

)
− 1

(nti+1 − nti)
∆x

−
ĵt
i+ 1

2

τ
− (conv)ti+ 1

2
,

(A7)

and then ĵt
i+ 1

2

is updated by the convective term as fol-

lows. If ĵt
i+ 1

2

or vt
i+ 1

2

have positive direction:

(conv)ti+ 1
2

=

ĵt
i+ 1

2

(
vt
i+ 1

2

− vt
i− 1

2

)
∆x

+

vt
i+ 1

2

(
ĵt
i+ 1

2

− ĵt
i− 1

2

)
∆x

,

(A8)

otherwise:

(conv)ti+ 1
2

=

ĵt
i+ 1

2

(
vt
i+ 3

2

− vt
i+ 1

2

)
∆x

+

vt
i+ 1

2

(
ĵt
i+ 3

2

− ĵt
i+ 1

2

)
∆x

.

(A9)

Then ĵi+ 1
2

is updated by the convective terms, but with

ĵi+ 1
2

and vi+ 1
2

replaced by the values resulting from ĵi+ 1
2
:

ĵt+1
i+ 1

2

− ĵt
i+ 1

2

∆t
= −(conv)ti+ 1

2
. (A10)

Finally, there is a need to define the boundary condi-
tions for n and ĵ at the source and drain contacts, i.e.,
n1, nN , ĵ 1

2
, and ĵN+ 1

2
. In the case of ideal boundary con-

ditions, at the source terminal, we apply the Neumann
boundary condition for the electron density, i.e., n1 = n0.
At the drain terminal, we apply the Dirichlet boundary
condition for the electron current, i.e., ĵN+ 1

2
= n0v0.

In the case of non-ideal boundary conditions, the cur-
rent at the source ĵ 1

2
and at the drain ĵN+ 1

2
are defined

as

ĵ 1
2

=
CS

WCgc

(nt1 − nt−1
1 )

∆t
(A11)

ĵN+ 1
2

= − CD
WCgc

(ntN − n
t−1
N )

∆t
, (A12)

which correspond to the discretized version of Eqs. (20)
and (21) in the paper.

1. Discretization of the Maxwell’s Equations in the Entire
Structure

We follow the methodology from [29] to discretize
Maxwell’s equations. For a transverse magnetic (TM)
mode, the magnetic H and electric E fields can be writ-
ten in finite differences, respectively, as:

Ex|t+1
i+ 1

2 ,j,k
=

(
1− σ∆t

2ε0εr

1 + σ∆t
2ε0εr

)
Ex|ti+ 1

2 ,j,k
+

(
∆t
ε0εr

1 + σ∆t
2ε0εr

)

·

Hz|
t+ 1

2

i+ 1
2 ,j+

1
2 ,k
−Hz|

t+ 1
2

i+ 1
2 ,j−

1
2 ,k

∆y


−

Hy|
t+ 1

2

i+ 1
2 ,j,k+ 1

2

−Hy|
t+ 1

2

i+ 1
2 ,j,k−

1
2

∆z

− Jx|t+ 1
2

i+ 1
2 ,j,k

 ,
(A13)

Hz|
t+ 1

2

i+ 1
2 ,j+

1
2 ,k

=

(
1− σ∗∆t

2µ0µr

1 + σ∗∆t
2µ0µr

)
Hz|

t− 1
2

i+ 1
2 ,j+

1
2 ,k

+

(
∆t
µ0µr

1 + σ∗∆t
2µ0µr

)
·

[(
Ex|ti+ 1

2 ,j+1,k
− Ex|ti+ 1

2 ,j,k

∆y

)

−

(
Ey|ti+1,j+ 1

2 ,k
− Ey|ti,j+ 1

2 ,k

∆x

)]
,

(A14)

and Hx and Hy are zero. The linkage between the HDM
equations and Maxwell’s equations is given by the term
Jx in Eq. (A13), where Jx = ej

t2DEG
(see Fig. 8).

Finally, in order to emulate an unbounded region and,
thus, estimate the fields radiated by the device under
analysis in free space, an absorbing boundary condition
(ABC) must be introduced at the outer lattice boundary
to simulate the extension of the lattice to infinity. An
approach to realize the ABC is to terminate the outer
boundary of the space lattice in an absorbing material
medium. Ideally, the absorbing medium is only a few
lattice cells thick, reflectionless to all impinging waves
over their full frequency spectrum, highly absorbing, and
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FIG. 8: Discretized system of equations.

effective in the near field of a source or a scatterer. In
developed platform, this is accomplished with a PML, as
first described by Berenger in [31].
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