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We developed a compact model for the THz plasmonic unstable structures with the tunable 
narrow channel regions of an increased width (called plasmonic “stubs”) using the transmission 
line analogy and derived the dispersion equations describing unstable plasmons. The solutions of 
the dispersion equations in the plasmonic systems with the electron drift derived using the 
hydrodynamic model and generalized to account for the stubs illustrate the device physics and 
could be used for design and characterization of the THz plasmonic electronic sources. Our 
results show that adding stubs allows one to control the Dyakonov-Shur instability in plasmonic 
field effect transistors by optimizing the boundary conditions, controlling the plasma velocity, 
and making it possible to drive periodic plasmonic structures wirelessly avoiding the contact 
problems.  
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I. INTRODUCTION 
 

The feature sizes of field effect transistors have reached the dimensions comparable or 
smaller than the mean free path of electrons for collisions with impurities and lattice vibrations. 
The minimum feature size of silicon CMOS is now 7 nm (compared with about 30 nm mean free 
path for silicon at room temperature). At such dimensions the effects of the electron inertia are 
pronounced and the ballistic or quasi-ballistic transport [1] becomes dominant. The electron 
inertia is responsible for the excitation and propagation of the waves of the electron density – the 
plasmonic modes - that affect the transistor operation. The excitation of the plasmonic modes by 
an impinging terahertz radiation and their rectification in the resonant or non-resonant regimes 
have been used for the detection and mixing of the THz radiation [2] by silicon [3], InGaAs [4], 
GaN [5], and graphene [6] based field effect transistors. The instability of the plasmonic modes 
driven by a direct current in the ballistic regime (called the Dyakonov-Shur (DS) instability) 
enables the THz generation [7]. The plasmonic THz detectors performance is already 
comparable or superior to other THz detectors. However, the experimental observation of the DS 
instability [8] has been difficult. Another proposed approach to the THz generation was to use a 
so-called “plasmonic boom” with the generation occurring due to the electron velocity repeatedly 
exceeding and dropping below the plasma wave velocity [9,10]. So far, the plasmonic boom 
generation has not been demonstrated. Developing efficient, high power, and compact THz 
electronic sources remains the key goal of the THz electronic technology. 

Several technological and physics-based problems must be solved to achieve this goal. First 
is the problem of the boundary conditions. The boundary conditions optimal for the DS 
instability are the short circuit between the source and the gate and open circuit between the 
drain and the gate [7]. This is difficult to implement at THz frequencies. The second problem is a 
small feature size (in the nanometer range) compared to the wavelength of the THz radiation 
(~300 micron at 1 THz). This makes it difficult to capture a large fraction of the impinging THz 
beam for the detection or match the device impedance for the emission. Grating gate device 
structures [11-13] could alleviate this second problem and were recently shown to be suitable for 
the implementation of the DS instability [14]. However, another problem is how to ensure the 
same gate-to-channel voltages in the field effect transistor channels connected in series [15]. 

Our recent paper [16] proposed addressing these problems by introducing the narrow regions 
protruding from the channel and having tunable electrical parameters, see Fig. 1a. We called 
these regions plasmonic stubs. We showed that the stubs could modify and optimize the 
boundary conditions and the input and output impedances. They can also slow down the plasma 
waves in a tunable way (making it easier to achieve the plasmonic boom) and could be used to 
match the plasmonic boundary conditions at the interfaces between different regions in the 
channel. In this paper, we analyze the effect of the stubs on the DS plasmonic instability and 
show that the stub design enables an efficient THz generation and could be applied for 
developing multi gated THz structures pumped by the RF radiation. 

As shown in Ref. [16], the stub introduces impedance ܼ௦௧ into the gated electron channel that 
can be viewed as a plasmonic waveguide. In this model, the solution of the hydrodynamic 
equations together with the Poisson equation in the 2D FET electron channel describes the 
plasma wave propagating along the FET plasmonic waveguide. Narrow regions protruding from 
the channel can be considered as the stubs attached to this plasmonic waveguide. If the width of 
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these regions is small in comparison with the plasmon wavelength in the 2D channel then the 
junction of the stub to the channel is a well-defined point. The impedance of the stub ܼ௦௧ can be 
found by solving the same hydrodynamic and the Poisson equations for the  plasma waves 
propagating along the stub 2D channel in the direction perpendicular to the 2D FET channel with 
the appropriate boundary conditions at the stub open end. Our approximation is solving two one-
dimensional systems of equations: one for the channel and the other one for the stub. This 
approximation ignores the transition region between these two perpendicular one-dimensional 
solutions, which is justified if the electron-electron collision length is much smaller than all 
characteristic geometric parameters of the system, i.e. in the hydrodynamic model. Also, the 
widths of both the channel and the stub defining the geometric size of the transition region must 
be much smaller than the plasmon wavelength. Qualitatively, all the stubs with the width much 
smaller than the 2D channel length can be represented by impedances that could be tuned by the 
stub length and electron concentration from minus to plus infinity in complete analogy to the 
stubs used in the electrical transmission lines. A more accurate analysis of the effect of the 
transition region will require the 2D solution that should also account for the viscosity of the 
electronic fluid and for the surface scattering.  

Impedance ܼ௦௧ could vary from negative to positive infinity at the plasma frequency 
depending on the stub length l, width W1, and 2D electron density in the stub. The stub 
effectively splits the plasmonic cavity between the source and the drain into two cavities: one 
between the source contact and the stub and the other one between the stub and the drain. These 
cavities have the terminating impedances ܼ௦ and ܼ௦௧ and ܼ௦௧ and ܼௗ, respectively, as shown in 
the equivalent electric circuit in Fig. 1b.  Here, ܼ௦( ܼௗ) is the impedance between the gate and 
the source (drain) contact. The plasma frequency in each cavity depends on the cavity length and 
the electron drift velocity. As shown below, changing the stub length and its position in the 
channel and tuning the drift velocity one can change ܼ௦௧ over a wide range thus creating 
boundary conditions suitable for the DS instability in the cavities regardless of the values ܼ௦ 
and ܼௗ. Hence, the results presented in this paper show that adding stubs allows one to control 
the DS instability in plasmonic field effect transistors by optimizing the boundary conditions, 
controlling the plasma velocity, and making it possible to drive periodic plasmonic structures 
wirelessly avoiding the contact problems.  

 
II. BASIC EQUATIONS 

 
Plasma waves propagating between the source and the drain contacts (x-axis) in the gated 

2D electron layer (ݖ ൌ 0) biased by a dc current can be described within the hydrodynamic 
model of the 2D electron fluid by the Euler equation and the continuity equation as  
 డ௩డ௧  ݒ డ௩డ௫ ൌ כ డఝడ௫  
                                                                                                                                                  (1) డడ௧  డሺ௩ሻడ௫ ൌ 0 , 

 
where ݊ሺݔ, ,ݔሺݒ ሻ andݐ  ,ሻ are the local electron density and the velocity in the plasma waveݐ
respectively, ߮ሺݔ, ݖ ൌ 0,  כ݉ ሻ is electric potential in the 2D layer, െ݁ is the electron charge andݐ
is the effective electron mass. The hydrodynamic approach is justified if the time of the electron-
electron collisions is the shortest electron characteristic time in the system. In the Euler equation, 
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we omitted the pressure gradient term since in the gated 2D channels this term is much smaller 
than the field term. We also neglected the effect of the electron collisions with phonons and 
impurities assuming the ballistic transport with respect to these collisions (߱߬ ب 1, where ߱ is 
the plasmon frequency and ߬ is the collision time). 

Eqs. (1) for 2D electron fluid with a dc bias could be linearized with respect to the small 
fluctuations of electron density ݊ߜሺݔ, ,ݔሺݒߜ ሻ and velocityݐ ,ݔሻ by assuming that ݊ሺݐ ሻݐ ൌ ݊ ݊ߜ and ݒሺݔ, ሻݐ ൌ ݒ    are the equilibrium electron density and constantݒ where ݊ and ݒߜ
electron drift velocity, respectively. We also assume that ݊ߜ is linked to the fluctuation of 
electric potential ߮ߜ as െ݁݊ߜ ൌ ܥ where ߮ߜܥ ൌ  /݀ is the gate-channel capacitance per unitߝߝ
area, ݀ is the gate-channel separation, and ߝ is the dielectric constant of the barrier layer between 
the gate and the channel. In this case, general solution of the linearized equations for the Fourier 
harmonics (݊ߜ, ݒߜ ן ݁ି௫ାఠ௧ ) is given by [10] 
ఠܫ  ൌ ଵ݁ିభ௫ܫ    ଶ݁ିమ௫ܫ
                                                                                                                                                (2) ఠܸ ൌ ଵௐ ൬ ூభ௩బା௩ ݁ିభ௫  ூమ௩బି௩ ݁ିమ௫൰ , 

 
where ܫଵ and ܫଶ are the constants to be found from the boundary conditions. Here ܫఠ ൌെܹ݁ሺݒ݊ߜ  ݊ݒߜሻ is the total current and ఠܸ ؠ  ఠ is the voltage distribution in the plasma߮ߜ
wave of frequency ߱ propagating in the channel of width ܹ, ݍଵ,ଶ ൌ ߱/൫ݒ േ  ൯ are the waveݒ
vectors of the plasma waves propagating in two opposite directions in the channel, and ݒ ൌටమబכ  is the plasma velocity in the 2D electron channel at ݒ ൌ 0. 

In the hydrodynamic approximation, the propagation of the plasma waves in the gated 2D 
electron channel without a dc bias is similar to the propagation of the electromagnetic signals in 
the transmission line (TL). The linearized hydrodynamic equations for the plasma waves are 
equivalent to the telegrapher’s equations for the TL with the distributed inductance ࣦ ൌ כమబௐ , 
distributed resistance ࣬ ൌ ࣦ/߬ , and distributed capacitance CW [17-22]. Consequently, the 2D 
electron channel can be viewed as a plasmonic waveguide supporting plasma modes [20]. 

As discussed in Ref. [16], within the TL approach the narrow region of an increased 
width in Fig. 1 represents an open circuit stub because of the zero-current conditions at the open 
end with the input impedance  
 
                                                         ܼ௦௧ ൌ െ݅ ଵௐభ௩భ cot ఠ௩భ                                                      (3) 

 
Here ݈ and ଵܹ are the length and the width of the stub, and ݒଵ is the plasma velocity in the 2D 
electron gas in the stub. The value of ݒଵ is determined by the electron density ݊௦௧ in the stub 
and can be controlled independently of ݊ by the separate stub gate. This stub model is valid if 
the width of the stub ଵܹ is much smaller than the plasmon wavelength in the channel. Zeros of ܼ௦௧ correspond to the excitations of the standing plasma modes in the stub with frequencies ߱ ൌ ௩భଶ ሺ2݆  1ሻ, ݆ ൌ 0,1, … [22]. The equivalent TL electric circuit representing field effect 
transistor (FET) with a stub is shown in Fig. 1b, where the terminating impedances ܼ௦ and ܼௗ 
describe an electric link between the gate and the source and drain contacts, respectively. 
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In the presence of constant electron drift, the simple analogy between the hydrodynamic 

and TL approaches fails because the drifting plasmons carry not only the electromagnetic power 
adequately described by the simple TL model, but also the kinetic power due to the drift of the 
electrons oscillating in the plasma wave [10]. The latter effect can be accounted for by 
introducing the kinetic voltage ఠܸ ൌ െ݉ݒכݒߜ/݁ originally used for description of the space 
charge waves in electron beams in microwave tubes [23]. Then the total effective voltage ఠܸ ൌ ఠܸ  ఠܸ found from Eq. (2) is [10]: 
 

                                            ఠܸ ൌ ఠܸ  ఠܸ ൌ ሺ1 െ ଶሻܯ ఠܸ  ܼܫܯఠ                               (4) 
  
Here ܯ ൌ ௩బ௩ is the Mach number. The effective voltage ఠܸ replaces the electric voltage ఠܸ in 

the TL theory of the drifting plasmons. It follows from Eqs. (2) and (4) that the values of ఠܸ 
and ܫఠ at the opposite boundaries of the dc biased gated 2D electron channel of length  ܮ are 
connected by the transfer matrix ̂[10] ݐ 

 

ݐ̂                                                ൌ ݁ିெఏ ቆ cos ߠ ܼ݅ sin బߠ sin ߠ cos ߠ ቇ ߠ   ,   ൌ ఠ௩ሺଵିெమሻ                     (5) 

 

where ܼ ൌ ටࣦௐ ൌ ଵௐ௩ is characteristic impedance of the plasmonic TL representing the FET 

2D electron channel. The transfer matrix ̂ݏ relating the values of ఠܸ and ܫఠ across the 
plasmonic stub in Fig. 1 can be found from the continuity of voltage ఠܸ and current conservation 
in the stub junction 
 

ݏ̂                                                    ൌ ቌ1  బೞ ெଵିெమ െ బమೞ ெమଵିெమଵೞ ଵଵିெమ 1 െ బೞ ெଵିெమቍ                                          (6) 

 
In these notations, the effective plasmonic voltages and currents near the source ( ఠܸ,௦,  ఠ,௦) andܫ
the drain ( ఠܸ,ௗ,  ఠ,ௗ) boundaries of the conducting channel in the FET structure shown in Fig. 1ܫ
are connected as 
 

                                                             ቆ ఠܸ,௦ܫఠ,௦ ቇ ൌ ଶݐ̂ݏଵ̂ݐ̂ ቆ ఠܸ,ௗܫఠ,ௗ ቇ,                                                (7) 

 
where ̂ݐଵ,ଶ are the transfer matrices in Eq. (5) for the parts of the 2D channel between the source 
and the stub, and the stub and the drain with lengths ܮଵ and ܮଶ , respectively. 

Finding the plasmon dispersion law in the plasmonic cavity formed between the source 
and the drain requires adding the boundary conditions for Eq. (7). These boundary conditions 
involving impedances ܼ௦ and ܼௗ are 
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ఠܸ,௦ ൌ െ ܼ௦ܫఠ,௦ 
                                                                                                                                                     (8) ఠܸ,ௗ ൌ ܼௗܫఠ,ௗ 
 
Solving Eqs. (7) and (8), after some tedious but straightforward algebra we obtain the plasmon 
dispersion equation 
 

݁ ଶఠమ௩ሺଵିெమሻ ൌ ൬1  ܯ െ ܼܼௗ൰ ቀ1 െ ܯ െ ܼܼ௦௧ െ ܼܼቁ൬1 െ ܯ  ܼܼௗ൰ ቀ1  ܯ  ܼܼ௦௧  ܼܼቁ 

                                                                                                                                                      (9) ܼ ൌ ܼ௦ሺcos ଵߠ  ܯ݅ sin ଵሻߠ  ܼ݅ sin ଵൣሺ1ߠ െ ଶሻܯ ܼ௦ െ ൧ܼ݅ܯ sin ଵߠ  ܼ cos ଵߠ ܼ ,   ߠଵ ൌ ሺ1ݒଵܮ߱ െ  ଶሻܯ

 
The dispersion equation (9) describes the plasma modes in the dc biased FET plasmonic cavity 
with a stub. 
 

III. RESULTS AND DISCUSSION 
 

In this section, we use the dispersion equation (9) to demonstrate effect of the stub on the 
DS instability in the FET structures of different geometry. 

In Fig. 2a we show solutions of the dispersion equation (9) for the complex frequencies ߱ ൌ ߱ᇱ  ݅߱ᇱᇱ of the plasma modes in the FET cavity with the stub. For comparison, Fig. 2b 
shows the solutions for the same cavity but without the stub. In this calculation, we assumed the 
ideal boundary conditions ܼ௦ ൌ 0 , ܼௗ ൌ ∞ . As expected, the solutions for plasma modes in 
Fig. 2b reproduce the well-known results first obtained in Ref. [7]. The frequencies ߱ᇱ of the 
first three plasma modes plotted in units of ߱ ൌ take quantized values ሺ2݊ ܮ/ݒ െ 1ሻ2/ߨ , ݊ ൌ 1,2,3 at zero drift velocity, ܯ ൌ 0, and gradually decrease when ܯ ՜ 1 . The imaginary 
parts ߱ᇱᇱ are the same for all modes and have negative sign corresponding to the increasing 
amplitude of the plasma oscillations and instability. At ܯ ا 1, we have ߱ᇱᇱ ൌ ߱ܯ ൌ  as ܮ/ݒ
predicted in Ref. [7]. In Fig. 2a the dispersion equation (9) is solved for the same cavity but with 
a stub of length ݈ ൌ ଶ positioned in the middle of the cavity, ܮଵ ൌ ଶܮ ൌ  see Fig. 1. For , 2/ܮ
simplicity, we assumed that the widths of the stub and the channel are the same, ଵܹ ൌ ܹ, and 
the 2D electron density in the stub ݊௦௧ is equal to that in the channel, ݊௦௧ ൌ ݊. As seen from 
comparison of Figs. 2a and 2b the stub decreases the plasma frequencies, i.e. decreases the 
plasma velocities. As pointed out in [16], this makes it easier to implement the plasmonic boom 
conditions that require the electron drift velocity to rise above the plasma velocity [9, 10]. The 
effect of the stub on the imaginary part of the frequency (that is on the instability increment) is 
more pronounced. The degeneracy of the instability increment with respect to the plasma mode 
number is lifted due to interaction of the plasma modes in the channel with the plasma modes in 
the stub. In general, the increment tends to decrease because imaginary part of the frequency 
adds a real component into the stub impedance ܼ௦௧ in Eq. (3), which effectively decreases the 
increment. The effect of the stub on the increment is more pronounced for higher harmonics, 
where the increment can even be reduced to zero at some values of the Mach number (as occurs 
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for the third mode in Fig. 2a). The frequency of some plasma modes can coincide with one of the 
frequencies of the standing plasma waves in the stub due to accidental degeneracy leading to ܼ௦௧ ൌ 0 . This effect increases the increment back to its unperturbed value (as occurs for the 
second mode in Fig. 2a). With all these changes, the instability increment remains robust, and the 
ability to adjust and optimize both the frequency and the instability increment using the stubs 
makes the device design with the stubs to be much better suited for THz electronics sources 
based on the plasmonic instabilities. 

This last conclusion is illustrated in Fig. 3, where the frequency and the increment of the 
fundamental plasma mode in Fig. 2a are plotted as a function of the 2D electron density in the 
stub, ݊௦௧, at two different Mach numbers. The value of ݊௦௧ can be controlled independently of 
the 2D electron density ݊ in the channel. 

As shown in Fig. 3, the frequency of the instability could be tuned in a wide range (albeit 
with the changing instability increment). The inset in Fig. 3 shows the dimensionless tunability 
responsivities. This responsivity is defined as a change of the instability frequency per unit 
change of the stub gate voltage. We made numerical estimate of the responsivity assuming that 
its dimensionless value is of the order of unity. For the InGaAs based FET structure with the 
electron density ݊ ൌ 3 ൈ 10ଵହ ݉ିଶ, the channel length ܮ ൌ 300 ݊݉ , and the gate-to-channel 
distance ݀ ൌ 20 ݊݉, the responsivity is about 4 GHz/mV showing the possibility of designing a 
tunable THz source. 

The most interesting application of the stub FET structures is the design of the plasmonic 
system that could have periodic and symmetric boundary conditions and operate at both 
polarities of the applied bias. One of the main obstacles in designing an effective THz source 
based on the DS instability is the requirement of the strongly asymmetric boundary conditions at 
the opposite edges of the plasmonic cavity [7]. The stub design allows one to overcome this 
obstacle and obtain the DS instability in the FET with symmetric (identical) source and drain 
contacts. To this end, we investigated the response of the FET with the stub positioned at 
distances ܮଵ and ܮଶ from the source and the drain, respectively, ܮଵ ് , ଶܮ ܮ ൌ ଵܮ   ଶ , as shownܮ
in Fig. 4d. The stub splits the device into two resonant plasmonic cavities with the effective 
lengths ܮଵ and ܮଶ . We assume that the source and the drain contacts are identical and 
characterized by the purely reactive impedances ܼ௦ ൌ ܼௗ ൌ ݂ܼ݅ where ݂ is some real 
number. Hence, we neglect the dissipative losses (leakage currents) between the source/drain 
contacts and the gate.  

As shown in Ref. [7], at |ܯ| ൏ 1 the DS instability in the plasmonic cavity develops only 
if the dc electron drift has direction from the low impedance edge of the cavity to the high 
impedance one. The instability disappears in the symmetric plasmonic cavity with identical 
edges. As seen in Fig. 4d, in the symmetric FET with the stub, the instability conditions are 
always achieved in one of the two split cavities regardless of the direction of the dc current. In 
Figs. 4a through 4c, we plotted the plasma dispersion curves found from Eq. (9) for the system 
shown in Fig. 4d at ݂ ൌ 0.1, 1, 10 , respectively. In this calculation, we assumed ܮଵ ൌ ଶܮ and ܮ0.3 ൌ  so that the resonant plasma frequencies in the split cavities are different. For the sake ܮ0.7
of simplicity, we also assumed that the width of the stub is the same as that of the channel, ଵܹ ൌ ܹ , and both the stub and the channel have the same 2D electron density,  ݊௦௧ ൌ ݊. The 
length of the stub ݈ was chosen to be ݈ ൌ ݈  so that ܮ0.2 ൏ ,ଵܮ  ଶ. The last condition prevents theܮ
resonant coupling of the low-lying stub and cavity plasma modes, which may result in a 
decreased instability increment as discussed above. In Fig. 4a, the complex frequencies ߱ ൌ߱ᇱ  ݅߱ᇱᇱ of the first three unstable plasma modes are plotted as a function of the Mach number 
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at the value of ݂ ൌ 0.1 corresponding to the near short circuit boundary condition at the source 
and drain contacts. The plasma frequencies are different at the positive and negative Mach 
numbers because the instability occurs only in one of the two split cavities of different length 
dependent on the direction of the dc current. In this limit, the instability increments are very 
small and can even change sign for the higher harmonics due to coupling between the cavity and 
the stub plasma modes. In Fig. 4c, the same complex frequencies are shown at the value of ݂ ൌ 10 corresponding to the near open circuit limit at the source and the drain contacts. In this 
case, the magnitudes of the increment are comparable with the ideal values shown in Fig. 2b. 
Here, at ܯ  0 the ܮଶ cavity contributes to the instability, and at ܯ ൏ 0 the instability occurs in 
the ܮଵ cavity. In the intermediate case ݂ ൌ 1 shown in Fig. 4b, the instability increment 
decreases but remains comparable with the ideal values in Fig. 2b. These results suggest that 
using the FET with a stub provide ample opportunities to reach plasmonic DS instability in a 
broad range of the boundary conditions at the source and drain contacts. 

This property enables the designs schematically shown in Fig. 5 and 6. As seen from Fig. 
5, half of the structure is unstable when the current flows from the source to the drain whereas 
the other half is unstable for the opposite current direction. In other words, the structure is 
unstable for both polarities. These designs include many repeating stub-split plasmonic cavity 
sections working together (and therefore increasing the power) and serving at the same time as 
an emitting antenna. The biasing scheme shown in these figures makes the bias the same for the 
repeating sections of the structures. The radiation from these identical sections could be 
combined coherently. The periodic symmetrical structure shown in Fig. 5a could be scaled in 
two (Fig. 5b) and three dimensions for an increased power generation. These structures could be 
used to detect, generate, mix, and multiply THz and/or sub-THz radiation or even far-IR 
radiation for ultra-short structures. 

Fig. 6 shows another implementation that does not require DC contacts and could be 
pumped by the RF signal and emit the tunable THz radiation. Since the RF frequency is much 
smaller than the THz emission frequency, the RF bias is equivalent to the DC bias. It could be 
driven by the RF signal with the frequency much lower than the plasmonic frequencies. 
Therefore, the structure, if provided with appropriate antennas, could be used as an RF to THz 
converter. Different THz and RF antenna placements are possible with the optimum design being 
dependent on the stub parameters and locations. 

Recent developments and improvements of the FinFET technology open up the 
possibility of an alternative stub design with stubs implemented as fins (see Fig. 7). Just as for 
the stub shown in Fig. 1a, design with multiple periodic or aperiodic stubs is possible (see [24]). 
A detailed analysis of this structure is beyond the scope of this paper. However, the physics and 
principle of operation are very similar to the system with the stubs analyzed in this paper. 
 

IV. CONCLUSIONS 
 
The presence of stubs enables a wide range tunability of the DS instability frequency and 
increment and makes it possible to optimize the design of the plasmonic sources, mixers, 
detectors, and frequency multipliers. It also enables the new designs of multiple frequency 
sources that could be driven wirelessly. The obtained solutions of the dispersion equation for the 
device with the stubs in the presence of the electron drift could be used for design and 
characterization of this new generation of active THz plasmonic devices.  
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Figure captions 
 
Figure 1. Stub configuration (a) and its transmission line (TL) equivalent circuit (b). 
 
Figure 2. Real (߱ᇱ) and imaginary (߱ᇱᇱ) parts of the plasmonic frequency versus Mach number M 
in the FET: (a) with the stub (݈ ൌ ଵܹ ,2/ܮ ൌ ܹ, ݊௦௧ ൌ ݊); (b) without the stub. ܼ௦ ൌ 0,ܼௗ ൌ ∞, ߱ ൌ  ܮ/ݒ
 
Figure 3. The stub FET fundamental plasmonic frequency ߱ᇱ and the instability increment ߱ᇱᇱ as 
a function of the 2D electron density in the stub ݊௦௧ at two different Mach numbers M, ݊ is 2D 
electron density in the FET channel. Other parameters are the same as in Fig. 2a. Inset: the 
tunability responsivity as a function of ݊௦௧ . 
 
Figure 4. The plasmonic frequencies ߱ᇱ and the instability increments ߱ᇱᇱ as a function of the 
Mach number M in the stub FET with symmetric boundaries: ܼ௦ ൌ ܼௗ ൌ ݂ܼ݅. (a) f=0.1; (b) 
f=1; (c) f=10. In this calculation: ݈ ൌ ଵܮ ,ܮ0.2 ൌ ଶܮ ,ܮ0.3 ൌ  other parameters are the same ,ܮ0.7
as in Fig.2a. (d) Schematic diagram and the equivalent TL electric circuit of the stub FET. 
 
Figure 5. The stub-split plasmonic cavity periodic design: linear (a) and two-dimensional (b) 
configurations. 
 
Figure 6. The RF driven stub-split cavity RF to THz converter section (a) and periodic 
arrangement (the plasmonic converter crystal) (b). 
 
Figure 7. Fin-like stub (a) and multiple Fin stubs (b). 
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