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We consider the generalized Shockley-Queisser (gSQ) model, which is based on a single assumption
that photocarriers and emitted photons are in chemical equilibrium and described by the Boltzmann
distribution functions with the same chemical potential. The model takes into account the frequency
dependent absorption (emission), photon trapping and recycling, photocarriers multiplication, and
nonradiative recombination processes. For the non-interacting photocarriers, we obtain exact an-
alytical solution of gSQ model and present the conversion efficiency, and other photovoltaic (PV)
characteristics in convenient form via the Lambert W function. Photocarrier multiplication and re-
combination via three-body Auger processes are also directly included in this formalism. We derive
universal formulas for useful energy, thermal losses, and emission losses per absorbed photon. We
show that the relation between the maximal conversion efficiency and the photo-induced chemical
potential, obtained by Henry [1] for the ideal SQ limit, is also valid in gSQ model. In the general
case of interacting electrons, in particular for the Shockley-Read-Hall processes, the solution is pre-
sented in the iterative form. We analyze photocarrier kinetics and derive a general relation between
the optimal photocarrier collection time and photocarrier lifetime with respect to all radiative and
nonradiative processes. Finally, we analyze finite mobility limitations and show that PV devices
with photon trapping and recycling provide fast photocarrier collection required by gSQ model.

Introduction

In 1960 Shockley and Queisser developed fundamental
model of photovoltaic (PV) conversion in a semiconduc-
tor single-junction solar cell and numerically calculated
the maximal conversion efficiency in terms of detailed
balance between the absorbed and emitted photon fluxes
[2]. Initially, the paper was rejected as trivial and un-
related to real semiconductors [3, 4]. During the APS
March Meeting in 1960, the scientists participating in the
discussion agreed that the SQ theory may be applicable
to at least GaAs with weak non-radiative recombination
processes. Now the Shockley-Queisser (SQ) limiting effi-
ciencies are considered as the most fundamental bench-
marks in solar light conversion. Besides benchmarking
characteristics of PV devices, two fundamental problems
related to radiative SQ limit are hot topics of modern the-
oretical research. The first problem is the derivation of
the SQ limit from general theoretical concepts. The SQ
limit is investigated in frame of classical thermodynamics
[5], endoreversible thermodynamics [6, 7], and nonequi-
librium thermodynamics [8]. The second problem is the
possibility to overcome SQ limit due to photonic manage-
ment [9–11] and nano-enhanced thermophotovoltaic con-
version [12]. Despite hundreds of works devoted to the
SQ model, even for the ideal model without nonradiative
processes the analytical solution has not been found yet.
Recent work [13] with tabulated values of the SQ PV
characteristics for traditional single junction solar cell is
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widely used for benchmarking solar cell parameters.

Nonraditiave processes substantially complicate de-
scription of PV conversion. Currently, interplay of ra-
diative and nonradiative processes in the open-circuit
regime is understood substantially better than that in
the regime with optimal conversion of electromagnetic
power. First, the open-circuit regime provides the maxi-
mal output electric energy with the conversion time goes
to infinity and, therefore, it is well described by classical
thermodynamics. For narrow-band radiation above the
semiconductor bandgap, thermodynamics establishes the
Carnot limit (Carnot loss) for the open-circuit voltage.
Irreversible processes due to energy relaxation of photo-
carriers created by wide spectrum radiation may be also
incorporated in the thermodynamic approach as thermal-
ization losses [14]. Second, there is exact analytical so-
lution for the open-circuit voltage (output energy) as a
function of spectral and geometrical characteristics of the
photon flux. The analytical solution has been generalized
to include other losses due to nonradiative recombina-
tion processes in terms of luminescence quantum yield
[14–16] and also to include light management in terms
of photon trapping/recycling [17, 18]. Therefore, analy-
sis of the open circuit regime is very often employed for
optimization of electron and photon processes related to
PV conversion [9–11, 17, 18].

The conversion regime with optimal output power is
described by the endoreversible thermodynamics, which
includes irreversible processes and entropy generation
due to thermal energy transfer from the radiation source
to the solar cell. Despite extensive theoretical research,
the analytical expression for the maximal output elec-
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tric power (the power conversion efficiency) as a function
of photon flux characteristics has not been obtained yet.
The regime of optimal power conversion is currently in-
vestigated via numerical modeling, which limit our un-
derstanding of complex electron, photon, and phonon
processes and their interplay in this regime.

In this work we consider the generalized Shockley-
Queisser (gSQ) model which takes into account absorp-
tion/emission characteristics and nonradiative recombi-
nation processes, which limit the photocarrier collection.
We derive analytical solution of gSQ model and present
the PV efficiency and other thermodynamic and kinetic
characteristics in simple and convenient form. The pa-
per is organized in the following way. In the next Sec-
tion we formulate the generalized Shockley - Queisser
model. In Section III the analytical expression for use-
ful power (conversion efficiency) for non-interacting elec-
trons will be derived. In this section we also discuss cor-
responding relations of endoreversible thermodynamics
and present the useful energy of a photon via the photo-
induced chemical potential. In Section IV the obtained
solution is generalized to include Auger recombination
processes and photon recycling. In Section V we present
a general perturbative solution for the interacting elec-
trons. In particular, the Shockley-Read-Hall recombina-
tion is analyzed. In Section V we consider photocarrier
kinetics and obtain a universal relation between the op-
timal photocarrier collection time and the photocarrier
lifetime due to all radiative and nonradiative processes
as a function of photon flux characteristics. We found
that in typical solar cells (Si, GaAs etc) the optimal col-
lection time of photocarriers should be shorter than the
photocarrier lifetime by 20 - 50 times depending on solar
light concentration, semiconductor bandgap, and nonra-
diative recombination rate. In Section VI we analyze the
limitations of the generalized Shockley-Queisser model
related to the finite photocarrier mobility, which can limit
the optimal photocarrier collection rate, calculated in the
previous section. We conclude that in the semiconduc-
tor PV devices with photon trapping and recycling the
optimal device thickness is below the critical value that
limits the photocarrier collection by diffusion processes.
Thus, the presented generalized Shockley-Queisser model
and its analytical solution for useful power (efficiency),
thermodynamic and kinetic characteristics provide very
effective tool for design and optimization of modern thin
PV devices with back-surface mirror (recycling) and front
photon scattering (trapping) with simple mathematical
software. Moreover, as the large-argument asymptotic of
Lambert W function is accurately presented by three log-
arithmic terms (see Section II), the corresponding char-
acteristics may be calculated by using relatively simple
scientific calculators. In Section VII, we will apply the
developed formalism to analysis of GaAs solar operating
close to SQ limit. The developed general mathematical
formalism for PV conversion may be very useful for anal-
ysis of perspectives of new PV materials and novel PV
concepts.

II. Generalized Shockley - Queisser Model

The SQ model is based on the three-stage photocarrier
kinetics in a semiconductor. At the first stage the light-
induced carriers strongly interact with phonons. Due to
emission of high-energy phonons, the photocarriers lose
energy and relax to the band-edges. Then, the photo-
carriers accumulated near band-edges absorb and emit
thermal phonons. The phonon emission and absorp-
tion processes establish the electron and hole distribu-
tions, which are described by the equilibrium tempera-
ture and nonequilibrium chemical potentials, i.e fe(h) =

[exp(ǫ − µe(h))/kT + 1]−1 with the chemical potentials
µe(h) independent on ǫ. To simplify presentation, we will
consider a doped semiconductor, where light absorption
mainly increases the chemical potential of minority car-
riers. At the second stage the photocarriers recombine
and emit photons that are described by the tempera-
ture T and the light-induced chemical potential µ of mi-
nority carriers, i.e the distribution of emitted photons is
given by fph = [exp(hν − µ)/kT − 1]−1. The emitted
photons may be reabsorbed and create the electron-hole
pairs again. The reabsorption process increases the life-
time of minority photocarriers. At the third stage, a
stationary value of the light-induced chemical potential
is established due to carrier collection at the device con-
tacts and due to photon escape from the device. The sta-
tionary photon and photocarrier distribution functions,
may be approximated by the quasi-classical distribution,
fph = exp[(µ−hν)/kT ] and fe = exp[(µ−ǫ)/kT ], because
even in the case of the maximal solar light concentration
the light induced chemical potential is substantially be-
low the bandgap and the parameter (ǫ − µ)/kT is much
larger than 1.
The quasi-classical function may be factorized as

exp(µ/kT ) × exp(−hω/kT ) and, therefore, the photon
flux emitted by the cell into the medium with the refrac-
tive index n may be presented as

Ṅem(µ, T ) = exp
µ

kT

∫

c

4n
σ(ω)Dω exp

(

−
h̄ω

kT

)

dω

= exp
µ

kT
· Ṅem(T ), (1)

where Ṅem(T ) is the emitted flux in equilibrium (µ = 0),
c the speed of light in vacuum, σ(ω) is the emissivity
of the solar cell interface and, in accordance with the
Kirchhoff law, also its absorptivity. The photon density
of states, Dω, is given by

Dω =
n3ω2

π2c3
. (2)

The electric current density is determined by the dif-
ference between the generation and recombination rates,

J/q = Ġ− Ṙ, (3)

where q is the electron charge. The generation rate is
given by Ġ = γṄab, where Nab is the absorbed photon
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flux and γ is photocarrier multiplication coefficient due
to inverse Auger processes [19]. The radiative recom-
bination rate is proportional to the density of minority
carriers and determines the photon emission flux. In ac-
cordance with Eq. 1, the radiative recombination rate
may be factorized as

Ṙr = Ṅem(µ, T ) = exp(µ/kT ) · Ṅem(T ). (4)

Following to Ross [14], we present the total recombina-
tion rate due to all radiative and nonradiative processes
through the luminescence quantum yield kl as

Ṙ =
Ṙr

kl
=

Ṅem(T )

kl
· exp

µ

kT
. (5)

The approximation of nonradiative losses by the lumines-
cence quantum yield assumes fast relaxation of light in-
duced photocarriers and the time reversal electron trans-
port in regimes of photocarrier collection (solar cell) and
carrier injection for light generation (LED). Time re-
versibility of electron transport in p-n junction devices
has been discussed in recent papers [15, 16]. As it was
pointed out by Ross [14], for non-interacting photocar-
riers the luminescence quantum yield kl is independent
on photocarrier concentration and, therefore, chemical
potential, µ. Thus, according to Eqs. 3-5, for non-
interacting electrons the photo-induced electric current
is given by

J/q = γṄab −
Ṅem(T )

kl
· exp

µ

kT
. (6)

Taking into account that the useful energy per electron
is µ, the photovoltaic conversion efficiency is given by

η =
µ(J/q)

Ėin

=

(

γṄab −
Ṅem(T )

kl
· exp

( µ

kT

)

)

·
µ

Ėin

=

(

γ −
Ṅem(T )

kl · Ṅab

· exp
( µ

kT

)

)

·
µ

ǫ∗
, (7)

where Ėin is the power of incoming photon flux and
ǫ∗ = Ėin/Ṅab is the average energy in the flux per a
photon absorbed in solar cell. This characteristic photon
energy may be also presented as ǫ∗ = ǫ̃/α̃, where ǫ̃ is

average photon energy in the flux and α̃ = Ṅab/Ṅflux

is absorptance of the cell. As an example, Fig. 1 shows
the parameter ǫ∗ as a function of the bandgap for the
6000 K thermal radiation and 100 % absorption above
the bandgap.

III. Analytical Solution and Endoreversible

Thermodynamics for Non-interacting Electrons

Introducing the dimensionless parameter,

A =
klṄab

Ṅem(T )
, (8)

FIG. 1: Average energy per a photon, ǫ∗, for the 6000 K
radiation flux as a function of semiconductor bandgap (100%
absorption above the bandgap).

and by optimizing the efficiency as a function of the
chemical potential (Eq. 7), we obtain the following equa-
tion for the chemical potential (output voltage) at max-
imal PV efficiency,

(µm

kT
+ 1
)

· exp
µm

kT
= γ ·A (9)

This transcendental equation has analytical solution in
terms of the Lambert W function,

µm

kT
=

qVm

kT
= LW(γ · A · e)− 1, (10)

where Vm is the voltage at maximal output power, LW
is used for the Lambert W function and e = 2.71828
is Euler’s number. Substituting µm to the equation for
the conversion efficiency (Eq. 1), we find the maximal
conversion efficiency,

ηm = γ

[

LW(γ · A · e)− 2 +
1

LW(γ ·A · e)

]

·
kT

ǫ∗
. (11)

Thus, the output electric power is given by

Pe = γ

[

LW(γ ·A · e)− 2 +
1

LW(γ · A · e)

]

kT · Ṅabs.

(12)
Eqs. 10, 11 and 12 represent exact analytical solution of
gSQ model for non-interacting electrons and express the
conversion efficiency and output electric power through
the absorption coefficient, σ(ν), the photocarrier multi-
plication coefficient, γ, and the luminescent yield, kl.
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Using Eqs. 10 and 12 we obtained the general rela-
tion between the maximal output power and the output
voltage at maximal conversion efficiency,

Pe = γ
(qVm)2

qVm + kT
· Ṅab. (13)

Eq. 13 generalizes the relation obtained by Henry [1] for
ideal light absorption and absence of nonradiative pro-
cesses (σ(ν) = kl = γ = 1). It shows that the use-
ful energy per absorbed photon, γ(qVm)2/(qVm + kT ), is
independent on the electron-hole recombination mecha-
nisms.
Now we obtain some useful general relations of the

endoreversible thermodynamics of PV conversion. Sub-
stituting the solution given by Eq. 10 into Eq. 4, we find
the photon emission flux at maximal efficiency,

Ṅem =
γkl · kT
qVm + kT

· Ṅab =
γkl

LW (γ ·A · e)
· Ṅab. (14)

Therefore, the power of the emitted flux is given by

Pem =
γkl · kT
qVm + kT

· ǫ(T ) · Ṅab, (15)

where ǫ(T ) is the average photon energy in the emitted
flux in thermodynamic equilibrium (µ = 0) calculated
with real frequency-dependent emissivity (absorptivity)
of the material. Finally, the total thermal power gener-
ated in relaxation and nonradiative recombination pro-
cesses may be presented as,

Pth =

(

ǫ∗ − γ
(qVm)2 + kl · kT · ǫ(T )

qVm + kT

)

· Ṅab. (16)

Naturally, in thermal equilibrium between the radiation
source and PV device, the thermal power generated in
the cell, Pth, is zero, because the photo-induced chemical
potential is zero and, in accordance with Kirchhoff law,
ǫ∗ = ǫ(T ). Let us highlight, that the equations above di-
rectly show which part of the photon energy is converted
into electric energy (Eq. 13) and into the heat (Eq. 16)
and which part of the photon energy is emitted back (Eq.
15) in accordance with the detailed balance.
Finally, let us note that usually in PV conversion the

ratio of the generation rate to the equilibrium recombi-
nation rate is huge. For large of the parameter A in Eqs.
10-12, one can use asymptotic formula for the Lambert
W function [20, 21],

LW(z) = L1 − L2 +
L2

L1
+

L2(L2 − 2)

L2
1

+
L2(6− 9L2 + 2L2

2)

6L3
1

+ .... (17)

L1 = ln(z) , L2 = ln ln(z).

First three terms in this asymptotic present LW function
with the accuracy of ∼ (ln ln(z)/ ln(z))2, which is for typ-
ical values of A is ∼ 0.1%. This asymptotic formula may

be used to calculate the efficiency and other character-
istics in the optimal conversion regime using a scientific
calculator.
Taking into account the asymptotic expression for the

Lambert W function and neglecting the terms of the or-
der of 1/ ln(A), we can simplify Eqs. 10 and 11. With
1/ ln(A) accuracy, we get

qVm = µm = kT · LW(γ · A), (18)

ηm = γ [LW(γ · A)− 1] ·
kT

ǫ∗
. (19)

PV characteristics may be presented via the open circuit
voltage,

qVoc = µoc = kT · ln(γA). (20)

The voltage at maximum efficiency is given by

VM =
kT

q
· [LW(γAe)− 1]

≈ Voc −
ln(qVoc/kT )

q/kT
+

ln(qVoc/kT )− 1

q2Voc/(kT )2
(21)

Solution of the SQ model for the PV efficiency (Eq. 11)
also provides a simple formula for the fill factor,

FF ≡
ηĖin

Jsc · Voc
=

LW(γAe)− 2 + 1/LW(γAe)

(1 − 1/γA) · ln(γA)

≈ 1−
ln(qVoc/kT ) + 1

qVoc/kT
+

ln(qVoc/kT )

(qVoc/kT )2
. (22)

The asymptotic formulas in Eqs. 21 and 22 are pre-
sented in accordance with Eq. 17 as series of L2/L1 =
ln ln(γA)/ ln(γA) = kT/qVoc · ln(qVoc/kT ), which are in
good agreement with well-known asymptotic and empir-
ical formulas derived by Green [22, 23] The Lambert W
function is a built-in function in all mathematical pack-
ages (Maple, MATLAB, Maxima, Mathematica etc) [24]
and, therefore, the obtained exact analytical solution
drastically simplifies calculation of all PV characteris-
tics. Fig. 2 shows the results of such calculations for
concentrated and unconcentrated 6000 K radiation and
different values of luminescence quantum yield.

IV. Auger Processes and Photon Recycling

In this Section we consider Auger recombination and
its enhancement due to photon recycling. The phonon
emission from the PV junction is realized from the front
air-film interface and from the back film-substrate inter-
face. Therefore, the total flux (Eq. 1) emitted by the PV
junction may be presented as

Ṅem = Ṅa−f + Ṅf−s (23)

The number of thermally excited photon modes in the
semiconductor structure of thickness d is

N(T, d) = d ·
∫

dω Dωfph(ω), (24)
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FIG. 2: PV conversion efficiencies given by Eq. 11 for the
solar cells with the luminescence quantum yield of 100% (red),
10% (blue) and 1% (green) under concentrated solar light
(solid lines) and unconcentrated light (dashed lines).

whereDω is the photon density of states (Eq. 2) and
fph(ω) is the Plank distribution function. Slow photon
escape (emission) through the film-air interface results
from internal reflection of photon modes outside the es-
cape cone with the angle θes, where sin θes = 1/n. There-
fore, the rate of photon emission from the film to air is
given by

Ṅf−a(T ) = (c̃/4)(sin θes)
2 κ ·

∫

dω Dph(ω) fph(ω), (25)

where c̃ = c/n is the light velocity in the film and κ is
the transparency of the film-air interface averaged over
photon modes in the escape cone. This averaged film-air
transparency equals to the air-film transparency averaged
over the all photon modes in the air. In PV devices with
back-surface mirrors, the photon emission is only realized
through the film-air interface. In such devices the photon
escape time is given by

τes =
N(T, d)

Ṅf−a(T )
=

4d

c̃κ(sin θes)2
= 4n2 d

κc̃
. (26)

Thus, the photon escape via the film-air interface is sup-
pressed by the factor 4n2 due to internal reflection. As
it was highlighted by Yablonovitch [17, 25], the photon
escape from the film-air interface is strongly limited, be-
cause the the photon flux propagating in the film is n2

times bigger than the photon flux that can propagate
in the air (the photon DOS is proportional to n3 and
the propagation rate is proportional to n−1). Therefore,
in solar cells with back-surface mirror the film photons

are strongly trapped by mirror and the film-air interface.
This trapping is consistent with high transparency of the
film-air interface for the modes in the escape cone. Let
us note that various photonic structures may be used to
further reduce the emission angle at the film - air inter-
face. For PV applications the limiting emission angle in
the air is given by the angular radius of Sun when seen
from Earth, which is 0.0046 radians (0.53 degrees) [9].
If the photon escape time, τes, is much longer than the

photon absorption time, τab = 1/(αc̃) , where α−1 is the
average absorption length, a film photon is reabsorbed
τes/τab = 4n2dα/κ times before it leaves the film. In this
case, the radiative photocarrier lifetime increases as

τrℓ =
τes
τab

· τr = 4n2dα

κ
· τr, (27)

where τr is the minority carrier recombination time. The
relation between the average absorption length, α, and
directly measured parameters of the radiative recombi-
nation will be discussed in Section V. Assuming anti-
reflection coating, which provides high photon absorp-
tion, we accept that κ = 1. Taking into account non-
radiative recombination processes, the total photocarrier
lifetime may be presented as

1

τℓ
=

1

τrℓ
+

1

τnr
=

1

4n2dατr
+

1

τnr
=

1

4n2dαklτr
, (28)

where τnr is the minority carrier nonradiative recombi-
nation time and kl is the luminescence quantum yield,
introduced in Eq. 5. According to Eq. 28, the lumines-
cence quantum yield may be presented as

kl =

(

1 +
4n2dατr

τnr

)

−1

. (29)

The two-body radiative recombination rate and three-
body Auger recombination rate are described by corre-
sponding constants Br and CAu,

Ṙr = Br · n · p (30)

ṘAu = CAu · (n2 · p+ p2 · n), (31)

where n and p are electron and hole concentrations. Usu-
ally density of light-induced carriers is substantially less
than density of majority carriers, i.e. the density of
dopants or acceptors in the base of PV device. Then,
according to Eqs. 30 and 31, the radiative recombina-
tion time and Auger recombination time are

τr = 1/(BrN) (32)

τAu = 1/(CAuN
2), (33)

where N is the dopant (acceptor) density. Substituting
the ratio τr/τAu in Eq. 29 we obtain the luminescence
quantum yield limited by Auger processes,

kAu
l =

(

1 + 4n2dα ·
CAuN

Br

)

−1

. (34)
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Thus, the three-body multiplication and recombination
Auger processes are directly incorporated in the gSQ
model via coefficients γ and kAu

l . Eqs. 11 -16 with
the parameter A (Eq. 8) reduced by kAu

l (Eq. 34)
describe effects of Auger processes on PV performance.
For GaAs the radiative and Auger recombination con-
stants are Br = 7.2 · 10−10 cm−3 sec−1 [26, 27] and
CAu = 10−30 cm−6 sec−1 [28]. Therefore, in GaAs PV
devices with typical doping of N = 1017 cm−3 the co-
efficient CAuN/Br is ≃ 10−3 and even in devices with
strong photon recycling, 4n2dα ∼ 50, the effect of Auger
recombination is negligible. In the indirect bandgap
semiconductor materials the radiative recombination is
strongly suppressed and, therefore, Auger recombination
is an important efficiency limiting factor. For example,
for silicon the recombination constants are Br ≃ 10−14

cm−3 sec−1 and CAu = 10−30 cm−6 sec−1 [28]. For
doping of N = 1016 cm−3 the coefficient CAuN/Br is
≃ 1. Therefore, according to Eq. 34, significant pho-
ton recycling decreases the luminescence quantum yield,
kAu
l ≃ 1/(4n2αd). The gSQ model provides an effective

tool for optimization trade-off processes, such as photon
absorption (recycling and trapping) and photocarrier col-
lection (the luminescence quantum yield).

V. Nonradiative Recombination of Interacting

Photocarriers

In this section we consider PV conversion of interact-
ing photocarriers. The Shockley-Read-Hall and other
processes may provide substantial contribution to the
nonradiative recombination and suppress PV efficiency.
While for non-interacting photocarriers the recombina-
tion rate is proportional to the concentration of minority
carriers, i.e. to exp(µ/kT ), interaction effects may result
in complex dependencies of the recombination rate from
the photocarrier density. In the general case, we can de-
scribe the nonradiative recombination of interacting pho-
tocarriers by the term Ṙint · exp(µ/nkT ), where Ṙint is
the corresponding nonradiative recombination rate in the
thermodynamic equilibrium (µ = 0), and n is the ideal-
ity factor. To take into account recombination of inter-
acting photocarriers, Eq. 6 for the electric current of
non-interacting (free) photocarriers should be corrected.
With an additional term, which describes recombination
due to interaction of photocarriers, the electric current is
given by

J/q = γṄab − Ṙfree · exp
µ

kT
− Ṙint · exp

µ

nkT

= Ṅab

(

γ −
1

A
· exp

µ

kT
−

1

B
· exp

µ

nkT

)

.(35)

where A = Ṅab/Ṙfree(T ) = klṄab/Ṅem(T ) (see Eqs. 5

and 8) and B = Ṅab/Ṙint(T ).
Without nonradiative recombination induced by inter-

action processes the voltage at maximal efficiency is given
by Eq. 10. The radiative processes may be included in
Eq. 10 in the iterative way. Taking into account Eq. 35,

we get

qV i
m

kT
= LW(e · A(i−1))− 1, (36)

1

A(i−1)
=

1

A
+

1

B
· exp

(

1− n

n
·
qV

(i−1)
m

kT

)

,

where in the i-iteration for Vm the parameter A is deter-
mined by the Vm, which was found at previous iteration.
The corresponding efficiency is given by Eq. 11 with the
corrected parameter A or, alternatively, it may be calcu-
lated by Eq. 13, which presents the efficiency via Vm.
Eq. 36 provides the general iterative solution for Vm

and PV efficiency in the case of interacting electrons. If
nonradiative recombination due to photocarrier interac-
tion is slow in comparison with other radiative and nonra-
diative processes, the corresponding solution for Vm and
PV efficiency may be found in the first iteration. In this
case, the shift of the voltage at maximal power is

q∆Vm

kT
= −

A

nB

(

A

LW(A)

)

1−n

n

= −
Ṙnr

nṘr

(

A

LW(A)

)

1−n

n

(37)
and the efficiency reduction is given by

∆η = −
A

B

(

A

LW(A)

)

1−n

n kT

ǫ∗
=

Ṙnr

Ṙr

(

A

LW(A)

)

1−n

n kT

ǫ∗

=
nq∆V

ǫ∗
. (38)

As seen from Eqs. 37 and 38, if n > 1, effects of non-
radiative recombination are strongly suppressed due to
the large values of parameter A, which is the ratio of ab-
sorption rate and recombination rate. For example, for
the Shockley-Read-Hall processes with the ideality factor
n = 2, the corresponding reduction of the voltage at max-
imal efficiency and the reduction of conversion efficiency
are

q

kT
∆VSRH = −

Ṙnr

2Ṙr

√

LW(A)

A
(39)

∆ηSRH = −
Ṙnr

Ṙr

√

LW(A)

A
·
kT

ǫ∗
. (40)

Let us note that in the double diode model the ratio
Ṙnr/Ṙr is given by the ratio of the ratio of SRH and
radiative dark currents, J02/J01, and the parameter A is
the ratio of the photocurrent to the radiative dark cur-
rent, Jph/J01.

VI. Photocarrier Kinetics

Next, we will employ the developed formalism to kinet-
ics of photons and electrons in a semiconductor film and
calculate corresponding characteristics times and lengths.
To calculate the optimal photocarrier collection rate, let
us present the electric current and the recombination rate
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in terms of the carrier collection time, τcol, and photo-
carrier lifetime τℓ [29],

J(V ) =
qn0d

τcol(V )
· exp

qV

kT
,

Ṙ(V ) =
n0d

τℓ
· exp

qV

kT
, (41)

where n0 is the equilibrium concentration of minority car-
riers. Taking into account that J(V )/q = Ṅab − Ṙ(V ) ,

we may express the absorbed flux as JṄab = Ṙ(VOC).
Thus, at the voltage that provides the maximal conver-
sion efficiency we obtained

exp (qVm/kT )

τcol(Vm)
=

exp(qVOC/kT )

τℓ
−
exp (qVm/kT )

τℓ
. (42)

Finally, using Eqs. 10 and 42, we find that the photocar-
rier collection time at optimal efficiency is given by

τcol(Vm) = τℓ/β, (43)

β = LW(γA) ≈
qVm

kT
. (44)

Fig. 3 shows the dependence of parameter β on the
semiconductor bandgap for the 6000 K radiation. As
seen, in the optimal conversion regime the carrier collec-
tion time is substantially shorter than the photocarrier
lifetime. For example, for PV conversion of unconcen-
trated light with Si solar cell β equals 29 and with GaAs
solar cell β equals 41. The coefficient β increases with
the light concentration and reaches values of 41 for Si
and 52 for GaAs PV device.

As the Shockley-Queisser model is essentially based on
the detail balance between generation and recombination
processes, for modeling pV devices it is critically impor-
tant to use photon and electron characteristics that are
consistent with the detailed balance. In equilibrium, the
detailed balance between light absorption and radiative
recombination processes allows one to present the photon
absorption time through recombination parameters,

Ṙr(T ) =
n0d

τr
=

nphd

τab
, (45)

where no is the equilibrium density of minority carriers
and nph is the equilibrium density of photons with ener-
gies above the semiconductor band gap (ǫg),

n0 =
(kT )3(memh)

3/2

2π3h̄6N
exp

(

−
ǫg
kT

)

(46)

nph =
n3ǫ2g kT

πh̄3c3
exp

(

−
ǫg
kT

)

, (47)

where me(mh) is the electron (hole) mass. Using Eqs.
45-47, we find

τab =
2π2

Br

(

h̄n
√
memhc

)3
( ǫg
kT

)2

≃ 0.6 · 10−30

(

n

(m̃em̃h)1/2

)3
( ǫg
kT

)2 cm3

Br
,(48)

FIG. 3: The ratio of the photoelectron lifetime to the col-
lection time at optimal PV conversion for the concentrated
radiation (red) and unconcentrateted radiation (blue).

where m̃e(m̃h) is the effective mass of electron (hole) used
for density of states calculations. For example, using
Br = 7.2 · 10−10 cm−3 sec−1 [26, 27], we obtained the
absorption time in GaAs is 20 fs and the corresponding
absorption length, ℓab = (c/n) ·τab, is 1.7 µm. For silicon
the radiative recombination constant is 4.73 ·10−15 cm−3

sec−1 [30], which gives the absorption time of 21 ps and
the absorption length of 1900 µm.
As we discussed above, Eq. 48 is direct consequence of

the detailed balance between photon absorption (emis-
sion) and photocarrier generation (recombination) in the
volume of a semiconductor. Another detailed balance
equation is a consequence of the Kirchhoff’s relation be-
tween photon emission and absorption (see Eq. 1). The
photon emission from the semiconductor structure may
be also presented via the photon escape time,

Ṅem(µ) = d

∫

1

τes(ω)
Dω exp

(

−
h̄ω

kT

)

dω (49)

=
nphd

τes
, (50)

where Eq. 50 defines the averaged photon escape time
consistent with the detailed balance. If the photon escape
is selective, this averaged time should be used in Eq. 27
together with the absorption time (Eq. 48) to calculate
the photocarrier lifetime. Finally, according to Eq. 27,
in the photon recycling regime the radiative photocarrier
lifetime and the photocarrier lifetime with respect both
radiative and nonradiative processes are given by

τrℓ ≃ τes · 1.6 · 10
30 (m̃em̃h)

3/2

n3

(

kT

ǫg

)2
cm3

N
, (51)
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τℓ ≃ τeskℓ · 1.6 · 1030
(m̃em̃h)

3/2

n3

(

kT

ǫg

)2
cm3

N
. (52)

As it is expected, in the photon recycling regime the ra-
diative photocarrier lifetime is independent on exciton-
photon coupling, i.e. on Br, and proportional to the
photon escape time. Therefore, the photocarrier lifetime
depends on radiative and nonradiative processes solely
via the luminescence quantum yield. For high quality PV
materials (kl ∼ 1), the photocarrier lifetime in inversely
proportional to the square of semiconductor bandgap and
density of donors (acceptors).

VI. Diffusion Limited Photocarrier Collection

Now we will analyze model limitations related to the
diffusion processes. Decrease of the open circuit voltage
by diffusion processes was analyzed in a number of pa-
pers [31, 32] . For effective photocarrier collection in the
regime of maximal efficiency, the film thickness, d, should
be shorter than the corresponding diffusion length related
to the carrier collection time,

√
Dτcol , where D is the

diffusion coefficient and τcol is the optimal photocarrier
collection time, which is much shorter than the photo-
carrier lifetime (Eqs. 43 and 44). According to Eqs. 28
and 43, the optimal photocarrier collection time may be
presented as

τcol(Vm) = 4n2dαkl ·
τr
β
, (53)

where τr is the minority carrier radiative recombination
time, introduced in Eqs. 27 and 32. Thus, the require-
ment of fast photocarrier diffusion to contacts may be
presented in the following way,

d < ℓr

√

4n2dαkl
β

, (54)

where ℓr is the minority carrier diffusion length with re-
spect to radiative recombination, ℓr =

√
Dτr . On the

other hand, the effective light absorption requires an ade-
quate thickness of the base. In PV devices with randomly
textured front surface and back-surface mirror, the pho-
ton trapping enhanced the absorptance, which is given
by α̃ = 1 − exp(−4n2αd). Finally, two requirements of
effective absorption and fast photocarrier collection may
be presented as

1

4n2α
< d <

4n2αℓ2rkl
β

. (55)

Thus, to provide both effective absorption and photocar-
rier collection, the photovoltaic material should have the
characteristics that satisfy the following condition,

αℓr =
ℓr
ℓab

≫
1

(2n)2

√

β

kl
. (56)

Let us note that the one factor of 2n in r.h.s of Eq. 56
originates from the absorption enhancement via photon

TABLE I: Parameters of SI and GaAs PV materials

Material ℓab ℓr ℓr/ℓab
µm µm

GaAs 1.7 7 4
Si 1900 2200 1.2

trapping and the second 2n factor in the denominator is
due to the increase of the photocarrier lifetime via pho-
ton recycling. The factor of

√
β in Eq. 56 takes into ac-

count that at the optimal conversion efficiency the photo-
carrier collection time is much shorter than the lifetime.
The luminescence quantum yield, kl in Eq. 56 takes into
account decrease of photocarrier lifetime due to nonra-
diative processes. Let us highlight, that even in the high
quality PV materials, the factor of

√

β/kl exceeds 10
and, therefore, without trapping and recycling the diffu-
sion length ℓr should exceed the absorption length, ℓab
by more than one order in magnitude.
Using absorption and recombination characteristics

consistent with the detailed balance (Section V), let us
consider popular direct and indirect bandgap materials
GaAs an Si. For high quality GaAs material, the the
photoelectron diffusion coefficient, De is 100 cm2/s and
with typical values of emission constant Br = 7.2 · 10−10

cm−3 sec−1 and acceptor density of NA = 3·1017 / cm−3,

the photoelectron diffusion length, ℓr =
√

De/BrNA is
7 µm. Using the absorption length of 1.7 µm, which
was calculated in the previous Section, we find the ra-
tio ℓr/ℓab ≈ 4. Let us note that we calculate the ratio
ℓr/ℓab using a single kinetic parameter, which is the ra-
diative recombination constant, Br . As, the ratio ℓr/ℓab
is proportional to

√
Br, it weakly depends on the value

of Br. The above consideration shows that without pho-
ton management even in a solar cell fabricated from the
best PV material, GaAs, the photocarrier diffusion can-
not provide the photocarrier collection time required for
optimal PV efficiency. The same evaluations for Si with
De = 20 cm2/s and Br = 4.73 · 10−15 cm−3 s−1 [30] are
summarized in Table I.
Thus, for solar cells without photon management the

absorption/diffusion trade-off (Eq. 56 without (2n)2 fac-
tor in the r.h.s. denominator) can limit PV efficiency,
while this trade-off is not critical for the open circuit
voltage. Let us highlight again, the photocarrier collec-
tion time in the optimal power regime is substantially
shorter than the photocarrier lifetime and realization of
fast photocarrier collection requires faster diffusion pro-
cesses and/or thinner devices. As we discussed above,
effects of photon trapping and recycling reduce the r.h.s
of Eq. 56 by 4n2 ≃ 50. Therefore, in solar cells with
photon management the optimal thickness is reduced to
d ≈ (3 ÷ 5)/(4n2α) and diffusion processes do not limit
the optimal collection rate calculated in Section IV.

VII. GaAs Cell Operating Close to SQ Limit

In July 2018 Alta Devices announced that its most
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recent single junction GaAs solar cell demonstrates PV
efficiency of 28.9 %, which has been certified by NREL.
During last years Alta Devices does not present details
of the research, device structure, and detailed charac-
teristics. Therefore, in this section we will analyze the
Alta Device solar cell with 27.6 % efficiency presented in
Ref. 33 in 2011. Under AM1.5G illumination at 1 sun
intensity this GaAs cell demonstrated the following pa-
rameters: the short circuit current Jsc = 29.6 mA/cm2,
the open circuit voltage Voc = 1107 mv, the fill factor
FF = 84.1 %, the current at maximal power Jm = 28.6
mA/cm2, and voltage at maximal power Vm = 963 mV.
Also, the measured dark current was analyzed by the
two-diode model,

Jd = J01

(

exp
q(V − JdRs)

kT

)

+J02

(

exp
q(V − JdRs)

2 · kT

)

,

(57)
and values of the characteristic currents were determined,
J01 = 6·10−21 A/cm2 and J02 = 1·1012 A/cm2. Also, the
dark current characteristics allow us to evaluate the series
resistance in dark, Rs,d = 1.8 Ω·cm2. The authors of
Ref. 33 concluded that the effect of SRH recombination
on PV efficiency is negligible and the device performance
was limited by series resistance.
Let us employ the developed formalism to analyze var-

ious factors that limit PV efficiency. Above the 1.4 eV
bandgap the AM1.5G illumination at 1 sun intensity pro-
vides the photon flux Ṅflux = 2.05 · 1017 cm−2s−1 with
the average photon energy ǫ̃ = 3.043 eV. At temperature
of 300 K, the black-body emission flux above the 1.4 eV
bandgap is Ṅ bb

em(T ) = 0.011 cm−2s−1. Thus, in SQ limit

the parameter A = Ṅph/Ṅem(T ) (Eq. 8) is 1.83 · 1019.
According to Eq. 10, the voltage at maximal power may
be calculated as

qVm = kT · (LW(A · e)− 1), (58)

which gives 1044 meV in SQ limit. The PV efficiency
may be calculated via the parameter A by Eq. 11 or it
may be calculated via Vm as

η = α̃
(qVm)2

(qVm + kT ) · ǫ̃
, (59)

which follows from Eq. 13. In the SQ limit the absorp-
tance α̃ is 1 and Eq. 59 gives the PV efficiency of 33.5
%.
The device absorptance may be evaluated as the ratio

of the absorbed flux, Ṅab, corresponding to the short
circuit current, Jsc/q = 1.85 · 1017 cm2, to the incoming

flux Ṅflux = 2.05 ·1017 cm−2. The obtained absorptance
of 0.90 reduces the efficiency to 30.1 %. Assuming the
Kirchhoff’s relation between averaged absorptivity and
emissivity, we do not expect changes in Voc and Vm.
Next, let us evaluate the luminescence quantum yield.

The Jr
01 component of the dark current corresponding to

the radiative recombination is α̃Ṅem/q = 1.62 · 10−21

cm−2s−1. Thus, the external luminescence quantum

TABLE II: Loss mechanisms and their impact on Vm and PV
efficiency of GaAs solar cell

SQ limit Absorption Nonradiative SRH Experi-
Processes Processes ment [33]

A 1.83 · 1019 1.83 · 1019 4.93 · 1018 2.23 · 1018

Vm 1044 meV 1044 meV 1011 meV 999 meV 963 meV
η 33.5 % 30.1 % 29.2 % 28.8 % 27.6 %

yield is Jr
01/J01 = 0.27. According to Eq. 8, the pa-

rameter A is reduced to 4.93 · 1018. Eqs. 58 and 59 (or
Eq. 11) give Vm = 1011 meV and efficiency of 29.2 %. As
we discussed in Section IV, effect of Auger recombination
processes on PV characteristics of GaAs devices is neg-
ligible. The calculated luminescence quantum yield may
be associated with surface recombination and absorption
of the metallic mirror.

Effect of SRH recombination may be calculated in the
iterative way by Eq. 36. In terms of the dark current
components the i-iteration for Vm may be presented as

A(i) =
Jsc

J01 + J02 exp
(

− qV
(i−1)
m

2kT

) , (60)

qV (i)
m = kT · (LW(e · A(i))− 1), . (61)

The iteration process starts with the V
(0)
m , which was cal-

culated before in zero order in SRH recombination. After
several iterations we find A = 2.23 · 1018 and Vm = 999
meV. The PV efficiency is reduced by SRH recombina-
tion to 28.8 %. SRH processes also decrease the external
quantum yield, kl, from 0.27 to 0.19.

Finally, the reduction of Vm from 999 meV to exper-
imental value of 963 meV may be associated with the
series resistance. The corresponding value of the se-
ries resistance under illumination is evaluated as 1.3 Ω·
cm2. The reduction in efficiency from 28.8 % to 27.6 %
gives the value of series resistance of 1.4 Ω·cm2, which
is close to that evaluated from the Vm reduction. The
obtained series resistance under illumination is slightly
smaller than that in dark, 1.8 Ω·cm2.

Loss mechanisms and their impact on the voltage at
maximal power and PV efficiency are summarized in Ta-
ble II. As seen, the measured PV efficiency is by 5.9 % be-
low the SQ limit. The series resistance reduces efficiency
by 1.1 %, the SRH processes by 0.4 %, and other nonra-
diative recombination processes by 0.9 %. The significant
reduction of efficiency is related with limited absorption
due to contact shadowing and reflectivity. The developed
formalism allows experimentalists to make such analy-
sis with a scientific calculator or popular mathematical
packages.

Also, well-developed mathematical analysis of Lambert
W functions allows one to simplify calculations of various
PV characteristics. In particular, for LW(z) ≫ 1, the
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derivative of LW(z) has a very simple form,

dLW(z)

dz
=

LW(z)

z · (1 + LW(z))
≈

1

z
. (62)

This equation may be used for calculation of dependen-
cies of Vm and PV efficiency on the parameters of pho-
tonic flux, temperature, and material parameters. For
example, the dependence of the efficiency (Eq. 19) on
the external quantum yield is given by

dη

dkl
=

kT

ǫ∗
1

kl
=

α̃ · kT
ǫ̃

1

kl
, (63)

which clarifies efficiency reduction due to nonradiative re-
combination and SRH recombination presented in Table
II.

Summary

In summary, in this work we study the generalized
Shockley-Queisser model, which takes into account spec-
tral absorption/emission characteristics, nonradiative re-
combination processes, and photon management. For
non-interacting electrons and for electrons interacting via
Auger processes (photocarrier multiplication, Eq. 3, and
recombination, Eq. 34) we obtained exact analytical so-
lution for photovoltaic efficiency (Eq. 11), output power
(Eq. 12), and all other PV characteristics. The ob-
tained solution provides mathematical base of PV con-
version and endoreversible thermodynamics controlled by
the chemical potential. Eq. 13 present the useful en-
ergy of an absorbed photon in terms of the photo-induced
chemical potential. It generalizes the result obtained by
Henry [1] for the ideal SQ model, which ignores the non-
radiative recombination processes and absorption losses.
Eqs. 13, 15, and 16 directly show the useful energy, emis-
sion losses, and total thermal losses (electron-phonon re-
laxation and nonradiative recombination) per absorbed
photon. In the general case of interacting electrons, the
solution of gSQ model is presented in perturbative way

(Eq. 37 and 38). In particular, effects of the Shockley-
Read-Hall processes on PV characteristics are described
by Eqs. 39 and 40. Taking into account that for typ-
ical PV semiconductors the dimensionless parameter A
(the ratio of the absorption rate to the recombination
rate, Eq. 8) is huge, one can further simplify the ex-
pression for conversion efficiency (Eq. 19) and employ
asymptotic series with logarithmic functions (Eq. 17). In
this way PV efficiencies may be calculated with relatively
simple scientific calculators. The developed formalism
was applied to analyze the kinetics of photocarriers. Eq.
43 presents the universal relation between the optimal
photocarrier collection time and the photocarrier lifetime
with respect to all radiative and nonradiative processes.
We also use the detailed balance between radiative re-
combination and absorption to introduce and analyze the
averaged photon and photocarrier lifetimes (Eqs. 48, 51
and 52). Let us highlight that due to the short photo-
carrier collection time with respect to the photocarrier
lifetime, the photocarrier kinetic and transport processes
in the optimal power regime may differ from the pro-
cesses in the open circuit regime. In particular, due to
fast photocarrier collection the photon re-absorption in
the optimal power regime and its effect on photocarrier
diffusion are always negligible. Finally, we show that in
traditional devices without photon management, it is not
possible to realize simultaneously both high absorption
and fast photocarrier collection, which is required by the
optimal collection rate (Eqs. 43 and 44). In PV devices
with enhanced photon trapping and recycling, the thick-
ness of the base may be reduced below the characteristic
value (Eq. 55), at which the diffusion processes do not
limit the optimal photocarrier collection. The presented
gSQ model and its solution provide effective, convenient,
and flexible tool for optimization of modern PV devices
with effective photon trapping [9, 34–36].
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