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The prospect of computational hardware with quantum advantage relies critically on the quality
of quantum gate operations. Imperfect two-qubit gates is a major bottleneck for achieving scalable
quantum information processors. Here, we propose a generalizable and extensible scheme for a two-
qubit coupler switch that controls the qubit-qubit coupling by modulating the coupler frequency.
Two-qubit gate operations can be implemented by operating the coupler in the dispersive regime,
which is non-invasive to the qubit states. We investigate the performance of the scheme by simulating
a universal two-qubit gate on a superconducting quantum circuit, and find that errors from known
parasitic effects are strongly suppressed. The scheme is compatible with existing high-coherence
hardware, thereby promising a higher gate fidelity with current technologies.

I. INTRODUCTION

Recent developments of quantum information proces-
sor architectures have been focusing on scalability [1–5].
High-quality gate operations is one of the key perfor-
mance indicators for these intermediate-scale quantum
processors [6]. Since the gate performance ultimately
determines if a device can exhibit quantum advantage,
the development of high-quality gates in these systems
becomes an imperative. Improving gate fidelity signif-
icantly reduces the overhead needed for implementing
gate-based quantum error correcting codes and enhances
the performance of quantum simulations. The major lim-
iting factor for quantum gate operations today is the rel-
atively faulty two-qubit gate. Therefore, improving two-
qubit gate fidelity is of high priority to realize large-scale
quantum processors.

In general, there are two sources of gate errors: de-
coherence (stochastic) and non-ideal interactions (deter-
ministic). The latter includes parasitic coupling, leak-
age to non-computational states, and control crosstalk.
As one example of parasitic coupling, the next-nearest-
neighbor (N.N.N.) coupling is a phenomenon commonly
seen in many systems, including Rydberg atoms [4, 7],
trapped ions [5, 8], semiconductor spin qubits [9, 10],
and superconducting qubits [11, 12]. Often, the N.N.N.
coupling is considered spurious and introduces unwanted
interactions between qubits that are meant to be uncon-
nected.

At the same time, a coupling switch can help mit-
igate the problem of frequency crowding that exacer-
bates the effect from non-ideal interactions. Prototypes
of a tunable coupler have been demonstrated extensively
in superconducting quantum circuits [13–22]. However,
these additional elements often add architectural com-
plexity, as well as open a new channel for decoherence
and crosstalk. Among them, the gmon design [19] is
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a successful example that exhibits a two-qubit gate fi-
delity limited predominantly by decoherence. However,
the qubits’ coherence times in gmon circuits are reduced
by the tunable coupler in comparison with its predeces-
sor, the xmon design [11].

In this work, we propose a simple and broadly appli-
cable scheme for a tunable coupler and use it as a switch
for implementing high-fidelity two-qubit gates. The ap-
proach is based on a generic three-body system with
exchange-type interaction. A central component, the
coupler, frequency tunes the virtual exchange interaction
between two qubits and features a critical bias point, at
which the exchange interaction offsets the direct qubit-
qubit (N.N.N.) coupling, effectively turning off the net
coupling. Two-qubit gate operations are executed by op-
erating the coupler in the dispersive regime, strongly sup-
pressing leakage to the coupler’s excited states. We simu-
late the iSWAP gate based on an existing high-coherence
superconducting quantum hardware in our group [23] and
elsewhere [11]. We find that gate errors due to para-
sitic effects diminish drastically with increased gate time
(decreased interaction amplitude). A gate fidelity above
99.999% can be achieved in 100 ns in the absence of deco-
herence. The compatibility with high-coherence architec-
ture, the strong suppression of parasitic effects, and the
utilization of N.N.N. coupling all make our scheme a vi-
able choice for the long term as coherence times continue
to improve.

II. THE MODEL

We consider a generic system consisting of a chain of
three modes with exchange coupling between nearest and
next-nearest neighbors, as outlined in Fig. 1(a). The two
qubits (ω1 and ω2) each couple to a center tunable cou-
pler (ωc) with a coupling strength gj (j = 1, 2), as well as
to each other with a coupling strength g12. The nearest-
neighbor (N.N.) coupling is generally stronger than the
N.N.N. coupling, gj>g12>0. Without loss of generality,
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FIG. 1. (a) Sketch of a generic three-body system in a chain
geometry, where the center mode is a tunable coupler. (b)
Level diagram of the ground and one-excitation states of the
system. The ket symbol follows the chain order |ω1, ωc, ω2〉.
The round-trip arrows indicate N.N. (orange) and N.N.N.
(green) coupling. (c) Level diagrams of the reduced two-
qubit system after Schrieffer-Wolff transformation of the level
diagram in (b). Each figure corresponds to the case of an ef-
fective negative (left), zero (center), and positive (right) net
coupling, g̃. The double-headed arrows indicate the sign and
magnitude of coupling. In this example, the N.N.N. coupling
(green) is positive and fixed. The N.N. coupling (orange)
is negative and tunable with the coupler energy (solid black
line).

we begin our analysis with a two-level Hamiltonian,

H =
∑
j=1,2

1

2
ωjσ

z
j +

1

2
ωcσ

z
c +

∑
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gj (σ+
j σ
−
c + σ−j σ

+
c )

+ g12 (σ+
1 σ
−
2 + σ−1 σ

+
2 ) , (1)

where σzλ, σ+
λ and σ−λ (λ = 1, 2, c) are, respectively,

the Pauli-Z, raising and lowering operators defined in
the eigenbasis of the corresponding mode. We assume
that both qubits are negatively detuned from the cou-
pler, ∆j ≡ ωj − ωc < 0, and that the coupling is dis-
persive, gj � |∆j | (j = 1, 2). Fig. 1(b) sketches the
level structure of this system. The two qubits interact
through two channels, the direct N.N.N. coupling and
the indirect coupling via the coupler. The latter is some-
times called virtual exchange interaction [24], which can
be approximated by the Schrieffer-Wolff transformation

(SWT) U = exp
[∑

j=1,2
gj
∆j

(σ+
j σ
−
c − σ−j σ+

c )
]

[25]. The

transformation decouples the coupler from the system up
to second order in

gj
∆j

, resulting in an effective two-qubit

Hamiltonian for each mode,

H̃ =
∑
j=1,2

1

2
ω̃jσ

z
j +

[g1g2

∆
+ g12

]
(σ+

1 σ
−
2 + σ−1 σ

+
2 ) , (2)

where ω̃j = ωj +
g2
j

∆j
is the Lamb-shifted qubit frequency

and 1/∆ = (1/∆1+1/∆2) /2 < 0. Here, we have also
assumed that the coupler mode remains in its ground
state at all times.

The combined term inside the square brackets in
Eq. (2) represents the total effective qubit-qubit coupling
g̃. It can be adjusted by the coupler frequency through
∆, as well as g1 and g2, both of which may be implicitly
dependent on ωc. Thus, g̃ is a function of ωc in general.
Moreover, since ∆<0, the first term in the square brack-
ets – the virtual exchange interaction – is negative. This
enables a competition between the positive direct cou-
pling and the negative indirect coupling. As illustrated
in Fig. 1(c), g̃(ωc) can be tuned negative when the cou-
pler frequency is decreased, or positive when the coupler
frequency is increased. Most importantly, since the tun-
ability is continuous, one can always find a critical value
ωoff

c at which the two terms cancel out and thereby turn
off the coupling, i.e., g̃(ωoff

c ) = 0, as long as permitted by
the bandwidth of the coupler. Note that the dispersive-
limit condition is only an ideal requirement. In systems
with considerably greater g12, it is still possible to find
such an ωoff

c in the weakly dispersive regime (gj < |∆j |)
[26].

The tunable coupler is used as a switch by biasing its
frequency at ωoff

c during idling periods. To activate the
two-qubit interaction, one tunes the coupler frequency
to a desired value ωon

c , yielding a finite g̃(ωon
c ). The fea-

tures of this scheme are three-fold: (i) A two-qubit gate
can be performed by modulating only the coupler fre-
quency while leaving the qubits unperturbed during the
operation. (ii) By operating the coupler in the disper-
sive limit, parasitic effects from higher-order terms that
are ignored after SWT (Eq. (2)) are strongly suppressed,
leading to higher two-qubit gate fidelity. (iii) In addi-
tion, the scheme solves the problem of unwanted N.N.N.
coupling by incorporating it into the switch. For exam-
ple, if the two qubits are resonant, an iSWAP gate can
be implemented by turning on their coupling for a req-
uisite amount of time. During this process, the control
Hamiltonian σzc commutes with the qubits’ degrees of
freedom within the dispersive approximation, causing re-
duced leakage to the non-computational (coupler) state.
The non-adiabatic effect in this case is suppressed by the
relatively large qubit-coupler detuning (∆j), allowing a
shorter gate time and therefore, reduced decoherence er-
ror.

III. AN EXAMPLE

The details of how to implement the scheme in a par-
ticular modality depends on the system parameters and
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FIG. 2. (a) Circuit diagram of a superconducting circuit
implementing a tunable coupler. Each mode is constructed by
a tunable transmon qubit. (b) The ωc-dependence of 2g̃. The
crossing at 2g̃=0 (black dot) indicates the switch-off bias ωoff

c .
(c) Calculated eigenenergies of the one-excitation manifold as
a function of the coupler frequency. The parameters used are
C1 = 70 fF, C2 = 72 fF, Cc = 200 fF, C1c = 4 fF, C2c = 4.2 fF,
C12 = 0.1 fF, ω1 = ω2 = 4 GHz. We intentionally create a 5-
10% variation between C1 and C2 as well as between C1c and
C2c to emulate fabrication variation (not a requirement for
proof-of-concept). Since the two qubit modes are degenerate,
the eigenstates are symmetric (solid line) and anti-symmetric
(dashed line) combination of the their wavefunctions, and the
energy gap (shaded) corresponds to the effective coupling 2g̃
shown in (b). The inset illustrates the pulse that turns the
switch on and off, executing an iSWAP gate.

controllability. For the remainder of the paper, we will fo-
cus on an implementation using superconducting qubits
and numerically demonstrate the viability of our scheme.
Consider a three-mode circuit (ω1-ωc-ω2) outlined in
Fig. 2(a), where each pair of modes are capacitively con-
nected. Capacitive coupling with superconducting qubits
is advantageous in preserving coherence times and com-
patible with 3D integration [27]. In general, each mode
represents a superconducting quantum nonlinear oscilla-
tor formed by a dominant capacitance (C1, C2, Cc) and
a nonlinear inductance in parallel. C1, C2 and Cc are

of the same order of magnitude. Candidates for circuit
implementation include single-junction or tunable trans-
mons [28, 29], capacitively shunted flux qubits [30, 31],
or capacitively shunted fluxonium qubits [32]. The cen-
ter mode is used as a tunable coupler, which can be con-
veniently implemented with any flux-tunable circuit in
which the resonance frequency can be tuned in situ by
a time-dependent magnetic flux threading the coupler
loop. Whether the qubit frequencies need to be tun-
able depends on the kind of gate scheme to be imple-
mented. Fixed-frequency qubits can be equipped with
the cross-resonance gate [33] or the parametrically driven
gate [34]. In the example shown, we choose three tunable
transmons qubits. We note that both the qubit-coupler
capacitances Cjc (j = 1, 2) and the qubit-qubit capaci-
tance C12 are small compared to any of C1, C2 and Cc,
so the couplings are perturbative. Quantizing the cir-
cuit [35, 36], we obtain the system Hamiltonian in Eq. (1)
with coupling terms

gj ≈
1

2

Cjc√
CjCc

√
ω1ωc , j = 1, 2 (3)

g12 ≈
1

2

[
C12√
C1C2

+
C1cC2c√
C1C2C2

c

]
√
ω1ω2 . (4)

The qubit-qubit (N.N.N.) coupling g12 has two contribu-
tions. The first term in the brackets in Eq. (4) is from
the direct capacitive connection between the red and blue
nodes in Fig. 2(a). The second term is from the indirect
capacitive connection via the intermediate capacitance
network formed by C1c, C2c and Cc.

Since transmon qubits have weak anharmonicity, we
generalize our model by including multiple levels and
counter-rotating terms (see Appendix) and obtain the
effective qubit-qubit coupling strength

g̃ =
1

2

[ ωc

2∆
η − ωc

2Σ
η + η + 1

] C12√
C1C2

√
ω1ω2 , (5)

where η = C1cC2c/C12Cc, 1/Σ = (1/Σ1+1/Σ2) /2 and
Σj = ωj + ωc. The four terms in the square brackets
represent respectively the coupling strength of (i) the
virtual exchange interaction via the state |010〉 (indi-
rect qubit-qubit coupling); (ii) the virtual exchange in-
teraction via the state |111〉 (indirect qubit-qubit cou-
pling); (iii) the capacitive coupling via the intermediate
capacitance network (direct qubit-qubit coupling, indi-
rect connection); (iv) the direct capacitive coupling be-
tween nodes (direct qubit-qubit coupling, direct capaci-
tive connection). In practice, the N.N.N. capacitive con-
nection is usually much weaker than the N.N. coupling
(C12�C1c, C2c). However, since the virtual interaction
is a second-order effect, these four terms can have the
same order of magnitude in their strength. For a realis-
tic example, ω1 =ω2 = 4 GHz, ωc = 5 GHz, ∆ =−1 GHz,
C1 = C2 = Cc = 100 fF, C1c = C2c = 1 fF, C12 = 0.02 fF
(similar device parameters as measured in Ref. [11]). The
resulting dimensionless coupling strength from each con-
tribution is (i) -1.25, (ii) -0.14, (iii) 0.5 and (iv) 1.0. We
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note that the role of the last three terms is typically
disregarded in treatments of circuits similar to that in
Fig. 2(a) [24, 37]. However, as we show here, a care-
ful inclusion of these terms leads to important and non-
negligible effects.

Since the qubits are negatively detuned from the cou-
pler, we have ωc

2∆ −
ωc

2Σ + 1≤0 (combined effect of (i), (ii)
and (iii)), where the equality holds when the coupler fre-
quency goes to infinity. Surprisingly, implementing the
described circuit geometry with superconducting qubits
inherently guarantees a solution for ωoff

c where the switch
is off given any reasonable value of C12. This makes our
scheme widely applicable.

To quantify the performance, we numerically simulate
an iSWAP gate based on the model of the coupled Duff-
ing oscillators (see Appendix). An iSWAP gate can be
performed by executing half of an exchange period when

|̃01〉 and |̃10〉 are degenerate (Fig. 1(c)). However, we
emphasize that other types of two-qubit gates, such as a
controlled-phase (C-phase) gate [38] or a parametrically
driven gate [34], are also compatible with our scheme.
We first calculate the values g̃(ωc) (Fig. 2(b)) by solving
the system Hamiltonian (Fig. 2(c)), and we identify the
zero-coupling bias ωoff

c . In experiments, one may cali-
brate ωoff

c by measuring vacuum Rabi oscillations while
sweeping the coupler frequency. Next, we apply a sine
pulse of duration τ (Fig. 2(c) inset) that modulates ωc,
turning on the qubit-qubit interaction, and simulate the
time evolution by solving the master equation. For an
iSWAP gate, the time-integral of the effective coupling
satisfies

∫ τ
0

2g̃(t) dt = 1/2. The final state is tomographi-
cally analyzed after correcting the dynamic phase of each
qubit.

We performed the same protocol with various gate
lengths and with options for including T1 energy re-
laxation (uniform for all three modes) and quasistatic
flux noise. We find that the contributions from relax-
ation, dephasing and dissipationless effects are indepen-
dent from each other, so that we can discuss their in-
dividual contribution separately. First, the reduction of
fidelity from quasistatic flux noise in the coupler loop
is negligible (< 10−6) assuming a typical flux fluctu-
ation of 10µΦ0 (Φ0 is the superconducting flux quan-
tum), because when the switch is on, the sensitivity of
the coupling δg̃/δωc ≈ g̃/∆ is reduced in the dispersive
regime. Second, the gate infidelity (the error per gate)
ε due to energy relaxation follows ε = τ/T1 (We use 16
linearly independent input states when performing pro-
cess tomography [39], and there is a prefactor difference
from that estimated in randomized benchmarking [40]).
Third, gate error due to effects other than decoherence
drops quickly with increased gate time, because the ma-
jor contributions to gate error are from higher-order par-
asitic couplings and have a stronger power-law depen-
dence on the interaction strength g̃. The last two con-
tributions are illustrated in Fig. 3, where their crossings
indicate approximately the optimal operating point un-
der our scheme given certain T1 values. For example, if

T1 = 10µs, the optimal gate time and gate fidelity are
τ∗ = 35 ns and ε∗ = 3 × 10−3 (total error: 6 × 10−3),
which is comparable to the state-of-the-art results based
on tunable couplers [19]. However, the circuit model in
our example is compatible with a simpler architecture,
such as xmon qubits which have been demonstrated with
reproducibly high T1 values (20-40µs) across the chip
and low crosstalk [11]. Recent developments have also
shown T1 near 100µs with a similar architecture [23].
Given T1 = 100µs, the gate error at the optimal op-
erating point (in this case 46 ns) is 5 × 10−4 using our
scheme. Future advances in materials and fabrication
techniques will likely continue to enhance coherence. As-
suming T1 = 1 ms, our scheme can further lower the er-
ror rate to 6 × 10−5 in 66 ns. The above analysis illus-
trates that our scheme can efficiently take advantage of
improvements in coherence times with only small over-
head in gate time.
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FIG. 3. Relation between error per gate ε and gate length
τ due to energy relaxation and other parasitic effects re-
spectively. Purple circles are simulation results in the ab-
sence of decoherence (bare dynamics) and using a negative
coupler anharmonicity αc = −100 MHz, consistent with a
transmon design. The solid purple line is a power-law fit,
ε = 1.5×106 (τ/1ns)−5.7. Pink squares are simulation results
in the absence of decoherence and using a positive coupler an-
harmonicity, αc = +100 MHz, achievable using a capacitively
shunted flux qubit. The solid pink line is an exponential fit,
ε = 73 exp (−0.4 τ/1ns). Dashed lines are calculated errors
from T1 process only (different T1 values assumed). The cross-
ings between the curves in the noise-free case and the T1 case
indicate approximately the break-even point for the optimal
gate time and gate fidelity.

We further find that the remaining gate errors are
mainly caused by a parasitic partial C-phase operation
induced by high-order couplings between state |020〉 and
|101〉, with a frequency difference ∆020−101 = 2 (ωc −
ω1) + αc. Here, the anharmonicity αc is defined as the
frequency difference between the 1-2 and 0-1 transitions,
i.e., αc = ω12,c − ω01,c.
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There are several approaches to eliminate this un-
wanted effect. One solution is to use a coupler mode
with slightly positive anharmonicity to separate the two
levels further apart. Since ωc > ωc, increasing αc gives
a larger detuning ∆020−101, reducing the influence from
state |020〉. A potential candidate implementing such a
design is the capacitively shunted flux qubit [31]. Simu-
lation results with the same configuration but a coupler
anharmonicity αc = +100 MHz show significant improve-
ment compared to the case of αc = −100 MHz (Fig. 3).
By numerically calculating the time evolution of the sys-
tem and checking the final state at the end of the gate
operation, we find that the remaining errors are largely
due to leakage to the excited states of the coupler. We
also find that these errors exhibit an inverse exponential
dependence on the gate duration, as shown in Fig. 3. An
alternative solution is to perform the gate in the positive-
g̃ regime. By turning up ωc and entering deeper into the
dispersive regime, unwanted effects can be suppressed.
However, the gate speed is limited by the direct cou-
pling (C12). In the future, engineering a reproducible
and stronger N.N.N. coupling can further empower this
scheme. Finally, using optimized pulse shaping tech-
niques [41] with our scheme can mitigate gate error from
leakage and further improve fidelity.

IV. CONCLUSION

In conclusion, we propose a simple and generic scheme
for a coupler switch. The coupler can be turned off com-
pletely by offsetting the direct qubit-qubit coupling with
the virtual exchange interaction via the coupler. By op-
erating the coupler in the dispersive regime, gate errors
arising from non-ideal dynamics can be effectively sup-
pressed. We demonstrate these properties by numerically
simulating the scheme in a superconducting circuit. Our
results suggest the performance of our scheme is mainly
limited by T1. Therefore, our scheme is viable in the long
term as coherence times continue to improve.
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Appendix A: Circuit Hamiltonian and Quantization

The circuit implementing our tunable coupling scheme
is shown in Fig. 4. Each transmon qubit may be treated
as a weakly anharmonic oscillator consisting of a capac-
itor Cλ and a nonlinear inductance. The inductance is
effectively a Josephson junction with a tunable Josephson
energy,

EJλ = EJλ,Σ

√
cos2

(
πΦe,λ

Φ0

)
+ d2

λ sin2

(
πΦe,λ

Φ0

)
,

(A1)

where Φ0 = h/2e is the superconducting flux quantum,
EJλ,Σ = EJλ,L + EJλ,R is the sum of the Josephson en-

ergies and dλ =
EJλ,L

−EJλ,R

EJλ,L
+EJλ,R

is the junction asymme-

try [28]. For simplicity, the self capacitance of Josephson
junctions has been merged into Cλ.

We choose node fluxes φλ (denoted in Fig. 4) as the
generalized coordinates of the system [35, 36]. The sys-
tem Lagrangian is

L =T − U , (A2)

T =
1

2
[C1φ̇

2
1 + Ccφ̇

2
c + C2φ̇

2
2 + C1c(φ̇1 − φ̇c)2

+ C2c(φ̇2 − φ̇c)2 + C12(φ̇1 − φ̇2)2] , (A3)

U =EJ1

(
1− cos

(
2π

Φ0
φ1

))
+ EJc

(
1− cos

(
2π

Φ0
φc

))
+ EJ2

(
1− cos

(
2π

Φ0
φ2

))
, (A4)

where T and U are respectively the kinetic and potential
energy. The kinetic energy can be rewritten in a compact

form as T = 1
2
~̇φ T C ~̇φ, where ~φ = [φ1, φc, φ2] and C is a

3×3 capacitance matrix:

C =

C1 + C1c + C12 −C1c −C12

−C1c Cc + C1c + C2c −C2c

−C12 −C2c C2 + C2c + C12


(A5)

From the Lagrangian, the generalized momenta qλ –
canonical conjugates to the node fluxes – are the node
charges

qλ =
∂L

∂φ̇λ
, (A6)

and we have ~q = C ~̇φ. The classical Hamiltonian can be
expressed as

H =
∑
λ

qλφ̇λ − L =
1

2
~q T [C−1]~q + U , (A7)
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C2cC1c

C1

φ1

Φe,1 Φe,c Φe,2

φ2φc

C2Cc

C12
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FIG. 4. Circuit diagram of the implemented superconducting circuits, consisting of qubit mode “1” (red), qubit mode “2” (blue)
and coupler mode “c” (black). Each mode is a tunable transmon qubit. EJλ,L(R)

is the Josepshon energy of the left(right)

junction in mode λ. Cλ is the dominant mode capacitance. Cjc (j = 1, 2) is the coupling capacitance between qubit j and
coupler. C12 is the direct coupling capacitance between the two qubits. Φe,λ is the external magnetic flux threading each loop.
φλ is the reduced node flux.

where C−1 is the inverse capacitance matrix.

C−1 =
1

||C||

A11 A12 A13

A21 A22 A23

A31 A32 A33


≈

 1
C1

C1c

C1Cc

C12+(C1cC2c)/Cc

C1C2
C1c

C1Cc

1
Cc

C2c

CcC2
C12+(C1cC2c)/Cc

C1C2

C2c

CcC2

1
C2

 (A8)

||C|| = C1CcC2 + C1CcC2c + CcC2C12 + C1C2C1c

+ (C1 + C2 + Cc)(C1cC2c + C2cC12 + C12C1c)

≈ C1CcC2 (A9)

A11 = C2Cc + C2(C1c + C2c) + Cc(C2c + C12)

+ C1cC2c + C2cC12 + C12C1c

≈ C2Cc (A10)

A22 = C1C2 + C1(C12 + C2c) + C2(C12 + C1c)

+ C1cC2c + C2cC12 + C12C1c

≈ C1C2 (A11)

A33 = C1Cc + C1(C1c + C2c) + Cc(C12 + C1c)

+ C1cC2c + C2cC12 + C12C1c

≈ C1Cc (A12)

A12 = A21 = C2C1c + (C12C1c + C1cC2c + C2cC12)

≈ C2C1c (A13)

A23 = A32 = C1C2c + (C12C1c + C1cC2c + C2cC12)

≈ C1C2c (A14)

A31 = A13 = CcC12 + C1cC2c + (C12C1c + C2cC12)

≈ CcC12 + C1cC2c (A15)

In Eqs. (A8-A15), we assume that the qubit-coupler

coupling capacitances are smaller than any mode capac-
itance but bigger than the qubit-qubit coupling capaci-
tance. That is, C12 � Cjc � Cλ. However, the magni-

tude of the factor η = C1cC2c

C12Cc
is unspecified and can be

on the order of unity, so the two terms on the r.h.s. of
Eq. (A15) can be comparable.

Using canonical quantization, we obtain the quantum-
mechanical Hamiltonian,

Ĥ = 4EC1(n̂1)2 − EJ1 cos

(
2π

Φ0
φ̂1

)
+ 4ECc(n̂c)2

− EJc
cos

(
2π

Φ0
φ̂c

)
+ 4EC2

(n̂2)2 − EJ2
cos

(
2π

Φ0
φ̂2

)
+ 8

C1c√
C1Cc

√
EC1ECc(n̂1n̂c) + 8

C2c√
C2Cc

√
EC2ECc(n̂2n̂c)

+ 8 (1 + η)
C12√
C1C2

√
EC1

EC2
(n̂1n̂2) (A16)

where the operator n̂λ = q̂λ
2e is the Cooper-pair number

operator and ECλ = e2

2Cλ
is the charging energy of the

corresponding mode.
In the transmon regime, EJλ/ECλ � 1, the system can
be described in the form of coupled Duffing oscillators
(h̄ = 1):
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Ĥ = Ĥ1 + Ĥc + Ĥ2 + Ĥ1c + Ĥ2c + Ĥ12 , (A17)

Ĥλ = ωλb̂
†
λb̂λ +

αλ
2
b̂†λb̂
†
λb̂λb̂λ , λ ∈ {1, c, 2} (A18)

Ĥjc = gj(b̂
†
j b̂c + b̂j b̂

†
c − b̂

†
j b̂
†
c − b̂j b̂c) , j = 1, 2 (A19)

Ĥ12 = g12(b̂†1b̂2 + b̂1b̂
†
2 − b̂

†
1b̂
†
2 − b̂1b̂2) , (A20)

where b̂λ(b̂†λ) denotes the annihilation (creation) operator
for the corresponding mode and

ωλ =
√

8EJλECλ − ECλ , (A21)

αλ = −ECλ , (A22)

gj =
1

2

Cjc√
CjCc

√
ωjωc , (A23)

g12 =
1

2
(1 + η)

C12√
C1C2

√
ω1ω2 . (A24)

ωλ = ω01,λ is the oscillator frequency; αλ = ω12,λ −
ω01,λ is the oscillator anharmonicity; gj and g12 are
respectively the qubit-coupler and qubit-qubit coupling
strength. Note that, in Eq. (A19), we keep not only the

usual Jaynes-Cummings interaction term (b̂†j b̂c + b̂j b̂
†
c),

but also the counter-rotating term (b̂†j b̂
†
c + b̂j b̂c), because,

as we shall discuss below, the contribution from the
double-excitation (de-excitation) interaction can also be
significant in the dispersive regime where the couple fre-
quency is substantially higher than the qubit frequency.

Appendix B: Schrieffer-Wolff Transformation

To decouple the coupler from the system, we apply the
Schrieffer-Wolff transformation

Û = exp

∑
j=1,2

[
gj
∆j

(b̂†j b̂c − b̂j b̂
†
c)− gj

Σj
(b̂†j b̂

†
c − b̂j b̂c)

] ,

(B1)

where ∆j = ωj − ωc and Σj = ωj + ωc. Compared to
the transformation operator used in Ref. [28], we add
the second term in Eq. (B1), which accounts for the
counter-rotating terms. In addition, we assume weak an-
harmonicity, i.e., αλ � ∆j , and use a uniform value ∆j

for estimating the frequency detuning. Expanding ÛĤÛ†

in the order of gk1
1 gk2

2 gk3
12 and keeping terms up to second

order, i.e., k1 + k2 + 2k3 ≤ 2 (g12 is considered a second-
order small quantity), we obtain the effective qubit-qubit
Hamiltonian

ˆ̃
H = ÛĤÛ†

= ω̃1b̂
†
1b̂1 +

α̃1

2
b̂†1b̂
†
1b̂1b̂1 + ω̃2b̂

†
2b̂2 +

α̃2

2
b̂†2b̂
†
2b̂2b̂2

+ g̃(b̂†1b̂2 + b̂1b̂
†
2) , (B2)

where

ω̃1 ≈ ω1 + g2
1

(
1

∆1
− 1

Σ1

)
, (B3)

α̃1 ≈ α1 , (B4)

ω̃2 ≈ ω2 + g2
2

(
1

∆2
− 1

Σ2

)
, (B5)

α̃2 ≈ α2 , (B6)

(B7)

g̃ ≈ g1g2

2

(
1

∆1
+

1

∆2
− 1

Σ1
− 1

Σ2

)
+ g12 . (B8)

In Eq. B2, we have assumed the coupler is in its ground

state (b̂†cb̂c = 0) and αλ is also a small quantity. In the
dispersive regime, |∆j | ≈ |Σj |, so the counter-rotating
terms do contribute significantly. The computational
states |100〉 and |001〉 exchange their energy virtually

through the Jaynes-Cummings interaction (b̂†j b̂c + b̂j b̂
†
c)

and the non-computational state |010〉, and also through

the counter-rotating term (b̂†j b̂
†
c + b̂j b̂c) and a higher non-

computational state |111〉.
Finally, substituting Eq. (A23-A24) into Eq. (B8), we

have

g̃ =
1

2

[
ωc

4

(
1

∆1
+

1

∆2
− 1

Σ1
− 1

Σ2

)
η + η + 1

]
× C12√

C1C2

√
ω1ω2 , (B9)

which recovers Eq. (5) in the main text. Assuming ω1 =
ω2 = ω,

g̃ =
1

2

[
ω2

ω2 − ω2
c

η + 1

]
C12√
C1C2

ω . (B10)

The first term in the bracket vanishes when ωc goes to
infinity. Therefore, given arbitrarily small C12 (hence
arbitrarily large η), there is a guaranteed solution for ωc

such that g̃ = 0. (η = C1cC2c/C12Cc.)
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