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ABSTRACT 

The physical origin of spectral shift of thermally generated surface phonon-polariton (SPhP) 

resonance of a silicon carbide (SiC) bulk mediated by a non-resonant film is elucidated. The 

local density of electromagnetic states (LDOS) in a non-resonant intrinsic silicon (Si) film due to 

thermal emission by SiC, derived using fluctuational electrodynamics, exhibits a local maximum 

near SPhP resonant frequency in addition to a lower frequency resonance generated by gap 

modes emerging in the vacuum gap separating the SiC and Si layers. Multiple reflections within 

the vacuum gap also induce a LDOS drop around SPhP resonant frequency. As a result, 

depending on the film thickness to vacuum gap ratio and the location where the LDOS is 

calculated in the film, the low-frequency resonance can dominate the LDOS, such that SPhP 

resonance appears to be redshifted. A similar spectral behavior is observed on the 

monochromatic radiative heat flux absorbed by the Si film. It is shown that apparent spectral (red 

and blue) shift of SPhP resonance mediated by a non-resonant film is bounded by the transverse 

                                                
† Corresponding author. Tel.: + 1 801 581 5721 
Email address: mfrancoeur@mech.utah.edu  



2 
 

and longitudinal optical phonon frequencies of SiC. This work is of importance in applications 

involving dissimilar materials, such as thermophotovoltaics and thermal rectification, where gap 

modes may significantly disrupt flux resonance. Gap modes may also be at the origin of the 

resonance redshift systematically observed in near-field thermal spectroscopy.  
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I. INTRODUCTION 

Enhancement of radiation heat transfer in the near field beyond Planck’s blackbody limit has 

been experimentally confirmed in various configurations, such as plane-plane [1-5], sphere-plane 

[6-8] and tip-plane [9]. The mechanisms responsible for this Super-Planckian radiative transfer 

are generally well understood. From a theoretical standpoint, near-field radiative transfer 

between similar resonant materials supporting surface polaritons in the infrared has been 

extensively studied [e.g., 10-14]. However, many potential applications of near-field thermal 

radiation such as thermophotovoltaics [15-19], thermal rectification [20-24], and flux modulation 

and amplification [25,26], often require dissimilar materials. While near-field radiative transfer 

between dissimilar resonant materials has been analyzed in the past [e.g., 20,26], the case of a 

resonant heat source interacting with a non-resonant layer has been essentially disregarded.  

Near-field thermal spectroscopy, a promising method for characterizing near-field thermal 

spectra [27-34], also involves dissimilar materials. In this paradigm, a probing tip is brought 

within a sub-wavelength distance from a sample. By heating either the tip or the sample, the 

thermal near field between the tip and the sample is scattered to the far zone. The detected signal 

in the far zone is spectroscopically analyzed to extract the spectral distribution of energy density 

and local density of electromagnetic states (LDOS) of the sample. Spectral characterization of 

near-field thermal energy of materials supporting surface phonon-polaritons (SPhPs) in the 

infrared, namely silicon carbide (SiC), silicon dioxide and hexagonal boron nitride, have been 

performed using various probing tip materials (intrinsic silicon [27,29], tungsten [28], platinum-

iridium [30]). In all these experiments, spectral redshifts of SPhP resonance of varying 

magnitudes (from ~ 5 cm-1 to ~ 65 cm-1) have been measured. In particular, O’Callahan et al. 

[29] experimented with a SiC sample and non-resonant probing tips made of intrinsic silicon 
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(Si), and reported spectral redshifts varying from 5 cm-1 to 50 cm-1 with respect to SPhP 

resonance of SiC (948 cm-1). Different models have been employed to interpret near-field 

thermal spectroscopy measurements [27,28,29,35,36]. However, there is a lack of study 

explaining the physical origin of resonance spectral shift arising when a non-resonant object is 

within the near field of a resonant heat source.  

The objective of this work is therefore to study the impact of a non-resonant object on the 

spectral shift of surface polariton resonance. As the radiative flux transferred from a resonant 

heat source to a non-resonant object or the energy scattered in the far zone in near-field thermal 

spectroscopy is related to the LDOS within the non-resonant object, and not to the LDOS in 

vacuum, spectral distributions of LDOS generated within a non-resonant layer due to thermal 

emission by SiC supporting SPhPs in the infrared are analyzed. In order to elucidate the physics 

of near-field radiative transfer between resonant and non-resonant materials, a plane layer 

geometry for which an analytical solution for the LDOS can be derived is adopted. It is shown 

that apparent spectral blue and redshift of SPhP resonance arises due to gap modes in the vacuum 

gap separating the SiC and non-resonant layers. In addition, the impact of SPhP spectral shift is 

analyzed on the radiative flux absorbed by the non-resonant layer.  

The rest of the paper is organized as follows. An expression for the LDOS within a non-resonant 

film made of a temporally non-dispersive and lossless material due to thermal emission by SiC is 

first derived. Next, spatial and spectral distributions of LDOS in the non-resonant layer are 

analyzed and interpreted via dispersion relations. Spectral distributions of radiative flux absorbed 

by the non-resonant film exhibiting apparent spectral shift of SPhP resonance are afterwards 

discussed. Concluding remarks are finally provided.  

II. LDOS IN A TEMPORALLY NON-DISPERSIVE AND LOSSLESS FILM 
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A. Description of the framework  

The impact of a non-resonant layer on the near-field thermal spectrum of SiC near SPhP 

resonance is analyzed using the schematic shown in Fig. 1. It is assumed that all interfaces are 

parallel, perfectly smooth, infinite along the r-direction and azimuthally symmetric with respect 

to q. The SiC and non-resonant layers, of thickness t1 and t3 respectively, are in local 

thermodynamic equilibrium, surrounded by vacuum and separated by a sub-wavelength gap of 

thickness d. Throughout this paper, SiC is emitting thermal radiation at a temperature T1 = 300 

K, while the non-resonant layer is assumed to be non-emitting (T3 = 0 K). The LDOS is 

calculated within the non-resonant film at a distance D relative to the interface 2-3.  

[Insert Fig. 1] 

FIG. 1. Schematic of the problem under consideration. The LDOS due to an emitting SiC layer 

(medium 1, T1 = 300 K) is calculated at a distance D relative to the interface 2-3 in the non-

resonant film (medium 3, T3 = 0 K). The SiC and non-resonant layers are surrounded by vacuum 

and are separated by a sub-wavelength gap of thickness d.  

The spectral energy density, u(r,w), in the non-resonant layer due to thermal emission by SiC 

can be expressed as the product of the spectral LDOS, r(r,w), and the energy of an 

electromagnetic state , where  is the angular frequency, kB is 

the Boltzmann constant, and  is the reduced Planck constant [37,38]. The formulation is 

simplified hereafter by assuming that the non-resonant layer is non-magnetic, temporally non-

dispersive and lossless. The time-averaged spectral energy density in the non-resonant layer can 

be written as [39]:  

   Θ(ω ,T ) = !ω [exp(!ω kBT )−1] w

 !
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  (1) 

where E and H are the electric and magnetic field intensities,  and  are the permittivity and 

permeability of vacuum, and  is the real part of the dielectric function of the non-resonant 

film. A more general formulation for the electromagnetic energy density valid in temporally 

dispersive and lossy media can be found in Refs. [40-42]. The LDOS is derived using Eq. (1) and 

fluctuational electrodynamics [43]. The electric and magnetic fields are expressed in terms of a 

fluctuating current induced by thermal agitation, which is in turn correlated to the local 

temperature of the heat source, T1, via the fluctuation-dissipation theorem. The details of the 

derivation are provided in the Appendix. Since this work is concerned by the near-field thermal 

spectrum of SiC near SPhP resonance, only TM-polarized evanescent modes in the non-resonant 

layer are considered. The TM evanescent component of the LDOS for the geometry shown in 

Fig. 1 is given by:  

  (2) 

where  and kzj are the parallel and perpendicular components of the wavevector with respect 

to the layer surfaces. The perpendicular wavevector in the non-resonant layer is calculated as 

, where k0 is the vacuum wavevector (= w/c0). The integration over the parallel 

wavevector in Eq. (2) is performed for , which implies that only modes that are 

evanescent in the non-resonant layer, characterized by purely imaginary perpendicular 
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wavevectors , are taken into account. The terms  and  are the Fresnel reflection 

and transmission coefficients at the interface between media i and j, while 

 is the reflection coefficient of layer . Note that 

Eq. (2) can also be used for calculating the TE evanescent component of the spectral LDOS by 

replacing the superscripts TM by TE.  

B. Analysis of spectral LDOS in intrinsic Si 

Spectral LDOS calculations are performed using a frequency-dependent dielectric function for 

SiC described by a Lorentz oscillator model , 

where , rad/s, rad/s, and  1/s [44]. In 

order to avoid complications associated with SPhP coupling within the heat source [13], it is 

assumed hereafter that the SiC emitter is optically thick such that it can be modeled as a semi-

infinite bulk. Under this assumption,  such that the reflection coefficient of layer 1, , 

reduces to the Fresnel reflection coefficient  in Eq. (2). SPhP resonance of the SiC bulk-

vacuum interface can be determined using  [39]. This condition is satisfied when 

. Solving this equation in the electrostatic limit where  >> k0, such that 

, and neglecting losses in the dielectric function of SiC, SPhP resonance of a SiC-

vacuum interface is given by  rad/s (948 cm-1). The 

case of a non-resonant film made of intrinsic Si is considered hereafter. This is justified by the 

fact that in the spectral band of interest ( rad/s to  rad/s) near SPhP resonance 

of a SiC-vacuum interface, the dielectric function of intrinsic Si shown in Fig. S1 of the 
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Supplemental Material [45],  11.7 + i0.001, is essentially frequency-independent 

and quasi-lossless ( ) [44]. In addition, intrinsic Si is a material that has been used for 

probing LDOS in near-field thermal spectroscopy [27,29].  

Spectral LDOS for Si film thickness to vacuum gap ratio, D = t3/d, of 0.1, 1 and 10 are shown in 

Fig. 2 at different locations D/t3 within the Si layer for a vacuum thickness of d = 10 nm. SPhP 

resonant frequency of the SiC-vacuum interface is identified by a vertical dashed line. For D = 

0.1, LDOS resonance is slightly redshifted, compared to SPhP resonant frequency of a SiC-

vacuum interface, to a frequency of  rad/s (946.0 cm-1) regardless of the location D/t3. 

When increasing D, a second low-frequency resonance emerges in addition to resonance near 

wres. For both D values of 1 and 10, the LDOS near SPhP resonant frequency significantly 

decreases as D/t3 increases, while the LDOS at the low-frequency resonance is a weak function 

of D/t3. As a result, at the back of the film (interface 3-4) where D/t3 is unity, SPhP resonance 

appears to be redshifted with respect to wres due to the dominance of the low-frequency mode. 

For D = 1 and 10, the low-frequency resonance occurs respectively at  rad/s (931.2 

cm-1) and  rad/s (898.2 cm-1), which lead to apparent spectral redshifts of 

 rad/s (17 cm-1) and  rad/s (49.9 cm-1) with respect to SPhP resonance.  

[Insert Figs. 2(a), 2(b) and 2(c)] 

FIG. 2. TM evanescent component of the spectral LDOS as a function of D/t3 for d = 10 nm: (a) 

D = 0.1, (b) D = 1, and (c) D = 10. SPhP resonant frequency of a SiC-vacuum interface is 

identified in all panels by a vertical dashed line.  

 ε3   (= ′ε3 + i ′′ε3) ≈
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The physical origin of SPhP resonance apparent spectral redshift is investigated hereafter by 

calculating the dispersion relation for the bulk SiC-Si film configuration. Resonance of the 

spectral LDOS can occur either when  or when  = 0 (see Eq. (2), 

and apply the simplification ). As discussed above, the former condition provides the 

resonant frequency of a SiC-vacuum interface. The latter condition corresponds to gap modes in 

the vacuum gap of thickness d separating the SiC and Si layers. The dispersion relation of the 

gap modes, , is predicted in the electrostatic limit ( ) and by neglecting losses in 

the dielectric function of SiC. The resulting dispersion relation is given by:  

  (3) 

The terms leading to LDOS resonance,  and , are plotted in Fig. 3 as 

a function of the frequency w and the normalized parallel wavevector K (= ). The term 

, accounting for multiple reflections in the vacuum gap, is shown for D 

values of 0.1, 1 and 10. SPhP resonance of a SiC-vacuum interface and the gap mode dispersion 

relation (Eq. (3)) are also included in the plots.  

[Insert Figs. 3(a), 3(b), 3(c) and 3(d)] 

FIG. 3. Spectral distribution of  (panel (a)) and  (panels (b) to (d) 

for D = 0.1, 1 and 10) per unit parallel wavevector. In all cases, the vacuum gap thickness d is 10 

nm. For a better comparison, all contour plots have the same color range.  
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The term  can be interpreted as the near-field emittance for evanescent waves in TM 

polarization of the SiC bulk, which is maximum at SPhP resonant frequency wres (see Fig. 3(a)). 

The multiple reflection term leads to a minimum around wres for small K values. This minimum 

vanishes when K is larger than approximately 40. In addition, the multiple reflection term 

induces a maximum matching a dip in the gap mode dispersion relation (see Figs. 3(b) to (d)). 

This maximum decreases in frequency and shifts toward smaller K values as D increases.  

The effect of the gap modes on the spectral LDOS can be explained by considering the largest 

parallel wavevector contributing to the LDOS at a specific location in the Si film. At location D 

in the Si layer, only evanescent modes emitted by SiC with penetration depth equal to or larger 

than (d + D) can contribute to the LDOS. Using the definition of penetration depth, , 

and the fact that  in the electrostatic limit, the maximum contributing parallel 

wavevector is estimated as  ( ). The maximum parallel 

wavevectors at the front and back surfaces of the Si film, Kmax,2-3 and Kmax,3-4, respectively, are 

plotted in Figs. 3(b) to (d). For D = 0.1, Kmax,2-3 and Kmax,3-4 are almost the same (  50), thus 

leading to a spectral LDOS that is essentially invariant within the Si film (see Fig. 2(a)). At a K 

value of approximately 50, the gap mode dispersion relation is slightly below wres. This results in 

a small spectral redshift of SPhP resonance, as observed in Fig. 2(a).  

For D = 10, the largest contributing parallel wavevectors to the LDOS at the front and back 

surfaces of the Si layer are approximately Kmax,2-3  50 and Kmax,3-4 5, respectively. For a K 

value of 50, the minimum at wres induced by the multiple reflection term has almost vanished, 

while the maximum around the gap mode dispersion relation is fully contained within the K 
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interval from 1 to 50. This leads to a LDOS having a sharp resonance near wres and a smaller, 

low-frequency mode at  rad/s. At the back surface of the Si layer where Kmax,3-4 is 

approximately 5, the situation is different. For K values between 1 and 5, the minimum at wres 

induced by the multiple reflection term significantly reduces the LDOS at SPhP resonant 

frequency, even if the near-field emittance of the bulk SiC, , is large. An important 

portion of the maximum around the gap mode dispersion relation is contained between 1 and 5, 

thus resulting in a strong, low-frequency resonance at  rad/s. The same interpretation 

is applicable to the case D = 1. As the thickness of the Si layer increases with respect to d, the 

low-frequency resonance further redshifts with respect to SPhP resonant frequency.  

In summary, multiple reflections within the vacuum gap lead to an apparent spectral redshift of 

SPhP resonant frequency near the back surface of the film by inducing a drop of LDOS at SPhP 

resonant frequency as D increases, and by generating a low-frequency LDOS resonance that is a 

weak function of D. The Si film thickness to vacuum gap ratio, D, affects the gap mode 

dispersion relation, and thus affects the spectral location of the low-frequency mode. The impact 

of D on the gap modes at the front and back surfaces of the Si film is shown in Fig. 4. In the limit 

that D , the gap mode dispersion relation at the front and back surfaces of the film 

converges to frequencies of  rad/s (943.4 cm-1) and  rad/s (871.2 cm-1), 

respectively. Obviously, gap modes vanish in the limit that D  0 (i.e., absence of Si film).  

[Insert Fig. 4] 
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FIG. 4. Gap modes as a function of the film thickness to vacuum gap ratio, D, at the front (

) and back ( ) surfaces of the intrinsic Si film. SPhP resonant 

frequency of a SiC-vacuum interface is identified by a horizontal dashed line.  

C. Limiting apparent spectral shifts of SPhP resonance  

The conclusions made in the previous section can be generalized by varying the real part of the 

dielectric function of the non-resonant film, . Using Eq. (3) in the hypothetical limit that  

0, the gap mode dispersion relation is approximately equal to  at the front surface of the film, 

independently of D; the same conclusion holds in the limit that  (see Fig. S2(a) of the 

Supplemental Material [45]). At the back of the film, there is an apparent blueshift of SPhP 

resonance when  takes values between 0 and 1. In the limit that  and D , the gap 

mode dispersion relation converges to , which constitutes the limit of SPhP resonance 

apparent blueshift (see Fig. S2(b) of the Supplemental Material [45]). In a similar way, the 

limiting apparent redshift of SPhP resonance arises when  and D , where the gap 

mode dispersion relation converges to  (see Fig. S2(b) of the Supplemental Material [45]). 

The impact of small and large  values (0.01 and 100) on LDOS profiles for a film thickness to 

vacuum gap ratio of unity is shown in Fig. S3 of the Supplemental Material [45].  

Next, the impact of SPhP spectral shift on the monochromatic radiative heat flux absorbed by the 

non-resonant layer is discussed.  

III. NET RADIATIVE HEAT FLUX ABSORBED BY AN INTRINSIC SI FILM 
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The spatial and spectral distributions of LDOS in the Si film discussed in section II.B cannot be 

directly measured. Measurable quantities in near-field radiative heat transfer include scattered 

energy in the far zone and radiative flux. Here, the flat Si film cannot scatter in the far zone 

evanescent modes emitted by the SiC bulk. A grating or a micro/nanosize probe are required to 

couple evanescent modes into propagating modes in vacuum. As such, the overall impact of the 

spatial and spectral distributions of LDOS in the Si film on a measurable quantity is assessed 

hereafter by calculating the radiative flux. The TM evanescent component of the monochromatic 

radiative flux absorbed by the Si film due to thermal emission by the SiC bulk is given by 

[14,46,47]:  

  (4) 

where only evanescent modes in Si are considered. Note that when calculating the flux, losses in 

the dielectric function of Si are taken into account using the data provided in Ref. [44] (see Fig. 

S1 of the Supplemental Material [45]).  

Figure 5 shows the spectral distribution of radiative flux (TM evanescent component) for D 

values of 0.1, 1 and 10. SPhP resonant frequency of the SiC-vacuum interface is identified by a 

vertical dashed line. For D values of 0.1 and 10, SPhP resonance near wres dominates the 

radiative flux profiles. For D = 1, the flux around the low-frequency resonance mediated by gap 

modes at  rad/s (931.2 cm-1) is larger than the flux near SPhP resonance. Thus, such 

a profile results in a large apparent SPhP resonance redshift of 17 cm-1. This analysis therefore 

suggests that near-field thermal radiation applications capitalizing on dissimilar materials, such 

as thermophotovoltaics and thermal rectification, may be affected by gap modes inducing 
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additional resonances in the flux. For a highly absorbing layer where the back surface of the film 

does not play any role, gap modes are expected to have a diminishing impact on the radiative 

flux. This is confirmed by Fig. S4 of the Supplemental Material [45], where the imaginary part 

of the dielectric function of the film, , is increased up to 10 while keeping the real part, , 

the same as for intrinsic Si. Apparent spectral redshift of SPhP resonance is visible on the flux up 

to a  value of 1, and completely disappears for a large  value of 10.   

[Insert Fig. 5] 

FIG. 5. TM evanescent component of the monochromatic radiative heat flux absorbed by 

medium 3 (Si film) due to thermal emission by medium 1 (SiC bulk, T1 = 300 K) for D = 0.1, 1 

and 10. The vacuum gap thickness d is fixed at 10 nm. SPhP resonant frequency of a SiC-

vacuum interface is identified by a vertical dashed line.  

IV. CONCLUSIONS 

The physical origin of surface polariton resonance spectral shift mediated by a non-resonant film 

was analyzed. For this purpose, a plane layer geometry where a non-resonant film located at a 

distance of 10 nm within the near-field thermal spectrum emitted by a SiC bulk was considered. 

For the case of intrinsic Si, the LDOS in the film exhibited a resonance at a frequency near SPhP 

resonance of a SiC-vacuum interface, in addition to a second, lower-frequency LDOS resonance 

emerging for film thickness to vacuum gap ratio D of 1 and 10. The spectral location of the low-

frequency LDOS resonance is a function of D, and its magnitude with respect to SPhP resonance 

depends on the location where LDOS is calculated in the Si film. Dispersion relation analysis 

revealed that the low-frequency resonance is generated by gap modes in the vacuum gap 

separating the SiC bulk and the Si film. In addition, multiple reflections within the vacuum gap 

 ′′ε3  ′ε3

 ′′ε3  ′′ε3
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induce a drop of LDOS near SPhP resonant frequency. These combined effects lead to an 

apparent spectral redshift of SPhP resonance as large as 49.9 cm-1 for a D value of 10. Similar 

conclusions were reached by calculating the monochromatic radiative flux absorbed by the Si 

film, where gap modes lead to low-frequency resonance and apparent spectral redshift of SPhP 

resonance. In general, for a polar crystal such as SiC, apparent spectral shift of surface polariton 

resonance mediated by a non-resonant film is bounded by the transverse and longitudinal optical 

phonon frequencies, wTO and wLO. Resonance spectral shift is visible on flux profiles provided 

that losses in the non-resonant film are not too large (imaginary part of the dielectric function 

approximately equal to or smaller than 1).  

The outcome of this work is important for applications capitalizing on dissimilar materials, such 

as thermal rectification and thermophotovoltaics, where gap modes may significantly affect 

resonance of the flux. In addition, despite the relative simplicity of the planar geometry, gap 

modes may explain the systematic resonance redshift measured in near-field thermal 

spectroscopy, since the scattered energy in the far zone is directly related to the LDOS in the 

probe. Accurate predictions of apparent spectral redshift in near-field thermal spectroscopy of 

the scattered energy in the far zone is beyond the scope of this work, and can potentially be 

obtained using numerical methods allowing precise modeling of the complex-shaped probing tip 

interacting with the sample [48].  
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APPENDIX: DERIVATION OF THE LOCAL DENSITY OF ELECTROMAGNETIC 

STATES (LDOS) 

The LDOS is derived using fluctuational electrodynamics, where a fluctuating current Jfl 

representing thermal emission is added to Maxwell’s equations [43]. The electric and magnetic 

fields generated at location r due to thermal emission by medium 1 (SiC) are given by:  

   (A1) 

   (A2) 

where  is the electric (magnetic) dyadic Green’s function (DGF) relating the electric 

(magnetic) field observed at r to a source located at . The ensemble average of the spatial 

correlation function of the fluctuating current is provided by the fluctuation-dissipation theorem 

[43]:  

  (A3) 

where  and  specify the state of polarization of the fluctuating current.  

The LDOS in medium 3 (assumed to be temporally non-dispersive and lossless) is derived by 

substituting the electric and magnetic fields into the spectral energy density (Eq. (1)) and by 

applying the fluctuation-dissipation theorem. After some manipulations, the spectral LDOS at 

location D in medium 3 is written as:  

   
E r,ω( ) = iωµ0 G

E
r, ′r ,ω( ) ⋅J fl ′r ,ω( )d 3 ′r

V1

∫

   
H r,ω( ) = G

H
r, ′r ,ω( ) ⋅J fl ′r ,ω( )d 3 ′r

V1

∫

( )
G
E H

 ′r

   
Jα

fl ′r ,ω( ) Jβ
fl∗ ′′r , ′ω( ) =

4ωε0 ′′ε1(ω )
π

Θ ω ,T1( )δ ′r − ′′r( )δ ω − ′ω( )δαβ

a b
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  (A4) 

where the subscript ma implies that a summation is performed over the components r, q, and z, 

while  is the Weyl component of the electric (magnetic) DGF. The Weyl components of 

the electric DGF relating the fields originating from  in medium 1 to the fields observed at  

in medium 3 are [49]:  

 (A5) 

where  and  are TE- and TM-polarized unit vectors, respectively [50]. The coefficients  

and  are amplitudes of forward (z-positive) and backward (z-negative) traveling waves in 

polarization state g in layer 3 generated by a source emitting in the forward direction. The same 

definition holds for the coefficients  and , except that the source is emitting in the 

backward direction. The Weyl components of the magnetic DGF are readily obtained from Eq. 

(A5) using . 

The amplitude coefficients needed to calculate the Weyl components of the electric and magnetic 

DGFs are determined using a transfer matrix approach [51]:  

  (A6) 

  (A7) 

  (A8) 

  
ρω ,13(Δ) =

ω ′′ε1(ω )
2c0

2π 2 kρ dkρ
0

∞
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⎞
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0
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∫

  g13mα
E ( H )

 ′z Δ
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TEŝŝ+ B3

TM p̂3
−p̂1

+( )ei[−kz 3Δ−kz1 ′z ]
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±
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   (A9) 

The spectral LDOS in medium 3 is obtained by including the amplitude coefficients in the Weyl 

components of the electric and magnetic DGFs, which are in turn substituted in Eq. (A4). The 

resulting expression is given by Eq. (2), where only the TM evanescent component in medium 3 

has been kept.  

 

  

3 32
3 34 3

zik tD r e Cg g g=



19 
 

REFERENCES 

[1] M. Lim, S. S. Lee, and B. J. Lee, Near-field thermal radiation between doped silicon 

plates at nanoscale gaps, Phys. Rev. B 91, 195136 (2015). 

[2] B. Song, D. Thompson, A. Fiorino, Y. Ganjeh, P. Reddy, and E. Meyhofer, Radiative heat 

conductances between dielectric and metallic parallel plates with nanoscale gaps, Nat. 

Nanotechnol. 11, 509 (2016). 

[3] M. P. Bernardi, D. Milovich, and M. Francoeur, Radiative heat transfer exceeding the 

blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap, 

Nat. Commun. 7, 12900 (2016). 

[4] J. I. Watjen, B. Zhao, and Z. M. Zhang, Near-field radiative heat transfer between doped-

Si parallel plates separated by a spacing down to 200 nm, Appl. Phys. Lett. 109, (2016).  

[5] M. Ghashami, H. Geng, T. Kim, N. Iacopino, S. K. Cho, and K. Park, Precision 

measurement of phonon-polaritonic near-field energy transfer between macroscale planar 

structures under large thermal gradients, Phys. Rev. Lett. 120, 175901, 2018.  

[6] E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J. J. Greffet, 

Radiative heat transfer at the nanoscale, Nat. Photonics 3, 514 (2009). 

[7] S. Shen, A. Narayanaswamy, and G. Chen, Surface phonon polaritons mediated energy 

transfer between nanoscale gaps, Nano Lett. 9, 2909 (2009). 

[8] B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernandez-Hurtado, J. Feist, 

F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, Enhancement of near-field 

radiative heat transfer using polar dielectric thin films, Nat. Nanotechnol. 10, 253 (2015). 



20 
 

[9] K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. 

Feist, M. T. H. Reid, F. J. García-Vidal, J. C. Cuevas, E. Meyhofer, and P. Reddy, 

Radiative heat transfer in the extreme near-field, Nature 528, 387 (2015). 

[10] J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, Enhanced radiative heat transfer at 

nanometric distances, Microscale Thermophys. Eng. 6, 209 (2002).  

[11] C. J. Fu and Z. M. Zhang, Nanoscale radiation heat transfer for silicon at different doping 

levels, Int. J. Heat Mass Transfer 49, 1703 (2006).  

[12] P. Ben-Abdallah, K. Joulain, J. Drevillon, and G. Domingues, Near-field heat transfer 

mediated by surface wave hybridization between two films, J. Appl. Phys. 106, 044306 

(2009).  

[13] M. Francoeur, M. P. Mengüç, and R. Vaillon, Local density of electromagnetic states 

within a nanometric gap formed between two thin films supporting surface phonon 

polaritons, J. Appl. Phys. 107, 034313 (2010).  

[14] M. Francoeur, M. P. Mengüç, and R. Vaillon, Spectral tuning of near-field radiative heat 

flux between two thin silicon carbide films, J. Phys. D: Appl. Phys. 43, 75501 (2010). 

[15]  A. Narayanaswamy and G. Chen, Surface modes for near-field thermophotovoltaics, 

Appl. Phys. Lett. 82, 3544 (2003).  

[16] M. Laroche, R. Carminati, and J.-J. Greffet, Near-field thermophotovoltaic energy 

conversion, J. Appl. Phys. 100, 063704 (2006).  

[17] M.P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, 

Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal 



21 
 

losses in nanoscale-gap thermophotovoltaic power generators, Sci. Rep. 5, 11626 (2015).  

[18]  J. DeSutter, R. Vaillon, and M. Francoeur, External luminescence and photon recycling in 

near-field thermophotovoltaics, Phys. Rev. Appl. 8, 014030 (2017).  

[19] A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, and E. Meyhofer, Nanogap 

near-field thermophotovoltaics, Nat. Nanotechnol. 13, 806 (2018). 

[20] C.R. Otey, W.T. Lau, and S. Fan, Thermal rectification through vacuum, Phys. Rev. Lett. 

104, 154301 (2010).  

[21] L. P. Wang and Z. M. Zhang, Thermal rectification enabled by near-field radiative heat 

transfer between intrinsic silicon and a dissimilar material, Nanosc. Microsc. Therm. 17, 

337 (2013).  

[22] P. Ben-Abdallah and S.-A. Biehs, Contactless heat flux control with photonic devices, 

AIP Adv. 5, 053502 (2015).  

[23] L. Tang and M. Francoeur, Photonic thermal diode enabled by surface polariton coupling 

in nanostructures, Opt. Express 25, A1043 (2017).  

[24] A. Fiorino, D. Thompson, L. Zhu, R. Mittapally, S.-A. Biehs, O. Besencenet, N. El-

Bondry, S. Shailendra, P. Ben-Abdallah, E. Meyhofer, and P. Reddy, ACS Nano 12, 5774 

(2018). 

[25] K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, Dynamic modulation of 

radiative heat transfer beyond the blackbody limit, Nano Lett. 17, 4347 (2017).  

[26] R. Messina, P. Ben-Abdallah, B. Guizal, and M. Antezza, Graphene-based amplification 

and tuning of near-field radiative heat transfer between dissimilar polar materials, Phys. 



22 
 

Rev. B 96, 045402 (2017).  

[27] A. C. Jones and M. B. Raschke, Thermal infrared near-field spectroscopy, Nano Lett. 12, 

1475 (2012). 

[28] A. Babuty, K. Joulain, P. O. Chapuis, J. J. Greffet, and Y. De Wilde, Blackbody spectrum 

revisited in the near field, Phys. Rev. Lett. 110, 146103 (2013). 

[29] B. T. O’Callahan, W. E. Lewis, A. C. Jones, and M. B. Raschke, Spectral frustration and 

spatial coherence in thermal near-field spectroscopy, Phys. Rev. B 89, 245446 (2014). 

[30] B. T. O’Callahan and M. B. Raschke, Laser heating of scanning probe tips for thermal 

near-field spectroscopy and imaging, APL Photonics 2, 021301 (2017). 

[31] A. C. Jones, B. T. O’Callahan, H. U. Yang, and M. B. Raschke, The thermal near-field: 

Coherence, spectroscopy, heat-transfer, and optical forces, Prog. Surf. Sci. 88, 349 (2013). 

[32] A. Jarzembski, C. Shaskey, and K. Park, Tip-based vibrational spectroscopy for 

nanoscale analysis of emerging energy materials, Front. Energy 12, 43 (2018). 

[33] F. Peragut, L. Cerruti, A. Baranov, J. P. Hugonin, T. Taliercio, Y. De Wilde, and J. J. 

Greffet, Hyperbolic metamaterials and surface plasmon polaritons, Optica 4, 1409 (2017). 

[34] Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. 

Mulet, Y. Chen, and J.-J. Greffet, Thermal radiation scanning tunnelling microscopy, 

Nature 444, 740 (2006). 

[35] K. Joulain, P. Ben-Abdallah, P. O. Chapuis, Y. De Wilde, A. Babuty, and C. Henkel, 

Strong tip–sample coupling in thermal radiation scanning tunneling microscopy, J. Quant. 

Spectrosc. Radiat. Transf. 136, 1 (2014). 



23 
 

[36] A. Jarzembski and K. Park, Finite dipole model for extreme near-field thermal radiation 

between a tip and planar SiC substrate, J. Quant. Spectrosc. Radiat. Transf. 191, 67 

(2017). 

[37] G. S. Agarwal, Quantum electrodynamics in the presence of dielectrics and conductors. 

III. Relations among one-photon transition probabilities in stationary and nonstationary 

fields, density of states, the field-correlation functions, and surface-dependent response 

functions, Phys. Rev. A 11, 253 (1975).  

[38] W. Eckhardt, Radiation laws in the vicinity of metallic boundaries, Z. Phys. B 46, 85 

(1982).  

[39] K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, Surface 

electromagnetic waves thermally excited: Radiative heat transfer, coherence properties 

and Casimir forces revisited in the near field, Surf. Sci. Rep. 57, 59 (2005). 

[40] R. Ruppin, Electromagnetic energy density in a dispersive and absorptive material, Phys. 

Lett. A 299, 309 (2002). 

[41] S. A. Tretyakov, Electromagnetic field energy density in artificial microwave materials 

with strong dispersion and loss, Phys. Lett. A 343, 231 (2005). 

[42] A. Narayanaswamy and G. Chen, Dyadic Green's functions and electromagnetic local 

density of states, J. Quant. Spectrosc. Radiat. Transf. 111, 1877 (2010). 

[43] S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarski, Principles of Statistical Radiophysics 3: 

Elements of Random Fields, (Springer, New York, 1989). 

[44] E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998). 



24 
 

[45] See Supplemental Material at [URL will be inserted by publisher] for figure (S1) showing 

the dielectric function of intrinsic Si, for figure (S2) showing gap modes as a function of 

the real part of the dielectric function of the non-resonant layer, for figure (S3) showing 

spectral LDOS for small and large values of the real part of the dielectric function of the 

non-resonant layer, and for figure (S4) showing the impact of losses on the 

monochromatic flux absorbed by the non-resonant layer.  

[46] R. Messina and M. Antezza, Three-body radiative heat transfer and Casimir-Lifshitz force 

out of thermal equilibrium for arbitrary bodies, Phys. Rev. A 89, 052104 (2014).  

[47] I. Latella, P. Ben-Abdallah, S.-A. Biehs, M. Antezza, and R. Messina, Radiative heat 

transfer and nonequilibrium Casimir-Lifshitz force in many-body systems with planar 

geometry, Phys. Rev. B 95, 205404 (2017).  

[48] S. Edalatpour and M. Francoeur, Near-field radiative heat transfer between arbitrarily 

shaped objects and a surface, Phys. Rev. B 94, 045406 (2016). 

[49] M. Francoeur, M. Pinar Mengüç, and R. Vaillon, Solution of near-field thermal radiation 

in one-dimensional layered media using dyadic Green's functions and the scattering matrix 

method, J. Quant. Spectrosc. Radiat. Transf. 110, 2002 (2009). 

[50] J. E. Sipe, New Green-function formalism for surface optics, J. Opt. Soc. Am. B 4, 481 

(1987). 

[51] P. Yeh, Optical Waves in Layered Media (Wiley, New York, 2005).  

 



SiC

t3

t1

ρ

z

θ

2

1

4

0

vacuum

vacuum

vacuum

∆

3

1z

2z

3z

4z

1   300T   K =

3 0T  K= 

 
d

non-resonant material



1 . 6 0 x 1 0 1 4 1 . 7 0 x 1 0 1 4 1 . 8 0 x 1 0 1 4 1 . 9 0 x 1 0 1 4
1 0 7

1 0 8

1 0 9

1 0 1 0

� r e s

D  =  0 . 1
 ∆/ t 3  =  0 . 0
 ∆/ t 3  =  0 . 2
 ∆/ t 3  =  0 . 4
 ∆/ t 3  =  0 . 6
 ∆/ t 3  =  0 . 8
 ∆/ t 3  =  1 . 0

( a )
� �

, 13
eva

n, T
M  (m

-3 [ra
d/s

]-1 )

�  ( r a d / s )



1 . 6 0 x 1 0 1 4 1 . 7 0 x 1 0 1 4 1 . 8 0 x 1 0 1 4 1 . 9 0 x 1 0 1 4
1 0 6

1 0 7

1 0 8

1 0 9
D  =  1 ( b )

 ∆/ t 3  =  0 . 0
 ∆/ t 3  =  0 . 2
 ∆/ t 3  =  0 . 4
 ∆/ t 3  =  0 . 6
 ∆/ t 3  =  0 . 8
 ∆/ t 3  =  1 . 0

� �
, 13

eva
n, T

M  (m
-3 [ra

d/s
]-1 )

�  ( r a d / s )

� r e s



1 . 6 0 x 1 0 1 4 1 . 7 0 x 1 0 1 4 1 . 8 0 x 1 0 1 4 1 . 9 0 x 1 0 1 4
1 0 4

1 0 5

1 0 6

1 0 7

1 0 8

1 0 9  ∆/ t 3  =  0 . 8
 ∆/ t 3  =  1 . 0

� r e s

D  =  1 0
 ∆/ t 3  =  0 . 0
 ∆/ t 3  =  0 . 2
 ∆/ t 3  =  0 . 4
 ∆/ t 3  =  0 . 6

( c )
� �

, 13
eva

n, T
M  (m

-3 [ra
d/s

]-1 )

�  ( r a d / s )



2 0 4 0 6 0 8 0 1 0 0
1 . 6 0 x 1 0 1 4

1 . 6 5 x 1 0 1 4

1 . 7 0 x 1 0 1 4

1 . 7 5 x 1 0 1 4

1 . 8 0 x 1 0 1 4

1 . 8 5 x 1 0 1 4

1 . 9 0 x 1 0 1 4

1

r e s�

K

( a )

�
 (ra

d/s
)

5 . 0 x 1 0 - 2

5 . 0 x 1 0 - 1

5 . 0 x 1 0 0

5 . 0 x 1 0 1

5 . 0 x 1 0 2

l o g 1 0 [ I m ( r T M2 1 ) ]

5 . 0 x 1 0 - 3



2 0 4 0 6 0 8 0 1 0 0
1 . 6 0 x 1 0 1 4

1 . 6 5 x 1 0 1 4

1 . 7 0 x 1 0 1 4

1 . 7 5 x 1 0 1 4

1 . 8 0 x 1 0 1 4

1 . 8 5 x 1 0 1 4

1 . 9 0 x 1 0 1 4
D  =  0 . 1

1

K m a x ,  3 - 4

� g a p

r e s�

5 . 0 x 1 0 - 3
( b )

K

�
 (ra

d/s
)

5 . 0 x 1 0 - 2

5 . 0 x 1 0 - 1

5 . 0 x 1 0 0

5 . 0 x 1 0 1

5 . 0 x 1 0 2

l o g 1 0 [ | 1 - r T M2 1 R T M3 e 2 i k z 2 d | - 2 ]

K m a x ,  2 - 3



2 0 4 0 6 0 8 0 1 0 0
1 . 6 0 x 1 0 1 4

1 . 6 5 x 1 0 1 4

1 . 7 0 x 1 0 1 4

1 . 7 5 x 1 0 1 4

1 . 8 0 x 1 0 1 4

1 . 8 5 x 1 0 1 4

1 . 9 0 x 1 0 1 4

r e s�

( c )
K

�
 (ra

d/s
)

5 . 0 x 1 0 - 2

5 . 0 x 1 0 - 1

5 . 0 x 1 0 0

5 . 0 x 1 0 1

5 . 0 x 1 0 2

5 . 0 x 1 0 - 3

K m a x ,  2 - 3

� g a p

K m a x ,  3 - 4

D  =  1
l o g 1 0 [ | 1 - r T M2 1 R T M3 e 2 i k z 2 d | - 2 ]

1



2 0 4 0 6 0 8 0 1 0 0
1 . 6 0 x 1 0 1 4

1 . 6 5 x 1 0 1 4

1 . 7 0 x 1 0 1 4

1 . 7 5 x 1 0 1 4

1 . 8 0 x 1 0 1 4

1 . 8 5 x 1 0 1 4

1 . 9 0 x 1 0 1 4

1

� g a p

r e s�

D  =  1 0

K

( d )

�
 (ra

d/s
)

5 . 0 x 1 0 - 2

5 . 0 x 1 0 - 1

5 . 0 x 1 0 0

5 . 0 x 1 0 1

5 . 0 x 1 0 2

5 . 0 x 1 0 - 3

l o g 1 0 [ | 1 - r T M2 1 R T M3 e 2 i k z 2 d | - 2 ]
K m a x ,  2 - 3K m a x ,  3 - 4



1 0 - 3 1 0 - 2 1 0 - 1 1 0 0 1 0 1 1 0 2 1 0 3
1 . 6 0 x 1 0 1 4

1 . 6 5 x 1 0 1 4

1 . 7 0 x 1 0 1 4

1 . 7 5 x 1 0 1 4

1 . 8 0 x 1 0 1 4

1 . 8 5 x 1 0 1 4

1 . 9 0 x 1 0 1 4

� g a p ( k � ,  m a x ,  3 - 4 )
� g a p ( k � ,  m a x ,  2 - 3 )

� r e s

�
 (ra

d/s
)

D



1 . 6 0 x 1 0 1 4 1 . 7 0 x 1 0 1 4 1 . 8 0 x 1 0 1 4 1 . 9 0 x 1 0 1 4

1 0 - 1 4

1 0 - 1 3

1 0 - 1 2

1 0 - 1 1

� r e s

 D  =  0 . 1
 D  =  1
 D  =  1 0

q �,
 1

3eva
n, T

M  (W
m-2 [ra

d/s
]-1 )

�  ( r a d / s )


	Hatamipour_et_al_Redshift_Acceptance_11-01-2018
	Figure1
	Figure2a
	Figure2b
	Figure2c
	Figure3a
	Figure3b
	Figure3c
	Figure3d
	Figure4
	Figure5

