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We introduce a multiscale framework which combines time-dependent nonequilibrium Green func-
tion (TD-NEGF) algorithm, scaling linearly in the number of time steps and describing quantum-
mechanically conduction electrons in the presence of time-dependent fields of arbitrary strength or
frequency, with classical time evolution of localized magnetic moments described by the Landau-
Lifshitz-Gilbert (LLG) equation. The TD-NEGF+LLG framework can be applied to a variety of
problems where current-driven spin torque induces dynamics of magnetic moments as the key re-
source for next generation spintronics. Previous approaches to such nonequilibrium many-body
system (like steady-state-NEGF+LLG framework) neglect noncommutativity of a quantum Hamil-
tonian of conduction electrons at different times and, therefore, the impact of time-dependent mag-
netic moments on electrons leading to pumping of spin and charge currents. The pumped currents
can, in turn, self-consistently affect the dynamics of magnetic moments themselves. Using magnetic
domain wall (DW) as an example, we predict that its motion will pump time-dependent spin and
charge currents (on the top of unpolarized DC charge current injected through normal metal leads to
drive the DW motion), where the latter can be viewed as a realization of quantum charge pumping
due to time-dependence of the Hamiltonian and left-right symmetry breaking of the two-terminal
device structure. The conversion of AC components of spin current, whose amplitude increases
(decreases) as the DW approaches (distances from) the normal metal lead, into AC voltage via the
inverse spin Hall effect offers a tool to precisely track the DW position along magnetic nanowire.
We also quantify the DW transient inertial displacement due to its acceleration and deceleration
by pulse current and the entailed spin and charge pumping. Finally, TD-NEGF+LLG as a non-
perturbative (i.e., numerically exact) framework allows us to establish the limits of validity of the
so-called spin-motive force (SMF) theory for pumped charge current by time-dependent magnetic
textures—the perturbative analytical formula of SMF theory becomes inapplicable for large frequen-
cies (but unrealistic in magnetic system) and, more importantly, for increasing noncollinearity when
the angles between neighboring magnetic moments exceed ' 10◦.

The current-driven dynamics of collinear, such as
macrospin [1–3], and noncollinear, such as domain walls
(DWs) [4–8] and skyrmions [9, 10], textures of local-
ized magnetic moments are both a fundamental prob-
lem for nonequilibrium quantum many-body physics and
a key resource for next generation spintronics [11–14].
For example, the current-driven spin torque induced
magnetization dynamics in magnetic tunnel junctions
(MTJs) [1, 3] or ferromagnet/spin-orbit-coupled-material
bilayers [8, 15, 16] can implement variety of functional-
ities, such as nonvolatile magnetic random access mem-
ories (MRAM), microwave oscillators, microwave detec-
tors, spin-wave emitters, memristors and artificial neural
networks [11–14]. The spin torque can also move DWs
and skyrmions along magnetic nanowires which underlies
racetrack [17, 18] and skyrmionic memories [19], respec-
tively, with potentially ultralow energy consumption.

The theoretical analysis of these phenomena requires
to account for the interaction of fast conduction elec-
trons, described quantum-mechanically, with slow mag-
netic moments whose dynamics can be captured by the
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classical Landau-Lifshitz-Gilbert (LLG) equation [3, 20,
21]. However, quantum transport studies of spin torque
in spin-valves [16, 22–24], MTJs [25–27] and DWs [28–34]
are typically confined to computing torque of steady cur-
rent of electrons acting on a chosen static configuration
of localized magnetic moments. Similarly, standard clas-
sical micromagnetics simulations of current-driven mag-
netization dynamics [2, 3] or motion of DWs [7, 8, 21, 35–
41] and skyrmions [42, 43] evade explicit modeling of the
flow of conduction electrons and, instead, require phe-
nomenological terms to describe the so-called adiabatic
(when propagating electron spins remain mostly aligned
or antialigned with the localized magnetic moments) and
nonadiabatic (which can have local [28–30] and nonlo-
cal [31–33] contributions) spin torques due to flowing
electrons. Deriving additional torque expressions is re-
quired in the presence of spin-orbit coupling [44, 45] or
nontrivial topology [46] of magnetic textures [47].

A handful of studies [48–52] have also attempted to
develop a multiscale combination of computational quan-
tum (or even simpler semiclassical [53–56]) transport of
conduction electrons with discretized LLG equation for
the motion of localized magnetic moments described by
the classical vectors Mi(t). However, these attempts em-
ploy steady-state nonequilibrium density matrix, strictly
applicable only to systems which do not evolve in time,
which can be expressed in terms of the lesser Green
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FIG. 1. Schematic view of a magnetic nanowire, hosting a
DW formed by noncollinear arrangement of localized mag-
netic moments (red arrows), which is attached to two normal
metal leads. The DW dynamics is induced by injecting unpo-
larized charge current from the NM leads, so that electrons
become spin-polarized as they traverse collinear magnetic mo-
ments and exert spin torque on those localized magnetic mo-
ments which are noncollinear to their spin polarization vector
(blue arrow). In turn, electrons propagating through time-
dependent potential landscape created by the localized mag-
netic moments pump time-dependent charge IL,R(t) and spin
ISαL,R(t) currents into the leads, which are superimposed on
charge and spin currents due to the applied DC or pulse
bias voltage. The electronic subsystems is modeled on a
tight-binding lattice described by the quantum Hamiltonian
in Eq. (8), whereas the localized magnetic moments are de-
scribed by the classical Hamiltonian in Eq. (6).

function G<(E) of the nonequilibrium Green function
(NEGF) formalism [57]

ρneq =
1

2πi

+∞∫

−∞

dEG<(E). (1)

Thus, such NEGF+LLG approach [48–52] naively as-
sumes that electrons respond instantaneously to time-
dependent potential introduced into the quantum Hamil-
tonian of the conduction electrons by the time evolu-
tion of Mi(t), thereby neglecting noncommutativity of the
quantum Hamiltonian at different times. On the other
hand, it is well-known that even infinitely slow dynam-
ics of Mi(t) can pump spin currents [58, 59], as well as
charge current if additional conditions are satisfied [59–
61]. Therefore, using NEGF+LLG approach precludes
taking into account self-consistent feedback [55, 62] where
the dynamics of Mi(t) leads to pumped spin currents
which, in turn, can exert additional torque and time-
retarded damping (with microscopically [63, 64] rather
than phenomenologically [65, 66] determined memory
kernel) on Mi(t) thereby modifying its dynamics. Fi-
nally, time-dependent quantum treatment of electrons is
required to describe pulse-current-induced dynamics of
Mi(t) which is of paramount importance in basic re-
search experiments [8] and, e.g., racetrack memory ap-
plications [17, 18] where usage of current pulses [67] or
their trains [68] reduces threshold current density to move
the DW while precise control of the DW position can be
achieved by tailoring pulse duration and shape [38, 69–
72].

Taking into account these effects demands to con-

TD-NEGF
ρneq(t)

LLG
Mi(t)

σ·Mi(t+ dt)

Mi(t+ dt)

SiCD(t) = Sineq(t)− Sieq

SiCD(t)×Mi(t)

FIG. 2. Scheme of TD-NEGF+LLG self-consistent loop
in which TD-NEGF calculations supply current-driven part
of electronic nonequilibrium spin density SCD(t) defined in
Eq. (3). This quantity determines spin torque entering into
the LLG equation for the dynamics of classical vectors Mi

representing localized magnetic moments. In turn, the LLG
equations supplies the time-dependent s-d interaction term,
σ ·Mi(t), for the quantum Hamiltonian of the conduction
electrons.

struct the time-dependent nonequilibrium density ma-
trix, ρneq(t). This can be accomplished using the time-
dependent NEGF (TD-NEGF) formalism [57, 73]

ρneq(t) =
1

i
G<(t, t′)|t=t′ , (2)

where the lesser Green function G<(t, t′) depends on
two-times in arbitrary nonequilibrium situations [57] [in
steady-state nonequilibrium it depends on t−t′, so it can
be Fourier transformed to energy, as utilized in Eq. (1)].
Within such more general framework, NEGF+LLG ap-
proach corresponds to taking just the lowest order of
ρneq(t) expanded in power series in small dMi/dt [74, 75],
so that G(E) and G<(E) are assumed to depend only
parametrically on time and are effectively computed for
the frozen-in-time configuration of Mi(t). For instance,
the neglected first order correction contains informa-
tion about the Gilbert damping term in the LLG equa-
tion [74, 75].

The nonequilibrium density matrix yields expectation
value of any physical quantity, such as the current-driven
(CD) part of nonequilibrium spin density

SiCD(t) = Sineq(t)− Sieq

=
~
2

Trspin [ρneq(t)σ]− ~
2

Trspin [ρeqσ]. (3)

For a given quantum Hamiltonian of conduction electron
subsystem, computing SiCD(t) microscopically generates
all relevant spin torque terms ∝ SiCD ×Mi in the LLG
equation for Mi(t). In Eq. (3), σ = (σ̂x, σ̂y, σ̂z) is the
vector of the Pauli matrices, and one has to subtract [16,
76] any nonzero equilibrium spin density (present in the
absence of current) by using the NEGF expression for
the equilibrium density matrix [57],

ρeq = − 1

π

+∞∫

−∞

dE Im G(E)f(E), (4)
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where G(E) is the retarded Green function (GF) in equi-
librium and f(E) is the Fermi distribution function (iden-
tical for both reservoirs in equilibrium)

In this study, we develop a numerically exact [i.e.,
equivalent to summing all terms in the above mentioned
power series expansion of ρneq(t)] approach denoted as
TD-NEGF+LLG. As explained schematically in Fig. 2,
TD-NEGF+LLG employs ρneq(t) in Eq. (2) to obtain
SiCD(t) via Eq. (3); which is then coupled to the LLG
equation for Mi(t); which, in turn, is used to obtain
ρneq(t) at the next time step.

The paper is organized as follows. The details of
TD-NEGF+LLG framework are introduced in Sec. I.
To demonstrate richness of novel insights made pos-
sible by this framework, we apply it to widely stud-
ied [5, 7, 21, 35–41, 72] problem of current-driven DW
motion along clean magnetic nanowire attached to two
normal metal (NM) leads, where the injected unpolarized
charge current from the NM leads is steady in Sec. II or
pulsed in Sec. IV. In Sec. III, we employ a toy system
of three precessing noncollinear spins to compare non-
perturbative results from TD-NEGF for pumped charge
current by this system to predictions of a perturbative an-
alytical formula of the so-called spin-motive force (SMF)
theory [77, 78] for time-dependent magnetization tex-
tures, thereby delineating the limits of its validity. We
conclude in Sec. V.

I. TD-NEGF+LLG FRAMEWORK

To make the discussion transparent, we use an example
of a Néel DW illustrated in Fig. 1 and described by a
smooth function [48] of the position xi of site i along the
x-axis,

Mi(t = 0) = ([cosh(XDW−xi)/W ]−1, 0, tanh(XDW−xi)/W ).
(5)

Its localized magnetic moments Mi lie entirely in the
plane when the current is zero. Here XDW is the coordi-
nate of the DW center and W = 1a is its width (in the
units of the lattice spacing a). The interaction between
localized magnetic moments, whose direction at site i is
specified by unit vector Mi while their magnitude is µM ,
is described by the classical Hamiltonian

H = −J
∑

〈ij〉

Mi ·Mj − Jsd
∑

i

SiCD ·Mi

−K
∑

i

(Mz
i )2 +D

∑

i

(My
i )2. (6)

Besides Heisenberg term with exchange interaction be-
tween the nearest neighbors of strength J = 0.1 eV,
this includes s-d interaction between conduction elec-
trons and localized magnetic moments of strength
Jsd = 0.1 eV; magnetic anisotropy (along the z-axis) of
strength K = 0.025 eV; and demagnetization (along the
y-axis) of strength D = 0.029 meV (corresponding to the
demagnetizing field of' 1 T). The Hamiltonian in Eq. (6)

determines the effective magnetic field acting on each lo-
calized magnetic moment, Bi

eff = − 1
µM

∂H/∂Mi, which

is inserted into the atomistic LLG equation (for sim-
plicity, without noise term required at nonzero tempera-
ture) [20, 21, 41]

∂Mi

∂t
= − g

1 + λ2

[
Mi ×Bi

eff + λMi ×
(
Mi ×Bi

eff

)]
.

(7)
Here g is the gyromagnetic ratio and the intrinsic Gilbert
damping parameter [79] is chosen λ = 0.01 as found in
many realistic magnetic nanowires [37, 38, 71]. Such cou-
pled LLG equations are solved by the Heun numerical
scheme [20].

The conduction electron subsystem is described by the
quantum Hamiltonian for a one-dimensional (1D) tight-
binding (TB) model of a magnetic nanowire

ĤTB = −γ
∑

〈ij〉

ĉ†i ĉj − Jsd
∑

i

ĉ†iσ ·Mi(t)ĉi, (8)

where ĉ†i = (ĉ†i↑ ĉ†i↓) is a row vector containing operators

ĉ†iσ which create an electron with spin σ =↑, ↓ at site i;
ĉi is a column vector containing the corresponding anni-
hilation operators; and γ = 1 eV is the nearest-neighbor
hopping. The TB chain described by Eq. (8) is attached
[Fig. 1] to two semi-infinite normal metal (NM) leads,
modeled by the same Hamiltonian in Eq. (8) but with
Jsd = 0. We inject through the NM leads conventional
unpolarized charge current using either DC bias volt-
age Vb, applied as electrochemical potential difference,
µL = EF + eVb/2 and µR = EF − eVb/2 between the
macroscopic reservoirs into which the left (L) and right
(R) leads are assumed to terminate, or voltage pulses of
different shape (see Fig. 8 for illustration) whose ampli-
tude is the same as the DC bias voltage. We quote the
Fermi energy EbF = EF −Eb with respect to the bottom
of the band Eb = −2.0γ of the NM leads.

The Hamiltonian in Eq. (8) contains time-dependent
term due to Mi(t) supplied [Fig. 2] by solving the system
of LLG equations displayed as Eq. (7). Thus, rigorously
it must be treated by some approach of time-dependent
nonequilibrium quantum statistical mechanics which can
yield ρneq(t) in Fig. 2. The TD-NEGF formalism [57, 73]
offers a route to ρneq(t), as shown in Eq. (2). It oper-
ates with two fundamental quantities [57]—the retarded

Gσσ
′

ii′ (t, t′) = −iΘ(t− t′)〈{ĉiσ(t), ĉ†i′σ′(t′)}〉 and the lesser

G<,σσ
′

ii′ (t, t′) = i〈ĉ†i′σ′(t′)ĉiσ(t)〉 GFs which describe the
density of available quantum states and how electrons
occupy those states, respectively.

For the device in Fig. 1 we solve a matrix integro-
differential equation [80, 81]

i~
dρneq

dt
= [HTB,ρneq] + i

∑

p=L,R

[Πp(t) + Π†p(t)], (9)

which can be viewed as the exact master equation for
an open finite-size quantum system, described by HTB,
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FIG. 3. Spatio-temporal profiles of the components of: (a)–(c) localized magnetic moments Mi(t); (d)–(f) current-driven
nonequilibrium spin density Si

CD(t) defined in Eq. (3); and (g)–(i) spin torque T ∝ SCD(t) ×Mi(t) acting on the localized
magnetic moments. The Fermi energy is Eb

F = 0.05 eV, s-d interaction between conduction electrons and localized magnetic
moments is Jsd = 0.1 eV and the applied DC bias voltage is eVb = 0.05 eV. The profiles are steady (after transient time
following switching of DC bias voltage at t = 0) for t < 1 ps, where DW is fixed at XDW = 15, but they become time-dependent
after coupling to LLG dynamics is turned on for t ≥ 1 ps.

which is attached via semi-infinite leads to much larger
macroscopic reservoirs. We use convention in which
bold-face symbols denote matrices in orbital⊗spin vec-
tor space, where the size of the orbital space is equal to
the number of sites (i = 1–50 is chosen for the central
magnetic nanowire region in Fig. 1) and the size of the
spin space is two. The matrix

Πp(t) =

∫ t

t0

dt2 [G>(t, t2)Σ<
p (t2, t)−G<(t, t2)Σ>

p (t2, t)],

(10)
is expressed in terms of the lesser/greater GF and the cor-
responding lesser/greater self-energies Σ>,<

p (t2, t) [57],
whose numerical construction in order to convert Eq. (9)
into a system of ordinary differential equations can be
found in Ref. [81]. Equation (10) yields charge current
in lead p = L,R of the device,

Ip(t) =
e

~
Tr [Πp(t)], (11)

as well as spin currents

ISαp (t) =
e

~
Tr [σ̂αΠp(t)]. (12)

We use the same units for both types of current—Ip =
I↑p + I↓p and ISαp = I↑p − I↓p—defined in terms of spin-
resolved charge currents Iσp for σ =↑, ↓ along the α-axis.
The local (bond) charge current [82] between sites i and

j is computed as

Ii→j(t) =
eγ

i~
Trspin

[
ρijCD(t)− ρjiCD(t)

]
, (13)

and the local spin currents are given by

ISαi→j(t) =
eγ

i~
Trspin

[
σ̂α

{
ρijCD(t)− ρjiCD(t)

}]
. (14)

where the current-driven part of the nonequilibrium den-
sity matrix is obtained as ρijCD(t) = ρijneq(t)− ρijeq(t).

The computational complexity of TD-NEGF calcula-
tions stems from the memory effect—the entire history
must be stored in order to accurately evolve the NEGFs.
For efficient calculation over long times and for large
number of simulated sites, we employ newly developed
TD-NEGF algorithms [80, 81] which scale linearly [73]
in the number of time steps. While we choose in this
study 1D systems, so that our results can be compared di-
rectly to previous NEGF+LLG studies of DW motion in
1D [48], the TD-NEGF+LLG calculations can also be ap-
plied to higher dimensional systems hosting noncollinear
textures like skyrmions. To study such systems, the main
limitation is the scaling of computational time for TD-
NEGF calculations with the number of sites N , which is
∼ N for small number of sites N . 102, but it becomes
∼ N3 for larger number of sites due to matrix-matrix
multiplication in Eq. (9), while maintaining ∼ t scaling
in time [81]. Other TD-NEGF algorithms can scale lin-
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FIG. 4. The position XDW of the DW center as a function
of time for Eb

F = 0.05 eV < Jsd = 0.1 eV and Eb
F = 0.15

eV > Jsd = 0.1 eV computed using TD-NEGF+LLG (solid
lines) and NEGF+LLG (dashed lines) formalisms applied to
the device in Fig. 1 with DC bias voltage eVb = 0.05 eV.

early with both system size and simulation time [83], but
they do not provide directly ρneq(t) at each time step.

We also compare our TD-NEGF+LLG framework to
related recent efforts toward hybrid time-dependent-
quantum/time-dependent-classical description of sys-
tems where conduction electrons interact with classical
localized magnetic moments. Such an approach intro-
duced in Ref. [63] has the same feedback loop illustrated
in Fig. 2, but it considers electronic subsystems as a
closed quantum system (e.g., as described by finite length
TB chain [63]) whose master equation in Eq. (9), there-
fore, does not contain second term on the right-hand side.
This makes it unsuitable for modeling of spintronic de-
vices where one has to inject or collect spin and charge
current through the attached semi-infinite leads. They
also play an essential role by converting discrete spectrum
of the central region into a continuous one, which ensures
that current reaches steady-state in the long time limit af-
ter DC bias voltage is applied, even without explicit mod-
eling of inelastic scattering processes. The approach of
Ref. [64] does include semi-infinite leads and macroscopic
reservoirs into which they terminate, but it executes va-
riety of approximations to make possible analytical solu-
tion for junctions containing a single classical localized
spin, so it is not suitable for spatially extended spin-
tronic devices with many coupled classical spins which
require numerical modeling. The quantum part of both
approaches [63, 64] generates effectively a non-Markovian
LLG equation due to additional time-retarded damp-
ing, on the top of intrinsic Gilbert damping (arising
from combined effects of spin-orbit coupling and electron-
phonon interaction [79]) that we take into account by
using nonzero λ in Eq. (7). Our TD-NEGF+LLG frame-
work also contains time-retarded damping whose memory
kernel properties will be discussed in future studies.

1 10 20 30 40 50

Site Index
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M
i
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Time = ps0.000

Video 1. Animation of Mi(t) from Fig. 3 and XDW(t) from 4
for DW motion driven by steady current due to DC bias volt-
age. We use Eb

F = 0.05 eV < Jsd = 0.1 eV in this animation.

II. DW MOTION DRIVEN BY STEADY
CURRENT: SPIN AND CHARGE PUMPING

Evolving ρneq(t) via Eq. (9) requires time step
δt = 0.1 fs for numerical stability. The spatio-temporal
profile of SiCD(t) shown in Fig. 3(d)–(f) is obtained by
plugging in thus evolved ρneq(t) into Eq. (3). This is
supplied to a system of LLG equations for Mi(t), whose
spatio-temporal profile is shown in Fig. 3(a)–(c), where
we use the same time step δt = 0.1 fs. The noncollinear-
ity at a given time between SiCD [Fig. 3(d)–(f)] and Mi

[Fig. 3(a)–(c)] generates spin torque T ∝ SiCD × Mi

on the DW (Tx and Tz determine damping-like torque
and Ty determines field-like torque [1, 16]) whose spatio-
temporal profile is shown in Fig. 3(g)–(i). Figure 3(b),
as well as Video 1 showing complete time evolution of
Mi(t), demonstrate how current-induced spin torque dis-
torts moving DW with respect to the equilibrium Néel
configuration by generating nonzero My

i 6= 0 component.
Since TD-NEGF also captures transient charge and

spin currents after the DC bias voltage is turned on
at t = 0, we first evolve conduction electron subsystem
(during t < 1 ps in Fig. 3) with fixed DW (i.e., with-
out coupling to LLG equations) until such currents be-
come steady. This ensures that at t = 1 ps, when LLG
dynamics is turned on, spatial profile of SiCD(t) com-
puted by TD-NEGF and NEGF formalisms are identical.
The position of the DW center as a function of time in
Fig. 4 computed by NEGF+LLG is similar to LLG re-
sult obtained in Fig. 1 of Ref. [21]. On the other hand,
it differs from LLG results of Ref. [35, 36] and related
NEGF+LLG results of Ref. [48] where XDW becomes
saturated after relatively short time (i.e., DW motion
comes quickly to a halt) for EF < Jsd, while DW contin-
ues to move for EF > Jsd with XDW exhibiting high-
frequency oscillations (i.e., regularly accelerating and
slowing down of the DW) due to the excitation of the spin
waves [36, 48]. This discrepancy could be due to time-
retarded damping [63, 64], present in TD-NEGF+LLG
but absent in NEGF+LLG framework, which can affect
strongly [65] spin-wave excitation.

Most importantly, TD-NEGF+LLG framework pre-

http://some.video.com/fun.mov
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FIG. 5. Charge current in the (a) left and (c) right NM leads, as well as spin currents in the (d),(g),(j) left and (f),(i),(l) right
NM leads. These currents are steady (after transient time following switching of DC bias voltage at t = 0) in the shaded area
(for t < 1 ps), where DW is fixed at XDW = 15, but they become time-dependent after coupling to LLG dynamics is turned on
for t ≥ 1 ps. Panels (b) and (e),(h),(k) depict spatio-temporal profile of the local (bond) charge and spin currents, respectively.
The parameters are chosen as Eb

F = 0.05 eV, Jsd = 0.1 eV and eVb = 0.05 eV.

dicts faster DW motion in Fig. 4 when compared to
NEGF+LLG results. This can be explained by addi-
tional torque exerted onto the DW by the pumped [58,
59] spin currents of electrons in the presence of local-
ized magnetic moment precession, as depicted in Video 1,
which is a purely time-dependent quantum-mechanical
effect absent in either LLG or NEGF+LLG simulations.
Although the difference between the TD-NEGF+LLG
and NEGF+LLG results in Fig. 4 is small over ∼ 10 ps
time interval considered, a much larger one can be ex-
trapolated as one approaches ∼ 10 ns typical time of DW
motion in experiments and applications [67–71].

The TD-NEGF+LLG framework allows us to obtain
explicitly time-dependent charge Ip [Fig. 5(a),(c)] and
spin ISαp [Fig. 5(d),(g),(j),(f),(i),(l)] currents flowing into
the NM leads in the course of DW motion, as well as
spatio-temporal profiles of local charge Ii→j [Fig. 5(b)]

and local spin ISαi→j [Fig. 5(e),(h),(k)] currents flowing
between the nearest-neighbor sites. Note that these time-
dependent currents are superimposed on the background
of injected DC charge current, or DC spin current gen-
erated by spin-polarizing effect of the localized magnetic
moments on injected DC current (the background values
can be read from the flat lines within t < 1 ps interval in
Fig. 5).

Since Video 1 of time evolution of Mi(t) shows that
three localized magnetic moments around the propagat-
ing DW center are precessing, to gain intuition about how
they induce spin and charge pumping in Fig. 5 we first
examine the simplest example of a single [Fig. 6(a)–(c)]

or up to five [Fig. 6(d) magnetic moments Mi(t) precess-
ing steadily with frequency ω and precession cone angle θ
while being coupled to an infinite 1D TB chain [59]. Such
setup—precessing spins in the center of 1D TB chain (for
illustration see Fig. 1 in Ref. [59])—pumps only spin cur-
rents in both directions, as shown in Fig. 6(b). This
problem is exactly solvable in the rotating frame, where
our result in Fig. 6(b), after transient currents in Fig. 6(a)
die away, matches analytical formula derived in Ref. [59],
thereby also validating the accuracy of TD-NEGF nu-
merical calculations. In particular, time-independent ISzp
in Fig. 6(c) exhibits standard ∝ sin2 θ dependence [58]
on the precession cone angle θ. The maximum output
in Fig. 5(d) is achieved by using three magnetic mo-
ments precessing together, which signifies interfacial na-
ture [58, 59] of spin pumping.

In addition, even single precessing magnetic moment
can pump charge current with nonzero DC component
on the proviso that the key requirement in the the-
ory of quantum charge pumping by a time-dependent
fields is satisfied [84–87]—breaking of left-right symmetry.
This requires to break inversion symmetry and/or time-
reversal symmetry. If both inversion and time-reversal
symmetries are broken dynamically, the DC component
of pumped charge current is ∝ Ω at low frequencies, as
found in standard example of quantum dot attached to
two leads and exposed to two spatially separated poten-
tials oscillating out-of-phase [84, 85]. If only one of those
two symmetries is broken, and this does not have to occur
dynamically, the DC component of the pumped current
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FIG. 6. (a),(b) Time-dependence of spin currents ISαR (t) in
the right lead of an infinite TB chain hosting a single mag-
netic moment in the middle precessing steadily with frequency
~ω = 1× 10−2 eV and cone angle θ = 45◦ in the absence of
any DC bias voltage (for illustration of this setup see Fig. 1 in
Ref. [59]). Spin currents in the left lead have the same magni-
tude, but opposite direction. (c) ISzR , which is steady in panel
(b), as a function of precession cone angle θ. (d) Scaling of
ISzR with the number of precessing magnetic moments. The

parameters are chosen as Eb
F = 2 eV and Jsd = 1 eV, as well

as J ≡ 0 in the case of more than one precessing magnetic
moment in panel (d).

∝ Ω2 at low frequencies, as found in the case of single
precessing magnetic moment with static potential bar-
rier (breaking inversion symmetry) introduced into the
1D TB chain hosting the magnetic moment [59].

Armed with this intuition, we can interpret currents
in Fig. 5(b),(e),(h),(k) as the consequence of moving DW
center pumping spin and charge currents due to the dy-
namics of magnetic moments around the DW center de-
picted in Video 1. The pumped charge current arises be-
cause the DW itself breaks the left-right symmetry while
localized magnetic moments around its center are driven
into precession by spin torque, as visualized in Fig. 3.
The collision of the DW with the right NM lead results
in its annihilation, i.e., all Mi eventually point along the
z-axis, which generates spike in the charge and spin cur-
rents in Fig. 5 around t ' 6 ps.

While variety of techniques have been developed to
determined the position of a moving DW [6, 88, 89],
they often have limitations in resolution or acquisition
speed [89]. Figure 5 shows that temporal profiles of

ISxp (t) and I
Sy
p (t) are tightly correlated with the DW

position, as well as that their amplitude increases (de-
creases) as the DW approaches (distances from) the NM
lead. Thus, converting these spin currents into AC volt-
age via the inverse spin Hall effect, which can be done

(a)

x

y

z

FIG. 7. (a) Schematic view of a toy noncollinear and non-
coplanar system, consisting of three localized magnetic mo-
ments in the middle of an infinite TB chain precessing at the
same frequency ω but with different cone angles, which pumps
spin and charge current into the semi-infinite leads in the ab-
sence of any bias voltage (Vb ≡ 0). The magnetic moments
do not interact with each other (J ≡ 0); their s-d interaction
with electrons within the TB chain is Jsd = 0.1 eV; and elec-
tronic Fermi energy is chosen as Eb

F = 3.0 eV. (b) The DC
pumping voltage between the leads as a function of ω for small
noncollinearity of magnetic moments, θ1 = 44◦, θ2 = 45◦ and
θ3 = 46◦. (c) The DC pumping voltage between the leads
as a function of θ2 while θ1 = 30◦ and θ3 = 32◦ are fixed,
and all three localized magnetic moments are precessing at
fixed frequency ~ω = 5× 10−3 eV. The voltages in panels (b)
and (c) are computed either from Eqs. (15) and (16) of the
SMF theory [77, 78] (solid line) or numerically exactly from
TD-NEGF formalism (dashed line).

experimentally with high efficiency [90], offers an electri-
cal measurement that precisely tracks the position of a
single DW propagating along magnetic nanowire.

III. TD-NEGF+LLG VS. SPIN-MOTIVE FORCE
THEORY FOR CHARGE CURRENT PUMPED

BY TIME-DEPENDENT MAGNETIC TEXTURES

The spin-motive force (SMF) [62, 77, 78, 91–100] refers
to pumping of charge and spin currents, or generation of
voltage associated with pumped charge current, by time-
dependent noncoplanar and noncollinear magnetic tex-
tures within conducting ferromagnets. In contrast to con-
ventional electromotive force induced by change of mag-
netic flux through a circuit in accord with Faraday law
of classical electromagnetism, SMF originates from spin
and can appear even in static uniform external magnetic
field (as long as such field generates dynamics of local-
ized magnetic moments). The SMF has been invoked to
explain experimental detection of electric voltage due the
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FIG. 8. The position XDW of the DW center as a function
of time, where the DW motion is induced by applying: (a)
a sequence of two successive rectangular voltage pulses; or
(b) a sequence of two successive trapezoidal voltage pulses.
The temporal characteristics of the sequence of two pulses of
opposite polarity is depicted by the dashed line, while their
magnitude |eV max

b | = 0.05 eV is the same as the DC bias volt-
age employed in Figs. 4, 5 and 6. The parameters are chosen
as Eb

F = 0.05 eV and Jsd = 0.1 eV.

motion of magnetic DW [101], magnetization reversal of
nano-particles embedded in a MTJ [102] and gyration of
magnetic vortex core [103]. Since SMF phenomenon is
certainly related to charge current pumping explored in
Sec. II, here we investigate this relationship in detail.

The voltage associated with SMF between the edges of
the wire lying along the x-axis [77]

VSMF =
1

σ0

∫
jxdx (15)

is obtained from pumped local charge current [78]

jα(r) =
Pσ0~

2e
[∂tm(r, t)× ∂αm(r, t)] ·m(r, t), (16)

where ∂t = ∂/∂t and ∂α = ∂/∂α for α ∈
{x, y, z}; σ0 = σ↑ + σ↓ is the total conductivity; and
P = (σ↑ − σ↓)/(σ↑ + σ↓) is the spin polarization of the
ferromagnet. In general, conductivities σ↑ and σ↓ for
the spin-↑ and spin-↓ bands depend on external magnetic
field due to magnetoresistive effect, but this dependence
can be neglected for transition metal ferromagnets. Simi-
larly, part of the 3×3 tensor of pumped local spin current
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Video 2. Animation of XDW(t) from Fig. 8(a) and Mi(t) for
DW motion driven by a sequence of two successive rectangular
voltage pulses.
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Video 3. Animation of XDW(t) from Fig. 8(b) and Mi(t) for
DW motion driven by a sequence of two successive trapezoidal
voltage pulses.

flowing along the α-axis is given by the vector [78]

[jSxα (r), jSyα (r), jSzα (r)] =
gµB~σ0

4e2
[∂tm(r, t)× ∂αm(r, t)]

(17)
where µB is the Bohr magneton.

Equations (16) and (17) contain only the lowest or-
der time and spatial derivatives of magnetization [104], so
that comparing them to our nonperturbative results from
TD-NEGF+LLG makes it possible to establish limits of
validity of these equations. For this purpose, we em-
ploy a toy noncoplanar and noncollinear system consist-
ing of three localized magnetic moments precessing with
the same frequency ω, which is illustrated in Fig. 7(a)
and it is akin to a system analyzed in Fig. 6(d) but with
different precession cone angles θ1, θ2 and θ3. Similarly
to studies combining classical micromagnetics with SMF
formula [105], the temporal dependence of these three lo-
calized magnetic moments is plugged into the discretized
version of Eq. (16)

jx(i) ∝ 1

a
[∂tMi(t)× (Mi+1(t)−Mi(t))] ·Mi(t)

∝ 1

a
[∂Mi(t)×Mi+1(t)] ·Mi(t), (18)

Since Eqs. (15) and (18) do not allow us to compute
charge current flowing into the leads, we plug jx(i) from

http://some.video.com/fun.mov
http://some.video.com/fun.mov
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FIG. 9. Time-dependence of charge current in the (a) left and (c) right NM leads, as well as spin currents in the (d),(g),(j) left
and (f),(i),(l) right NM leads in the course of DW motion induced by a sequence of two successive rectangular voltage pulses
depicted in Fig. 8(a). Panels (b) and (e),(h),(k) depict spatio-temporal profile of the local (bond) charge and spin currents,
respectively. The parameters are chosen as Eb

F = 0.05 eV, Jsd = 0.1 eV and eVb = 0.05 eV.

Eq. (18) into Eq. (15) to obtain the SMF voltage VSMF

between the edges of the central region in Fig. 7(a). This
is then compared to pumping voltage VTD−NEGF = Ip/G
in an open circuit computed using charge current Ip in
Eq. (11) pumped into NM leads and two-terminal con-
ductance G obtained from the Landauer formula.

For small noncollinearity between three magnetic mo-
ments in Fig. 7(a)—θ1 = 44◦, θ2 = 45◦ and θ3 =
46◦—voltages VSMF and VTD−NEGF track each other in
Fig. 7(b), while following ∝ ω dependence. This is
satisfied for all frequencies relevant for magnetization
dynamics, where the highest is in the THz range (or
~ω ∼ 0.004 eV) as encountered in the dynamics of anti-
ferromagnets [106]. However, if we fix the precession fre-
quency and change angles between neighboring magnetic
moments, we find increasing deviation between VSMF and
VTD−NEGF once the relative angles becomes & 10◦ in
Fig. 7(c), which can reach factor of two difference at large
angles.

IV. DW MOTION DRIVEN BY PULSE
CURRENT: TRANSIENT INERTIAL

DISPLACEMENT AND SPIN AND CHARGE
PUMPING

The pulse-current-driven DM motion is of particu-
lar relevance for racetrack memory applications [17, 18]
where digital information is characterized by the orienta-
tion of the magnetic domain and data processing is car-
ried out via current-induced DW motion. Thus, precise

control of the position of the DW is required to achieve
successful memory operation [38, 69–71]. Although the
DW displacement is related to current pulse duration,
it is in general not linear relation due to transient in-
ertial displacement (or automotion) [38, 69, 71, 72, 107]
appearing at current pulse onset and after pulse termi-
nation. Thus, too large transient inertial displacement
will be detrimental for racetrack memory operation. The
origin of transient inertial displacement is deformation of
the DW leading to delayed response at the current onset
and at the end of the current pulse, which then requires
to tune the duration [38, 69–71] and the shape (i.e., its
rise and fall time) [72] of the pulse. The experiments [69–
71] and classical micromagnetic simulations [38, 70, 72]
typically employ short∼ ns pulses, which generate higher
DW velocities than longer ∼ µs pulses due to easier de-
pinning by an additional force on the DW during the
pulse rise time or by a small mean distance between pin-
ning centers.

We apply a sequence of two successive voltage pulses of
opposite polarity whose temporal characteristics is shown
in Fig. 8 and whose magnitude is the same as the DC
bias voltage used in Figs. 4, 5 and 6. We use rect-
angular [Fig. 8(a)] or trapezoidal [Fig. 8(b)] pulses of
∼ ps duration to understand basic physics and reduce
computational expense. The first pulse drives DW for-
ward (i.e., in the positive x-direction in Fig. 1) and the
second pulse drives the DW backward, as illustrated by
Video 2 and 3 corresponding to Figs. 8(a) and 8(b),
respectively. Thus, in the absence of transient inertial
displacement, the DW center should return to its initial
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position in Fig. 8. The transient inertial displacement in
Fig. 8, δXDW = XDW(t = 0)−XDW(t = 5 ps), is ' 10%
of the forward displacement generated by the first pulse
and surprisingly close to transient displacement observed
in experiments where adiabatic STT drives the DW mo-
tion [71]. On the other hand, it is quite different from
transient inertial displacement estimated [38] via simple
formula, δXDW = −Wδφ/λ, using 1D model of the DW
(δφ is the angle variation of the DW, which is δφ = π in
the case of DW in Fig. 1). Thus, δXDW ∼ 10–100 nm
predicted by this formula, for typical Gilbert damping
λ ∼ 0.01–0.1 of magnetic nanowires, suggests transient
displacement comparable or much larger than the bit size
of the racetrack memory (∼ 10 nm bit size is required for
racetrack memory to be competitive to other memory de-
vices [17, 18]) which would be a significant impediment
for its operation. Since it contradicts experiments where
much smaller δXDW has been observed [71], classical mi-
cromagnetic simulations aiming to reproduce such obser-
vation have suggested [71] that engineering of extrinsic
pinning sites is necessary to obtain small δXDW.

Conversely, small δXDW we obtain in Fig. 8 for per-
fectly clean nanowires suggests the importance of inclu-
sion of time-dependent quantum transport effects, such
as spin and charge pumping generated while the DW ex-
periences acceleration and deceleration due to injected
pulse current, as well as time-retarded damping intro-
duced by TD-NEGF into the LLG equation [in addition
to the intrinsic Gilbert damping term in Eq. (7)]. Fig-
ure 9 shows spin and charge currents in the NM leads,
as well as locally between the sites of magnetic nanowire,
which emerge upon applying a sequence of two rectan-
gular pulses depicted in Fig. 9(a) and can be contrasted
to the same information presented in Fig. 6 for the case
of applied DC charge current. The charge currents in
Figs. 9(a) and 9(c) do not follow the shape of the pulse
due to additional charge current being pumped when the
DW starts of stop moving. The same applies to ISzp spin
current which in the absence of DW motion would quan-
tify spin polarization ISzp /I [108] along the z-axis after
injected unpolarized charge current becomes polarized
via propagation through magnetic nanowire depicted in
Fig. 1. The spikes in spin currents at the instants of
time where the pulse rises or decays introduce additional
terms in the LLG dynamics which are absent in classical
micromagnetics.

V. CONCLUSIONS

In conclusion, we have developed a multiscale theoreti-
cal and computational framework which self-consistently
couples time-dependent nonequilibrium quantum statis-
tical description of conduction electrons with time-
dependent classical description of localized magnetic mo-
ments. The TD-NEGF+LLG framework requires just
time-dependent quantum and classical Hamiltonians, to-
gether with device geometry, as an input for computing
the time evolution of the interacting electron–localized-
magnetic-moments many-body system in numerically ex-
act fashion. This can be contrasted with widely used
classical micromagnetic simulations [2, 3, 7, 8, 20, 21, 35–
43, 71], where propagating conduction electrons appear
only indirectly through phenomenological spin torque
terms inserted by hand into the LLG equation; or with
previous steady-state-NEGF+LLG attempts [48–52] to
couple quantum electrons to classical localized magnetic
moments where fast electrons are assumed to instanta-
neously respond to slow dynamics of localized magnetic
moments so that noncommutativity of the electronic
quantum Hamiltonian at different times is neglected. Us-
ing DW motion driven by steady or pulse injected charge
current as an example, we essentially demonstrate intro-
duction (via TD-NEGF) of quantum spin pumping by the
dynamics of localized magnetic moments and additional
time-retarded damping characterized by a memory ker-
nel [63, 64] into classical micromagnetics. In addition,
we quantify nonperturbatively charge and spin currents
pumped from time-dependent magnetic texture into the
attached NM leads. They can be used as signatures of the
dynamics of DWs, skyrmions and spin superfluids [109]
that can be detected by standard charge transport mea-
surements. The same problem of charge pumping by
time-dependent magnetic textures is also tackled by the
SMF theory [62, 77, 78, 91–100, 105]. However, its ana-
lytical formula in Eq. (16) is perturbative in nature (i.e.,
it contains only the lowest order time and spatial deriva-
tives of magnetization), and direct comparison with non-
perturbative TD-NEGF+LLG framework shows [Fig. 7]
that it fails when angles between neighboring localized
magnetic moments exceed ' 10◦.
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