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We present efficient methods to reliably characterize and tune gate–defined semiconductor spin
qubits. Our methods were developed for double quantum dots in GaAs heterostructures, but can
easily be adapted to other quantum-dot–based qubit systems. These tuning procedures include
the characterization of the inter-dot tunnel coupling, the tunnel coupling to the surrounding leads
and the identification of various fast initialization points for the operation of the qubit. Since
semiconductor-based spin qubits are compatible with standard semiconductor process technology
and hence promise good prospects of scalability, the challenge of efficiently tuning the dot’s param-
eters will only grow in the near future, once the multi–qubit stage is reached. With the anticipation
of being used as the basis for future automated tuning protocols, all measurements presented here
are fast-to-execute and easy–to–analyze characterization methods. They result in quantitative mea-
sures of the relevant qubit parameters within a couple of seconds, and require almost no human
interference.

I. INTRODUCTION

The recent developments in semiconductor based
spin qubits show their great potential as build-
ing blocks of a quantum computer and demon-
strate their promise for scalable architectures.1–9 How-
ever, with increasing number of physical qubits,
challenges like device architecture,10–12 long-range
coupling,13–17 error correction,18,19 decoherence due to
charge noise,20,21 and scalable implementation22,23 of the
control electronics24,25 will play an increasingly impor-
tant role. One further obstacle, which has not received
much attention to date, is the tuning of the qubit devices.
Especially in the case of gate-defined quantum dots, even
tuning a double quantum dot is a non-trivial task, as
each quantum dot comprises at least three electrostatic
gate–electrodes, each of which influences the number of
electrons in the dot, the tunnel coupling to the adja-
cent lead, and the inter–dot tunnel coupling. The cur-
rent practice of manually tuning the qubits is a relatively
time–consuming procedure. While it can be simplified
with improved gate designs that feature little cross talk
between different target parameters26, manual tuning is
inherently impractical for scale-up and applications.

In this work we present tuning and characterization
methods for double-quantum dots which have evolved
over the course of the experiments on two-electron spin
qubits presented in Refs. 1 and21,27–32. These procedures
are used to tune up one and two two-electron spin qubits
but they also involve aspects needed for multi-qubit de-
vices.

Complementary to Ref. 33, which shows a computer–
automated scheme for the coarse-tuning of quantum dots
into the single-electron regime, we focus here on the
fine–tuning of the spin qubit once the single-electron
regime is reached. In addition to the tuning of the in-
terdot tunnel couplings34,35, the fine–tuning includes the
adjustment and the characterization of the tunnel cou-
plings to the adjacent leads and the identification of
the energy transitions relevant for the qubit function-
ality. We exploit high–bandwidth readout by radiofre-
quency (RF)-reflectometry36,37 and present fast, easy–
to–analyze, quantitative measurements to characterize
semiconductor spin qubits. Contrary to the relatively
slow tuning based on direct current (DC) electron trans-
port through the dot,38 all scans necessary for charac-
terising a device in our scheme can be performed within
a few seconds by using pulsed gate measurements and
charge sensing with RF readout. As the tuning param-
eters of interest are obtained directly as fit parameters
and require no human intervention, these analysis meth-
ods are well suited as a basis for the full automation of
the complete tuning procedure. Such an automation will
be crucial for the scalability of any qubit that requires
tuning.

Importantly, while all measurements presented here
were performed on GaAs double quantum dots operated
as two-electron spin qubits, the procedures can easily be
adapted to other quantum-dot-like qubit systems. In par-
ticular, most aspects are not specific to GaAs or two-
electron spin qubits, as devices containing two exchange
coupled single-spin qubits39,40 are subject to very similar
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requirements. Moreover, our procedures are also adapt-
able to devices with a larger number of dots or qubits,
which will also require the adjustment of inter-dot and
dot-lead tunnel couplings.
The outline of this paper is as follows: In Sec. II we in-

troduce the device layout of the two-electron spin qubit
in GaAs, and explain the basics of the experimental setup
including the RF-reflectometry circuit. In Sec. III we
present our methods to quantitatively characterize and
fine-tune the qubit. We first motivate the use of virtual
gates, a linear combination of several gates that allows
changing specific quantum dot parameters individually.
We continue by describing the characterization of the
inter-dot tunnel coupling tc and the tunnel couplings to
the electron reservoirs, which must be tuned to certain
values for the proper operation of the qubit.
Additionally, we provide routines for locating fast–

reload points used to initialize the qubit in different
states, and the location of the energy transitions that
allow setting up a hardware feedback-loop to polarize
and stabilize the nuclear spin bath in the GaAs host
material.28

II. DEVICE LAYOUT AND EXPERIMENTAL
SETUP

All data shown in this paper were obtained from
the qubit in Refs. 1and32, depicted in Fig. 1. This is a
so–called singlet–triplet spin qubit (ST0-qubit), embed-
ded in a GaAs double quantum–dot formed by electro-
static gates (gray and blue features in Fig. 1) on top
of a two-dimensional electron gas (2DEG). The ST0-
qubit is encoded in the mz = 0 subspace of the regime
where each of dot is occupied by a single electron, i.e.
to the subspace spanned by S= (|↑↓〉 − |↓↑〉) /

√
2 and

T0 = (|↑↓〉+ |↓↑〉) /
√
2,41 where ↑ or ↓ describes the spin

state of the electron in one of the dots. This type of qubit
can be fully manipulated using only electric pulses.
In more detail, the gates depicted in gray in Fig. 1

represent DC static gates used to define the quantum
dots and to tune them into the single-electron regime.
They are heavily filtered and fed with voltages of order
1 V. The broad side gates S1 and S2 adjust the number of
electrons in quantum dot 1 and 2. The barrier gates B1
and B2 control the tunnel coupling to the leads and the
inter-dot coupling is controlled by the ”nose” and ”tail”
gates, N12 and T12.
Two additional control–gates (named RFX and RFY

and depicted in blue in Fig. 1) are used for qubit ma-
nipulation by applying mV-scale signals. They are DC-
coupled to an arbitrary waveform generator Tektronix
AWG5014C operated at 1GS/s, and attenuated by 33 dB
at various cryogenic stages to reduce thermal noise from
room temperature. Using dedicated static– and control–
gates eliminates the need for bias tees and the resulting
pulse imperfections28, and ensures a nearly flat frequency
response of the control gates from DC to a few hundred
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Figure 1. False color SEM image of a device similar to the
one used in this work, including contacting scheme. Applying
static voltages to the grey gates confines two electrons in a
double dot potential in the 2DEG of a GaAs/Al0.31Ga0.69As
heterostructure. The blue gates, RFX and RFY, are used ex-
clusively for fast manipulation. The dot on the left is used
for charge sensing of the double dot, and is embedded in
an impedance-matching circuit as the resistive element. The
crossed boxes represent ohmic contacts to the leads.

MHz, at the cost of one additional gate electrode.

The double dot is capacitively coupled to a third dot
(named sensing dot), which is used as a charge detec-
tor. Its conductance depends on the local electrostatic
landscape, allowing to read out the charge state of the
double dot.42 The spin-state of the double dot can be
probed through the sensing dot by spin-to-charge conver-
sion based on Pauli-spin-blockade.43,44 The sensing dot
is embedded as a resistive component in an impedance
matching circuit, so that the conductance through the
dot can be monitored using RF-reflectometry36,37,45 at a
local oscillator frequency of approximately 230MHz and
a bandwidth of 20MHz. We employ a setup similar to
Ref. 37, with the addition of a cryogenic circulator at base
temperature. The demodulated signal Vrf is a function
of the conductance of the sensing dot, and is recorded
using an Alazar ATS9440 digitizer board.

We typically use a hardware sample rate of 100MS/s,
which we downsample on–the–fly at full data rate to
250kHz using a multithreaded, high throughput C++-
based driver for the Alazar card. This downsampled
rate arises from a typical length of 4µs for experiments,
which usually comprises a 2.5µs long measurement win-
dow during which we power the RF-circuit. Effects of
1/f-like noise are eliminated from the data by changing
the sweep–pulse parameter after each cycle, and then av-
eraging over many repetitions of the parameter sweep to
elude slow drifts in the sensor or gate voltage configura-
tion. For a typical tuning dataset, the sweep comprises
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100 parameter values and it is repeated 1536 times for a
total measurement time of 1536 × 100 × 4µs ≈ 600ms,
and then averaged again over 1− 5 repetitions, if neces-
sary. These acquisition parameters are not yet optimized
for speed, and we expect that a speed-up of at least a fac-
tor of 10 is possible while still maintaining an adequate
accuracy of the extracted parameters.

III. FINE TUNING OF THE QUBIT

This section describes in detail the fine-tuning of a
ST0–qubit after the double dot has been tuned in the
two–electron regime, either around (2,0)-(1,1) or the
(0,2)-(1,1)) charge transition (see Fig. 2 (a))). The pro-
cedure for the coarse-tuning to this charge regime is de-
scribed in the Appendix. All measurements presented in
this section are performed using RF-reflectometry on the
sensing dot.
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Figure 2. (a) Charge stability diagram of the double dot mea-
sured using RF-reflectometry. Different values of Vrf corre-
spond to different charge ground states. (b) Fit of the stabil-
ity diagram using the model described in Sec. IIIA. Circles
and lines mark the automatically detected triple points and
the positions of the charge transition. The gray arrow rep-
resents the direction of the detuning ǫ. In both figures we
subtracted a background value due to the direct influence of
the charge sensor extracted from the fit.

A. Locating the triple points

The operation of a qubit requires the accurate char-
acterization of the charge stability diagram in the RFX–
RFY plane (here and in the following RFX and RFY
refer to the voltage applied to the respective gate). In
other words, it is necessary to know the exact position
of the triple points – the points in the charge stability
diagram where three charge states are energetically de-
generate (e.g. (1,0),(1,1) and (2,0)) – and of the so–
called lead transitions – the transitions between different
charge–states of the double dot that involve electron ex-
change with one of the reservoirs (e.g. the transition
(1, 0) ↔ (1, 1)). We present instead an automated rou-
tine, based on a measurement of the charge stability dia-
gram near the (2,0)-(1,1) transition, followed by the fit to

a simple model that allows the extraction of the relevant
parameters.
The fitting model consists of two parts. The first part

is a two-site Hubbard Hamiltonian without spin:

H =







E1,0 + v1 0 0 0
0 E1,1 + v1 + v2 tc 0
0 tc E2,0 + 2v1 0
0 0 0 E2,1 + 2v1 + v2






.

in the charge basis j ∈ {(1, 0), (1, 1), (2, 0), (2, 1)}. Here,
Ej are the basis state energies at RFX = RFY = 0, tc is
the inter-dot tunnel coupling and vi the on-site potential,
which can be calculated knowing the voltages applied to
the RF-gates Vi and their respective lever arms, including
cross-capacitances. The index i indicates RFX and RFY,
respectively (V1 = RFX and V2 = RFY). The spectrum
of this Hamiltonian can be calculated analytically to find
the charge configuration of each eigenstate at each point
in the RFX-RFY plane. Assuming that the occupation
probability of each state corresponds to thermal equilib-
rium, we obtain a vector p, describing the occupation
probabilities of the various charge basis states.
Since measurements like those presented in Fig. 2 are

slow compared to the system dynamics, we can use the
ground–state charge population vector p as input in a
linear fitting model for the charge sensor:

S = p · s+ sct,1V1 + sct,2V2 + S0, (1)

where S is the charge sensor output, s is a vector that
contains the sensor output for each charge eigenstate,
sct,i account for direct crosstalk between the RF-gates
and the sensor, and S0 is an offset. The components
of s, as well as sct,i and S0, the lever arms, the cross-
capacitances, the energies Ei, and the inter-dot tunnel-
coupling tc are treated as fitting parameters, while the
input parameters for the fit are the 2D sensor output
data and the voltages Vi applied to the RF–gates. A
typical measurement and a fit to the data is presented
in Fig. 2. From the fit parameters the position of the
triple points as well as the location of the leads transi-
tions in the RFX-RFY plane are extracted. These values
are used as reference points in all the following tuning
procedures, and to recalibrate the set-up after a charge
rearrangement. Furthermore, the direction orthogonal to
the segment where the charge states (2,0) and (1,1) are
energetically degenerate, defines the so–called detuning
axis ǫ (gray arrow in Fig. 2b). In the following, we fix
ǫ = 0 to correspond to the measurement point defined in
Sec. III E.

B. Setting up virtual gates

The first step of the tuning procedure is the coarse tun-
ing of the double dot in the two electron regime, i.e. the
identification of the (2,0)-(1,1) (or the (0,2)-(1,1)) charge
transition. This step can be based on standard quan-
tum transport measurements (see Appendix) or charge
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sensing and was automated in Ref. 33. Once the dou-
ble dot has been tuned in the appropriate charge regime,
the fine–tuning of the qubit can start. For doing so, it
is convenient to switch to virtual gates. These virtual
gates are given by a linear combination of three physical
gates (see Tab. I) that allow tuning the parameters of the
double dot while leaving the charge stability diagram in
the RFX and RFY plane unaffected. Virtual gates are
chosen such that each of them affects primarily one spe-
cific dot parameter: gates LeadY and LeadX change the
tunnel coupling to the respective lead, while the tunnel
coupling between the dots is manipulated by the virtual
gates T and N. In each case, in addition to changing the
physical gate that mostly influences the desired parame-
ter, a compensating voltage is applied to the S1 and S2
gates to cancel out any cross-capacitance effect. Virtual
gates X and Y depend only on S1 and S2 and are used
to readjust the position of features in the charge stabil-
ity diagram in case of imperfect compensation from the
virtual gates or charge rearrangements.
To obtain the virtual gate coefficients shown in Tab. I,

we focus on the lead transitions and measure how their
position in the RFX–RFY plane is shifted by the poten-
tial applied on a certain gate. To do so, we apply two
different voltages (differing typically by 2-6 mV) to each
of the DC gates in turn. For each set of voltages, we
measure the dot’s response while sweeping RFX or RFY
across both lead transitions, as shown in Fig. 3(a) for
case of the Y-lead. In these curves, the two plateaux cor-
respond to two different charge states of the double dot.
The labels close to each curve indicate the gate on which
the potential is changed. To obtain the influence of that
gate, the value of RFX (or RFY) at which the transi-
tion between the two plateaus occurs, is extracted using
a fit-model corresponding to a Fermi distribution46,

Vrf(v) = Vrf,0 + δVrfv −
1

2
A

(

1 + tanh

(

v − vlead
w

))

.

(2)

Here, v is the voltage on either the RFX or RFY sweep-
ing gate, Vrf,0 represents the background value of the
charge sensing signal Vrf , the linear term δVrfv accounts
for the direct influence of the sweeping gate on the con-
ductance through the sensor (assumed to be linear), the
third term accounts for the excess charge once an elec-
tron tunnels into or out of the quantum dot and in-
cludes a finite electron temperature and lever arm via
w, while vlead defines the position of the lead transition,
and finally A is the contrast of the transition. We use
Vrf,0, δVrf , A, w and vlead as fit parameters. The values
of vlead extracted from these fits depend on the voltage
applied to all the DC-gates, and are used to construct
a 2 × 6 cross-capacitance matrix. Virtual–gate coeffi-
cients are then extracted by inverting the appropriate
sub-matrices of the cross-capacitance matrix. Typical
values are given in Tab. I. The virtual gate coefficients
can be further fine-tuned by applying the same principle

to study the influence of the DC–gates on the location of
the triple points of the (2,0)-(1,1) charge transition or on
the position of the ST+ anti-crossing.
A similar concept is used in Ref. 2 to perform orthogo-

nal charge stability diagrams in a three-electron quantum
dot, and in Refs. 29and47.

Table I. Typical values for the coefficients of the virtual gates.
The values correspond to the ratio of change in physical gate
voltages to that of the virtual gate.

Virtual gate
LeadY LeadX T N X Y

P
h
y
si
c
a
l

g
a
te

B1 1 0 0 0 0 0
S1 -0.76 0.5 -0.52 -0.5 1.5 -2.1
T12 0 0 1 0 0 0
N12 0 0 0 1 0 0
B2 0 1 0 0 0 0
S2 0.26 -1.1 -1.25 -0.5 -3.68 1.03

C. Tunnel coupling to the leads

The next step is the tuning of the tunnel coupling to
leads X and Y (Ohmic contacts next to the RF-gates, see
Fig. 1), which act as electron reservoirs. The coupling to
these leads is controlled by the virtual gates LeadY and
LeadX, and it must be weak enough to prevent excess T1

relaxation due to cotunneling or thermal activation and,
at the same time, be strong enough to allow fast qubit
initialization within tens of nanoseconds.
To extract the tunneling time to the X lead, we ap-

ply 25 MHz square–wave pulses that force the system
to switch between the charge states (1, 0) ↔ (1, 1) (or,
equivalently, between (2, 0) ↔ (2, 1)), and use the sens-
ing dot to measure the time–dependent occupation of the
double dot. For this purpose, we average the signal over
approximately 1500 periods, recorded at a hardware sam-
pling rate of 100MS/s. A typical time trace is shown in
Fig. 3(b). Applying the square–wave pulses to regions of
charge stability (i.e. where no charge transition is possi-
ble) allows us to subtract the background due to direct
sensor coupling. The tunnelling time to the lead can be
extracted from the rise times of the response to the square
pulses, Fig. 3(b), with a lower sensitivity bound of about
25 ns determined by the bandwidth of the tank circuit
attached to the sensing dot (faster tunneling times can
be resolved with the reload sweep discussed in Sec. III E).
To fit these data, we use the model

Vrf(t, t0) =



















Vrf,0 +
1
2A

cosh
(

t0
2tl,1

)

−exp
(

t0−2t
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)

sinh
(
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) for t < t0

Vrf,0 − 1
2A

cosh
(
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(
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(
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(3)



5

-3 -2 -1 0 1

-6

-4

Tunnel coupling width: 210 µV 

0 2 4
-2

0

2

4
tl1/tl2 for X Lead :  33/28 ns

0 2 4

-6

0

4
tl1/tl2 for Y Lead:  210/490 ns

 e (mV)

t (ms)

(a) (b)

)d()c(

V
rf
 (

V
)

V
rf
 (

V
)

t (ms)

-1 0 1
RFX (mV)

Virtual gates

S1

T12

S2

B2

Figure 3. (a) To determine the influence of the various DC–
gates on the position of a lead transition, we apply two dif-
ferent voltages to each one of the DC-gates in turn. For each
set of voltages, we measure the occupation of the double dot
as we sweep across two regions in the charge stability dia-
gram. (b,c) To measure the tunnelling times to the leads, we
apply MHz-frequency square voltage–pulses across the respec-
tive lead transition, forcing an electron to be exchanged with
the respective reservoir. The tunnelling time can be extracted
from the rise time of the response signal. (d) The inter-dot
tunnel coupling is extracted by sweeping along the detuning
ǫ, recording the average charge occupancy and measuring the
broadening of the transition.

where t0 = 2µs is the half-period of the square pulse.
It produces an exponential rise and decay of the average
sensor signal with time constants tl,1 and tl,2 whenever
the gate voltage is changed. The prefactors and offsets
of the exponential rise and decay are derived from the
requirement that the curve is continuous. The same pro-
cedure is used to extract the tunnelling times to lead
Y, with the only difference that now the square pulse
has to force transitions between the charge configurations
(1, 0) ↔ (2, 0) (or (1, 1) ↔ (2, 1)).

Typical target values for tl,1(2) range from 25 ns to
50 ns. Importantly, since all initialization methods ad-
dressed here require only tunneling to one lead (see
Sec. III E–III F), the barrier to the other lead can be made
less transparent to reduce relaxation (Fig. 3(c)).

D. Inter-dot tunnel coupling

The tunnel coupling tc between the two dots is mostly
controlled by the N and T virtual gates, and determines
the strength of the exchange interaction between the two
electrons, and therefore the energy splitting J(ǫ) between
the singlet S and the triplet T0 in the (1,1) configuration.
In order to characterize the tunnel coupling, we measure
the broadening of the inter-dot transition between the
(2,0)-(1,1) charge configuration by sweeping the detun-
ing ǫ orthogonally across the (2,0)-(1,1)-transition (see
Fig. 2(a)), and recording the average charge state46 as
shown in Fig. 3(d). We typically measure each detun-
ing step for 1µs and average over 4000 scans for a total
measurement time of 0.4 s. For simplicity, we extract
the broadening of the transition by fitting Eq. (2) to the
data, rather than using the physically correct model of
an avoided crossing, as we find the difference between the
two approaches to be marginal. The value extracted for
the effective temperature w now represents the inter-dot
tunnel coupling tc. Good values for tc for the operation
of the qubit range from 18 µeV to 24 µeV, using an esti-
mated lever arm of 9.8V/eV. Smaller values of the tunnel
coupling would lead to Zener–tunnelling when sweeping
through the (2,0)-(1,1) transition, and should be there-
fore avoided.
This characterization method is limited by tempera-

ture broadening, which, in our set-up prevents tunnel
couplings below 9 µeV to be resolved. A similar ap-
proach to ours is used in Ref. 34and35 for an automated
tuning of the interdot tunnel coupling, whereas an alter-
native approach for determining the inter-dot tunnel cou-
pling based on time-resolved charge sensing is described
in Ref. 48. Furthermore, the tunnel coupling can also by
extracted by photon assisted tunneling spectroscopy.49

Compared to the presented method, both alternatives
are time-consuming and thus less attractive for our pur-
poses.

E. Locating the measurement point

The operation of a qubit relies on the ability to re-
liably initialize the qubit in a well known state and
to accurately measure the qubit’s final state.50 Histor-
ically, the standard approach for initializing a spin–
qubit in a singlet state is based on the transition cycle
T(1,1)→(1,0)→S(2,0), which requires electron exchange
with both reservoirs44 (here and in the following the no-
tation S(n,m) and T(n,m) indicates the singlet and the
triplet state in the (n,m) charge configuration, respec-
tively). Here, we present a modified version that only
relies on tunnel coupling to one lead. Compared to the
old approach, this procedure requires less tuning and en-
ables simpler future device layouts. It also allows for an
enhanced charge–detection readout–scheme51 to counter-
act the visibility loss at high magnetic field gradients.52

We first need to locate the region of metastable (1,1)
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triplets within the (2,0) ground state charge configura-
tion, i.e. the area around point M in Fig. 4(a). The lat-
ter represents a high–resolution charge stability diagram,
indicating the thresholds of the relevant transitions. To
identify the region of metastable (1,1) triplets, we repeat-
edly apply the pulse scheme M-R1-R2-M, while sweeping
through the RFX-RFY plane by adding a DC-offset to
the RF-gates, waiting wait for 200 ns at points R1 and
R2.

44,53 Data acquired during the pulse sequence is dis-
carded, and we read out the state of the system only at
the final point M. If, during a scan, point M falls deep
into one of the charge–stability regions, we then simply
observe the same response as in a charge scan without
pulses applied (see Fig. 2). However, if the pulse sequence
M-R1-R2-M drives the system through three stability re-
gions as indicated in Fig. 4(a), the measured signal will
then have a value between the one corresponding to the
(2,0) charge state and that of the (1,1) state. The reason
is that when we step from R1 to R2, we initialize at ran-
dom either a singlet S(2,0) or a triplet T(2,0) state. If
the system is in the T(2,0) state, then it tunnels into the
(1,1) configuration when we step back to point M. Vice
versa, if the system in R2 is in the S(2,0) state, it re-
mains in this state. In this way, we map out the so-called
measurement triangle (or trapezoid, if the singlet-triplet
splitting is smaller than the inter-dot charge coupling, as
in Fig. 4), i.e. the region of the RFX-RFY plane where
Pauli spin blockade allows for spin–charge conversion.

To determine the position of the singlet reload point,
we extend the pulse scheme to M-R1-R2-M-S-M (see
Fig. 4(c)), by including an additional 100 ns pause at
point S. When point S stays energetically between the
(1,1)-T(2,0) and (1,1)-S(2,0) transitions (see Fig. 2), then
electron exchange with the Y-reservoir will lead to the
initialization of a (2,0) singlet state. If this is the case,
measuring the state of the system back at point M will
give a value of Vrf corresponding to the (2,0) charge state,
instead of the intermediate value observed with the M-
R1-R2-M pulse scheme. Scanning the position of the
pulse cycle over the RFX-RXY plane (the relative po-
sition of the points M, R1,2 and S is kept fixed) maps out
the area known as “mouse bite”, visible in see Fig. 4(d).

Once the ”mouse bite” has been identified, we also
know a suitable position of point S for fast initialization
of the qubit in the S(2,0) state. To further optimize the
position of S, we repeat the pulse sequence M-R1-R2-M-
S-M, but now sweeping the position of point S perpendic-
ularly to the (2,0)-(1,0) transition–line, while keeping all
other points of the sequence fixed. In particular, point
M has to lay within the ”mouse bite”. As before, we
measure the state of the system only in the final point
M. The response signal Vrf shows a plateau as a function
of the position of point S, at the signal-level of the (2,0)
charge ground state, see Fig. 5(a). The two ridges where
the signal increase represent the onset of the transitions
(1,0)→ S(2,0) and (1,0)→ T(2,0), respectively. The op-
timal position of point S for the operation of the qubit
lays symmetrically between these two points.

RFX (mV)

R
F

Y
 (

m
V

)

 

 

-4 -2 0 2 4

4

2

0

-2

-4
-40

-35

-30

-25

-20

-15

S(2,0)
(1,0)

(1,1)(1,0)

(2,1)

M T+

ST+S

R1

R2

T(2,0)
(1,0)

(1,1) (2,1)

SL

SL

T0

S
T

0 S
S

LS
L

S
L

(a)                                                                                   (b)

(1
,1

)
T(

2,
0)

(1
,1

)
S(

2,
0)

E
n

e
rg

y

     via
component

J

(2,0)

S

T

Vrf (V)

RFX (mV)
R

F
Y

 (
m

V
)

 

 

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2

3

4

RFX (mV)

R
F

Y
 (

m
V

)

 

6

5

4

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2

3

4

M
S

R1

R2

M

R1

R2

S

)d()c( Vrf (V)

Figure 4. (a) High–resolution charge stability diagram around
the (2,0)-(1,1)-transition used to define the two-electron spin
qubit. Important points used to initialize the qubit in dif-
ferent states and for measurement, are marked by dots, and
further explained in the main text. Transitions are labeled
in white. (b) Diagram showing the energy relaxation cascade
used to initialize the (1,1) ground state |↑↑〉 at point T+ (see
Sec. III F). SL⊗ ↓ (↑) denotes the state of a singlet state in the
left quantum dot and an down (up)-state in the right dot. Ar-
rows indicate relaxation via electron exchange with the (2,1)
charge configuration. (c) Charge stability diagram measured
using the pulse sequence M-R1-R2-M (see Sec. III E). The
measurement trapezoid appears as an area where the read-
out signal Vrf is between the values corresponding to the
S(2,0) and to the (1,1) configurations (turquoise–yellowish
area). The blurred boundaries of the readout trapezoid re-
flect a failure of the random load pulse sequence rather than
instabilities. (d) Adding a wait time at point S after the pulse
sequence from (c) maps out the “mouse-bite” (yellow area
within the measurement trapezoid), i.e. the region of singlet
reload within the measurement triangle (see Sec. III E).

In a last characterization scan, we fix point S at the
optimal position and repeat the pulse sequence M-R1-R2-
M-S-M now varying the waiting time t at point S. Again,
we measure the state of the system only in the final point
M. The longer we wait in point S, the higher the prob-
ability to initialize a singlet S(2, 0), and therefore the
lower the value of Vrf measured at point M, see Fig.5(b).
We fit these date with a simple exponential decay

Vrf(t) = Vrf,0 +Ae
−

t
tload , (4)
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where Vrf,0, A and tload are fit parameters. For a well–
tuned dot, the singlet reload–time tload typically lies in
the range of 10 to 50 ns. This characterization scan is
complementary to the one presented in Sec. III C. It ex-
ploits the full time resolution of 1 ns of the AWG, as it is
not limited by the bandwidth of the readout tank circuit.
Having identified an optimal singlet–reload point and

characterised the singlet reload–time tload, in the rest of
this paper whenever write “initializing the qubit in the
singlet S(2,0) state” we mean the following procedure: i)
go to the optimal point S, ii) wait in this position for ∼
5 tload, iii) move to measurement point M. Note that this
initialization procedure requires only electron exchange
with one lead, which means that only one tunnel barrier
has to be tuned to find an optimal operation regime.
Moreover, the initialization time is simply given by the
tunnel coupling to this lead, and can be as fast as a few
tens of nanoseconds.

F. Locating the triplet T+ reload point

A fundamental technique for the operation of qubits
based on GaAs is dynamical nuclear polarization (DNP).
This technique is used for stabilizing the surrounding
bath of nuclear spin, and relies on the ability to initialize
the (1,1) ground state T+.

28 Originally, this was done
exploiting both the (2,1)-(1,1) and the (1,0)-(1,1) transi-
tions, i.e. allowing electron exchange with both leads38.
Here we report a different approach, again based on tun-
neling only to one lead. The trick is to exploit the re-
laxation cascade shown in Fig. 4(b), which characterizes
the region of the stability diagram close to the (1,1)-(2,1)
transition. In the presence of an external magnetic field
Bext, the triplet T+ represents the ground state of the
(1,1) charge configuration, and transitions from the (2,1)
ground-state to the excited states of the (1,1) configura-
tion are not energetically allowed close to the (1,1)-(2,1)
boundary. Hence, if we initialize the qubit in the S(2,0)
state, and then pulse to a point T+ close to the (1,1)–
(2,1) transition, (see Fig. 2(a)) the qubit either ends up
directly into the T+ state, or it will eventually reach this
state at the end of the relaxation cascade sketched in
Fig. 2(b). Importantly, for this to happen we need to
ensure that the exchange interaction satisfy the require-
ment Bext > J(ǫ) > ∆Bz, which is necessary for having
sufficient mixing between the |↑↓〉, |↓↑〉 states and the
full relaxation to the T+ ground state. Here ∆Bz is the
difference of magnetic field in the two dots.
To find the optimal T+ reload point in the charge sta-

bility diagram, we perform the following sweep. We ini-
tialize the qubit in the S(2,0) state and then pulse to
point T+ without crossing the upper triple point to avoid
measurement artefacts. The distance between T+ and
the upper triple–point has to be chosen such as to ful-
fil the energy requirement Bext > J(ǫ) > ∆Bz . After
a waiting time of 100ns to allow energy relaxation, we
switch back to the measurement point M and measure
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Figure 5. (a) To determine the optimal position of the singlet
reload point, we shift the position of point S in the pulse
sequence M-R1-R2-M-S-M along the direction δS (see text and
Fig. 4(a)). The optimal position for S, is in the middle of
the plateau of low Vrf values. (b) The singlet reload–time is
extracted by applying the pulse sequence M-R1-R2-M-S-M,
and measuring the triplet return–probability as a function of
the waiting time t at point S. (c,d) The positions of the T+

reload–point and of the ST+ transition can be determined
using the pulse sequences described in Sec. III F and IIIG
respectively, and result in peaks in the measured Vrf signals
as function of the displacemente δT and of the detuning ǫ.

the state of the system. We repeat this procedure while
sweeping the position of point T+ by δT, perpendicularly
to the direction of the (1,1)→(2,1) transition (Fig. 4(a)).
The optimal position of point T+ appears as a maximum
of Vrf as function of δT (see Fig. 5(c)), indicating that in-
deed a triplet was initialized while waiting at point T+.
To extract the exact position of the reload point, we use a
phenomenological model motivated by Eq. (2) and given
by

Vrf(δT) = Vrf,0+
1

2
A1

(

1 + tanh

(

δT − δtl,1
w

))

−1

2
A2

(

1 + tanh

(

δT − δtl,2
w

))

(5)

to fit the data. The position of the T+ point is then given
by (δtl,1 + δtl,2)/2.

G. Locating the ST+-transition

In addition to the location of the T+-reload point, it
is also necessary to know the location of the S-T+-anti-
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crossing to perform DNP. To find the latter, we follow
Ref. 43 and initialize the qubit in the singlet state, then
change the detuning ǫ, wait 100 ns at a given detuning,
and then return to the measurement point and read out
the final qubit state. When the detuning is at the S-T+

anti-crossing, the hyperfine and the spin-orbit interaction
can turn the initialized S-state into an T+-state, giving
rise to a maximum in the measured Vrf as a function of
ǫ. Because the location of the ST+ transition strongly
depends on the local magnetic field, any unintentional
polarization, for example, due to hyperfine mediated spin
flips at the ST+ transition, shifts the precise position
of the anti-crossing. To avoid this problem, we include
pauses of a few milliseconds at the end of each ǫ-sweep, to
allow any unintentional polarization to relax. If needed,
we average over a few different sweeps, and fit our data
with a Gaussian model

Vrf(ǫ) = Vrf,0 + δVrfǫ +Ae−
(ǫ−ǫstp)2

2w2 (6)

to extract the position ǫstp of the ST+ transition (Vrf,0,
δVrf , A, ǫstp and w are fit parameters).
Not only is this position crucial for the pulsed DNP

scheme but, in combination with the T+ reload point,
it is also used as an anchor point in the charge stability
diagram. Adjusting the dot using the X and Y virtual
gates to obtain the same values for the ST+ and T+ scan
after a small charge–switching event usually restores all
quantum dot parameters, and results in the same J(ǫ)
relation. Furthermore, the position of the ST+ crossing is
used to automatically determine switching events20,54,55

that shift the whole transition by several mV.

H. Tuning workflow

To summarize, once the (2,0)-(1,1) charge transition
has been identified, the typical fine-tuning workflow of
a ST0–qubit starts by defining the virtual gates. The
next step is to bring the tunnel couplings to the leads in
the right regime. Then, the singlet reload point S and
the measurement triangle are determined. The energy
splitting J(ǫ) of the qubit is subsequently tuned by ad-
justing the inter-dot tunnel coupling. A working scan of
the S-T+ transition as described in Sec. IIIG is a good
indicator of a suitable inter-dot tunnel coupling for the
operation of the qubit. Usually, tuning the tunnel cou-
plings is an iterative procedure, as adjusting the T and
N virtual gates used to tune the inter-dot coupling also
affects the coupling to the leads a little. Finally, the
position of the T+ reload point is determined. During
the whole tuning procedure we periodically check the ex-
act position of the (2,0)-(1,1) transition by recording a
charge stability diagram. The triple points, which act as
anchor points, are extracted automatically by a fit that
includes a model of the charge transition, as described
in Sec. III A. The lower triple point is used as a refer-
ence for the measurement point, and either an offset on

the RF-gates or on the virtual gates X and Y is used
to center the transition accordingly. The fit stability of
all scans requires a signal-to-noise ratio of the order of 5
(measured as the ratio of a transition step size to the rms-
fluctuation away from the transition in a charge stability
diagram). To ensure a high sensitivity, we periodically
check the sensing dot operating point (see Sec. A 1) by
performing line scans through the charge stability dia-
gram in Fig. 6) and adjust the sensor dot gate voltages
accordingly. Manual retuning to restore the quantum dot
parameters once the charge sensor becomes insensitive or
a charge rearrangement occurs takes in general a few it-
erations of performing the various characterization scans
and adjusting the gate voltages, and can be typically per-
formed in a couple of minutes.

IV. CONCLUSION

This paper provides a detailed description of tuning
and characterization routines that we use to realize a
ST0 qubit in a GaAs double quantum dot. We describe
efficient methods to determine the tunnel couplings be-
tween the dots and to the leads, and methods to locate
the various points in the charge stability diagram that are
needed for the operation of the qubit itself or for pulsed
feedback DNP.

While all relevant quantitative double dot parameters
are already obtained automatically, the decision of how
to adjust the gate voltages is currently man-made by the
operator, based on experience. A crucial next step is to
also automate this step. One complication is that the ef-
fect of the T and N gates on the inter-dot tunnel coupling
changes substantially in different regions of gate voltage
space, or when charge rearrangements in the vicinity of
the dot occur, including even sign changes. This behav-
ior renders tuning algorithms based exclusively on pre-
calibrated gradient information ineffective, but could be
addressed with more sophisticated, adaptive approaches.
For example, the use of a Kalman filter56 to continuously
update the response tensor based on the recent tuning
history appears promising. Hence, we are confident that
the procedures described here will be a very useful basis
for reaching that goal. Such advances will be indispens-
able as soon as the number of qubits increases substan-
tially. It will likely also be necessary and possible to
detect data sets affected by charge rearrangements, e.g.
by plausibility checks on the fit parameters and residuals.

While all measurements presented in this paper were
performed on a GaAs double quantum dot operated as
ST0 qubit, the only procedures that are GaAs-specific
are those needed to set up DNP operating points. All
other tuning methods are equally adaptable to Si-based
devices.
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Appendix A: Coarse tuning of the quantum dots

In this appendix we cover the first step of tuning the
device to either the (2,0)-(1,1) or the (1,1)-(0,2)-charge-
transition. Additionally, we describe the tuning of the
adjacent quantum dot used for charge sensing of the qubit
dots. These methods have hardly changed compared to
standard quantum transport measurements38 and will
need further refinement33 for automation. They are in-
cluded here for completeness. For the initial coarse tun-
ing of the double dot, instead of using RF-reflectometry,
we directly measure the conductance through the double
dot and through the sensing dot (see Fig. 1). To do so,
we apply a voltage bias of 100 µV across the devices. The
resulting currents are converted to voltages (named VSD

and VD for the sensing dot and double dot, respectively)
using a home-built IV-converter and measured with a
lock-in amplifier.

1. Tuning of the sensing dot

The first step in the tuning procedure is to set up
charge detection through the sensing dot. This requires
finding a set of voltages applied to the sensing dot gates
SB1, SB2 and SP (gate names are defined in Fig. 1) such
that the conductance through the dot is maximally sen-
sitive to the local electrostatic potential. To do so, we
measure Vrf while performing a two-dimensional scan
with the sensing dot gates SB2 vs. SB1&SP. Since Vrf

depends on the conductance through the dot, Coulomb
oscillations appear in the measured signal when the ap-
plied voltages are sufficiently negative to make the source
and drain barriers opaque. Fig. 6 shows a region in gate
voltage space that shows the typical pattern of a single
quantum dot.58 In this particular sample, SP and SB1
were shorted and thus had to be kept on the same po-
tential. Usually, SP can be used to fine–tune the dot and
to shift it closer to the double quantum dot. To obtain
the best charge sensitivity, the voltages applied to SB2
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Figure 6. Characteristic charge stability–diagram of the sens-
ing dot, measured with RF-reflectometry. Depending mono-
tonically on the conductance through the dot, Vrf shows
Coulomb oscillations once the source and drain barriers are
sufficiently opaque. Tuning the sensor to a sensitive position
(see circle) allows for charge sensing of the nearby double
quantum dot.

vs. SB1&SP have to be tuned to values where the slope
of the Coulomb peak is steepest.

2. Locating the (2,0)-(1,1) or (0,2)-(1,1) charge
transition

The second step is to determine the depletion and
pinch-off voltages of the different gates that define the
qubit double quantum dot. To do that, we directly mea-
sure the conductance through the double dot by applying
a 100 µV bias voltage, VD, as shown in Fig. 1, and mea-
suring the resulting current. Measuring the conductance
as a function of the voltage applied pairwise to the gates
N12 and T12, S1 and B1, S2 and B2 (see Fig. 1 for gate
nomenclature), allows us to determine the depletion volt-
ages.

The gate voltages are then set close to their depletion
voltages and the device is tuned close to complete pinch-
off. Next, we perform a two-dimensional scan over a cou-
ple of tens of mV with the gates B1 and B2. Usually we
anticipate to first form a large single quantum dot and
then separate it into two dots by applying more negative
voltages on the T12 and N12 gates. If the tunnel barriers
between the dot and leads X and Y are almost pinched
off and have similar transmission probabilities, Coulomb
blockade peaks should appear, showing the characteris-
tic honeycomb pattern of a lateral double quantum dot.58
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Figure 7. (a) Honeycomb pattern of the double dot resolved
using the sensing dot. Background oscillations are caused by
an imperfect compensation of the response of the sensor to
gates B1 and B2. (b) Direct transport measurement through
the double dot. Coulomb peaks are visible only for not too
negative voltages. (c) Same as in (a), but this time using the
side gates S1 and S2 instead of B1 and B2. This typically
reduces the background oscillation in the transconductance
of the sensing dot. The different intensities of the lines de-
lineating the honey-comb pattern reflect the transparency of
the tunnel barriers to the external leads

Observing this honeycomb pattern in the direct current
through the double dot close to pinch-off can be chal-
lenging because the current goes to zero and Coulomb
peaks are hardly detectable, see Fig. 7(b). To study this
regime, we then use the sensing dot. Due to the capaci-
tive coupling between the double dot and the sensing dot,
a change in the occupation of the double dot results in
an abrupt change in the current through the sensing dot
and therefore into a sharp signature in the transconduc-
tance dVSD/dB1, Fig. 7(a). When performing this type
of scan, the voltage SB2 is adjusted to compensate the
unintentional influence of the stepping gate B2 on the
potential of the sensing dot. Similar scans can also be
performed by using the side gates S1 and S2 instead of
B1 and B2. This typically reduces the background os-
cillation in the transconductance of the sensing dot (see
Fig. 7c), as the gates S1 and S2 have a weaker influence
on the sensing dot than B1 and B2. Going towards more
negative voltages eventually locates either the (2,0)-(1,1)
or the (0,2)-(1,1) charge transition. Once a suitable tran-
sition has been found, we adjust S1 and S2 such that
a recorded high-resolution charge stability diagram via
RF-reflectometry using the RF-gates, RFX and RFY, is
centered around the transition of interest (see Fig. 2 (a)).
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