
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Capacitor-Inspired Metamaterial Inductors
Yue Li and Nader Engheta

Phys. Rev. Applied 10, 054021 — Published  8 November 2018
DOI: 10.1103/PhysRevApplied.10.054021

http://dx.doi.org/10.1103/PhysRevApplied.10.054021


 1

Capacitor-Inspired Metamaterial Inductors  

Yue Li1, 2 and Nader Engheta2 

1Department of Electronic Engineering, Tsinghua University, Beijing 100084, 
China 

2 Department of Electrical and Systems Engineering, University of Pennsylvania, 
Philadelphia, Pennsylvania 19104, USA 

 

Abstract 

In optical metatronics, where properly designed nanostructures function as lumped optical circuit 

elements, the capacitive and inductive optical circuit elements are nanostructures with positive 

and negative real part of permittivity of their materials, respectively.  Aside from this difference 

in material properties, other features such as shapes and dimensions of these two elements may 

be similar.  In the RF and microwave domains, however, conventional capacitors and inductors 

have vastly different features, i.e., one is made of parallel plates and the other is formed by 

wound wires.  Here, inspired by optical metatronics, we propose to bring the notion of optical 

metatronics back into the low-frequency domain, by suggesting a capacitor-like structure that 

behaves as an inductive circuit element at microwave frequencies. This simple design may be 

achieved by adding certain sidewalls in the capacitor structure, and thus its shape is different 

from conventional inductors made of wires and spirals. The approximate range of inductance can 

be conceptually evaluated using relations analogous to those of the capacitance. Using numerical 

and analytical methods, we determine its complex impedance and quality factor as a function of 

frequency and all the dimensional parameters involved. From this analysis, we find that as 

compared with conventional inductor this structure may have certain advantages, which include 

higher quality factor due to its approximately ‘closed’ structure and strong dependence of its 

inductance value on its height with weaker dependence on its cross section. We also study a 

subwavelength resonator using our proposed structure as its inductive element, confirming its 

performance numerically. 
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I. INTRODUCTION 

Lumped circuit components, e. g., inductors, capacitors, resistors, diodes, etc., have been 

important building blocks in the development of radio frequency (RF) and microwave electronics 

over the past several decades. Electronic circuits can be readily designed by different 

combinations of these elements, providing an excellent connection between the modularity and 

simplicity of circuit architecture. Of these lumped components, inductors and capacitors are the 

ones that effectively store energy, causing the desired response in the frequency domain. 

However, it is well known that in the RF and microwave domain the physical and operating 

principles behind the conventional inductors and capacitors are different [1]. Specifically, the 

capacitor stores the electric energy in the form of electric field due to the charge accumulation on 

their conducting plates, and thus the phase of its current is 90º ahead of its voltage phase, while 

the inductors store magnetic energy in the form of magnetic field resulting from the current flow 

in their wires, and due to the Faraday law of induction the current is 90º behind the phase of the 

voltage. A typical capacitor is made of two parallel conductors, and a standard inductor is 

formed by a set of wound wire [2-4] or spiral strips [5-10]. Over many decades, various 

theoretical models have been studied to analyze the energy storage and dissipation of such well-

known elements.  

 

However, in the field of optical metatronics, which addresses the optical lumped circuit elements 

at the nanoscale [11-14], a close relationship and analogy exists between the optical inductors 

and optical capacitors formed by subwavelength nanoparticles [11,12]. For example, the 

plasmonic nanoparticles with negative permittivity (ε<0) operate with optical impedance 

resembling the impedance of an inductor (when the dispersion of permittivity is taken into 
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account), and the nonplasmonic (e. g., dielectric) nanoparticles with positive permittivity (ε>0) 

operate as capacitors [11,12].  Aside from this difference in material properties, other features 

such as shape and dimension of these two metatronic elements may be similar. With the identical 

dimension and absolute value of permittivity for both particles, the magnitude of the reactance of 

the optical inductor equals to the magnitude of reactance of the optical capacitor. That is to say, 

by changing the sign of permittivity of a lossless nanoparticle, an inductor can be changed to a 

capacitor with same magnitude of reactance (but of course a different phase). For deeply 

subwavelength nanoparticles, the electric fields and the electric displacement currents inside the 

nanoinductors and nanocapacitors are approximately uniformly distributed, but the phase 

between them is determined by the sign of the permittivity [15]. Similarly to the lumped circuit 

elements in RF and microwave wavelengths, in the paradigm of optical metatronics the 

subwavelength nanoparticles also exhibit the “lumpedness” property at the operating optical 

frequencies. Complex circuits with desired functionalities, e. g., optical nanofilters [13,14] and 

matching circuits for nanoantennas [16,17] can be designed in the analogous way as in the RF 

and microwave. From the above discussion, we restate that in the optical metatronics the lumped 

optical inductors and optical capacitors behave with the analogous principle involving the 

electric field and electric displacement currents, whereas in the RF and microwaves the 

conventional inductors and capacitors follow separate principles.   

 

Here in the present work, we aim to bring the notion of optical metatronics back into the low-

frequency domain and to transplant the operational similarity between the optical inductors and 

optical capacitors in the optical metatronics into the RF and microwave domains, by designing 
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microwave inductors based on the structure of a microwave capacitor, thus coining the term of 

“capacitor-inspired metamaterial inductors”.  

 

II. CAPACITOR-INSPIRED METAMATERIAL INDUCTORS 

Fig. 1(a) shows a typical RF/microwave capacitor, which consists of two parallel metallic plates 

(denoted by yellow color) and an internal dielectric with positive permittivity (depicted by green 

color). The impedance of the capacitor is Z=d/(-iωεA), a well-known expression in terms of the 

distance between two plates (d), the area of the plates (A), and the permittivity of the dielectric 

(ε). (We use the time harmonic convention e-iωt.)  As illustrated in Fig. 1(b), a filling material 

with negative permittivity (depicted by blue color) is inserted instead, which causes the phase of 

the current to be 90º behind the voltage, different from the phase of the current in Fig. 1(a), 

which is 90º ahead of the voltage. Therefore, with the proper dispersion of the permittivity taken 

into account the “capacitor” in Fig. 1(b) is operating as a lumped inductor, analogous to the 

plasmonic nanoparticles as optical inductor in metatronics [11,12]. In the RF and microwave 

regime, however, it is challenging to find a material with negative permittivity that is easily 

insertable between the two metallic plates in Fig. 1(b).  The guided-wave structures [18,19] may 

provide an alternative platform for achieving effectively negative permittivity in RF and 

microwave [18,19]. For example, a parallel-plate waveguide (PPW) made of perfectly electric 

conducting (PEC) walls and filled with a conventional dielectric, when operated with a 

transverse electric (TE) mode TE10 below its cut-off frequency, may behave as a structure with 

negative effective permittivity [18,19]. The effective relative permittivity (εeff) of this structure 

exhibit the Drude-type dispersion, expressed as εeff =εact-π2c2/(ω2a2), where εact is the actual 

relative permittivity of the filling dielectric, ω is the operating angular frequency, c is the 
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vacuum speed of light, and a is distance between two PEC parallel plates [18,19]. When the 

waveguide operates below its cutoff frequency, we can effectively achieve epsilon-negative 

(ENG) structure, using standard epsilon-positive (EPS) material in microwave. 

 

As shown in Fig. 1(c), the new inductor is simply formed by adding two PEC side walls on the 

both sides of the parallel plates of the capacitor, i.e., the two sides that are parallel with the x-z 

planes, shown in Fig. 1(a). For now, the other two sides that are parallel with the x-y plane are 

left open. A voltage difference between the two middle points on the interior top and bottom 

plates from inside generates an electric field inside the structure, which has to vanish at the two 

PEC side walls just added. This structure with the subwavelength dimensions, in which a 

waveguide is effectively formed by the two PEC side walls we just added, is operating at the 

frequency much below its TE10 cutoff frequency, and thus the effective permittivity of the 

structure is negative. Due to PEC walls parallel with the x-z plane, the x-oriented electric field 

varies sinusoidally along the y-axis, and evanescently along the z-axis. As we show below, this 

structure effectively acts as an inductive impedance with the phase of the current 90º behind the 

voltage. This “lumped inductor” does not have winding wires, and its appearance is similar to a 

capacitor, except with the two PEC side walls that are added at its two side ends. At the DC 

operation when the frequency is zero, a conventional capacitor in Fig. 1(a) operates as an open 

circuit, but the structure in Fig. 1(c) expectedly operates as a short circuit due to the PEC side 

walls, which agrees with the operation of a typical inductor made of spiral or wound wires.   

 

III. OPERATING PRINCIPLE AND NUMERICAL DEMONSTRATIONS  
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As an example of such inductors, in Fig. 2 we discuss the case of the structure utilizing a 

rectangular waveguide. We start from the typical RF capacitor, illustrated in Fig. 2(a), consisting 

of two PEC parallel plates with air filling the space between them. Based on the structure of the 

capacitor, a new inductor is achieved by adding two PEC walls at the side ends as a rectangular 

waveguide along z axis, illustrated in Fig. 2(d), with the similar appearance as the capacitor. In 

order to excite the desired field between the two PEC parallel plates in both cases shown in Figs. 

2(a) and 2(d), a PEC post is positioned in the center and a hole is cut from the top PEC plate. 

Therefore, the capacitor or the inductor can be connected with typical coaxial cables, e. g., the 

inner conductor of the coaxial cable connects with the center PEC post, and the outer conductor 

connects with the top PEC plate at the hole. Using the numerical method of Finite Integration 

Technique (FIT) (provided by CST Microwave Studio®), we simulate the field distributions 

inside the capacitor (Fig. 2(a)) and inductor (Fig. 2(d)). The detailed view of the port setup in the 

numerical simulation can be seen in inserted panel of Figs. 2(a) and 2(d).  We use a discrete port, 

e.g., a voltage or current source, to connect to the center PEC post and top PEC plate. 

 

For the typical capacitor in Fig. 2(a), we show a snapshot of distribution of the electric field on 

the middle mathematical plane, in Fig. 2(b). The inside electric field is almost uniformly 

distributed with -x-axis polarization. After 90º phase difference, the magnetic field with 

clockwise rotation around the center PEC post is shown in Fig. 2(c). For the new inductor in Fig. 

2(d), the snapshots of electric field and magnetic field (90º phase difference) are also illustrated 

in Figs. 2(e) and 2(f). The magnetic field vector is also clockwise rotation, but the electric field 

vector is +x-axis polarized, i.e., 180º phase difference as compared with the electric field inside 

the capacitor. That is to say that the phase differences between the electric and magnetic fields 
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inside these two structures are -90º and +90º due to the positive and negative effective 

permittivity, εeff, inside the two structures shown in Figs. 2(a) and 2(d). Therefore, by adding two 

PEC side walls at the side ends of a rectangular capacitor, the phase relation between the interior 

electric and magnetic fields can be changed to make the structure to function as an inductive 

impedance, thus the name ‘capacitor-inspired metamaterial inductor’. The detailed dimensions of 

this inductor are shown in Fig. 3(a), including the width ‘a’, the length ‘l’, the height ‘d’, and the 

diameter of the top hole ‘t’. The diameter of the center PEC post is 0.5 mm in the entire study. 

(In Fig. 3(a) the top plate has been moved upward in order to clearly show the dimensions.)  As a 

basic model of this inductor, we select a=l=10 mm, d=1 mm, and t=1 mm. The calculated 

impedance phase of the basic model is uniformly -90º in the frequency range from 100 MHz to 

1000 MHz, exhibiting an inductor response, as shown in Fig. 3(b).  

 

In our numerical simulations presented here, however, we assume the walls to be PEC for the 

sake of simplicity in introducing the concept while the radiation leakage due to the open sides of 

the structure is taken into account. In Fig. 3(c), we present the effects of the wall loss in our 

findings. The loss in the inductor comes from two sources: the first one is the metallic loss due to 

the finite conductivity of the walls, and the second one is the radiation leakage at the open 

boundaries. Here, we use the basic model, as an example, to analyze the effects of loss on the 

performance of our proposed structure. Four different cases are studied and compared: (1) The 

structure is made of PEC material for the metallic walls and perfect magnetic conductor (PMC) 

for the ‘open’ boundaries in the waveguide, so no loss is present; (2) The structure is made of 

PEC material for the metallic walls and actually open boundary at the waveguide’s ‘open’ ends, 

so the only loss is the radiation loss; (3) The structure has copper (σ=5.96×107 S/m) for the 
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metallic walls and PMC boundary at the waveguide’s ‘open’ ends, so the only loss is in the 

metallic walls; (4) The structure is made of copper for the metallic walls and open boundary at 

the waveguide’s ‘open’ ends, so both metallic loss and radiation loss are present. All these cases 

are presented in Fig. 3(c). As shown in the black curve, the equivalent resistance is zero in the no 

loss case. When we have the open boundary (instead of using PMC) at the ‘open’ ends, the 

evanescently decaying field is not zero at the open boundary and thus leaks out. At a higher 

frequency, the operating frequency is closer to the cutoff frequency and thus we have a smaller 

decay rate of the evanescent wave, causing more energy leakage at the open boundary. When we 

have copper for the metallic walls, and PMC for the ‘open” ends, at higher frequencies, we have 

more material loss.  Finally, we have both copper as the metallic walls and open boundary for 

‘open’ ends, both losses are present as clearly noticed in the figure. In practical scenarios, the 

loss, including the metallic loss in the walls and radiation loss from the two open sides of this 

structure is inevitable.  

 

The mode of interest in this rectangular waveguide is the first order transvers electric (TE) mode, 

e. g., TE10 mode. The magnitude and phase distributions of Ex, Hy, and Ez are shown in Fig. 4. 

By adding the PEC walls at the two side ends of a standard capacitor, the electric field of the 

TE10 mode is established in the x-y plane. The new structure operates with a deeply 

subwavelength dimension (a<<λ), and therefore the rectangular waveguide itself operates below 

its cutoff frequency, and the electric field is evanescent in the x-z plane. As shown in Fig. 4(a), 

the electric field varies to zero at the PEC ends along y axis, and is evanescent along z axis. The 

length of the structure is also subwavelength, e. g., much smaller than the operating wavelength. 

The electric field is unable to completely drop to zero at the open ends along z axis, causing 
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small energy leakage. The magnetic field components Hy and Hz, shown in Figs. 4(b) and 4(c), 

vary along the y and z axes as expected from the standard TE10 mode. The phase distributions of 

three components are plotted in Figs. 4(d), 4(e) and 4(f). Phase of Ex is uniform with 90º

difference from the phase of the magnetic components Hy and Hz, consistent with the TE10 mode 

scenario. 

 

Next, we evaluate the key quantities of such capacitor-inspired metamaterial inductor using the 

theoretical and numerical analysis. We start from the impedance of the capacitor in Fig. 1(a). For 

the sake of simplicity and clarity of the concept, we first ignore the materials loss in the wall and 

the filling dielectric. We have: ܼ ൌ ௗି௜ఠ஺ఌ                                                             (1) 

(Due to the fringing fields, the impedance may be slightly different from what is obtained from 

(1) depending on the specific dimensions.) Then, we use effective relative permittivity (εeff) of 

waveguide instead of the actual relative permittivity (εact), and we get: ܼ ൌ ௗି௜ఠ஺ఌబఌ೐೑೑ ൌ ௗି௜ఠ஺ఌబሺఌೌ೎೟ିగమ௖మ ሺఠమ௔మሻ⁄ ሻ ؠ െ݅߱(2)                          ܮ 

Therefore the equivalent inductance is expressed as: ܮ ؠ ௓ି௜ఠ ൌ െ ௗఠమ஺ఌబఌ೐೑೑ ൌ െ ௗఠమ஺ఌబሺఌೌ೎೟ିగమ௖మ ሺఠమ௔మሻ⁄ ሻ                          (3) 

Therefore, the impedance can be expressed as a function of frequency (ω) and dimensions (a, l 

and d). When operating angular frequency satisfies εact << π2c2/ (ω2a2), the equivalent inductance 

can be expressed approximately as a constant: ܮ ൎ ௗ௔మఌబగమ௖మ஺                                                             (4) 
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When the dimensions of the inductor are deeply subwavelength, i.e., d<<λ, l<<λ, and a<<λ, 

where λ is the free space wavelength, the effective inductance of this structure is almost a linear 

function of the height ‘d’. Due to the sinusoidal and evanescent distribution of the electric field 

inside the inductor, ‘A’ should be treated as the “effective area” of the PEC parallel plates. Then, 

we utilize the FIT method to calculate the values of impedance, equivalent inductance and 

quality factor (Q) for given sets of dimensions.   

 

IV. PARAMETER STUDY AND DISCUSSION 

The calculated reactance, equivalent resistance, equivalent inductance and Q of this capacitor-

inspired metamaterial inductor filled with air (εact=1) are shown in Fig. 5, as a function of 

frequency and each key dimension. The frequency range in our simulation is 100 MHz to 1000 

MHz (wavelength in free space ranges from 3 m to 300 mm). Q is defined as [8] ܳ ൌ |݁ܿ݊ܽݐܴܿܽ݁| ⁄݁ܿ݊ܽݐ݅ݏܴ݁ ൌ ሺܼሻ݉ܫ ܴ݁ሺܼሻ⁄                                  (5) 

Figure 5 presents the results of our numerical simulations for the inductor performance in terms 

of frequency, and each of the dimensions, i.e., width ‘a’, the length ‘l’, the height ‘d’, and the 

hole diameter ‘t’ The parametric study is based on the basic model (filled with air, εact=1) with 

l=10 mm, a=10 mm, d=1 mm, t=1 mm and changing one parameter while other two are kept 

fixed. As shown in Fig. 5(a), the magnitude of reactance increases with frequency at a given 

fixed ‘a’, in agreement with Eq. (2). For a given frequency, as we increase ‘a’, two effects occur 

in Eq. (2): the effective area ‘A’ increases and the absolute value of ‘εeff’ decreases. From our 

numerical results, we note that the magnitude of reactance still increases with increasing ‘a’ at a 

given fixed frequency. In Fig. 5(b), the equivalent resistance increases with increasing ‘a’ at a 

fixed frequency, due to the decreased in the decay rate of evanescent wave along z-axis and 
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consequently more energy leakage at the open side walls. The equivalent resistance also 

increases with the frequency at a given fixed ‘a’, because the operating frequency is getting 

closer to the cutoff frequency, and thus the decay rate of the evanescent wave decreases. In Fig. 

5(c), the equivalent inductance, derived from the data in Fig. 5(a), is almost constant vs 

frequency at a given ‘a’, in agreement with Eq (4). As discussed above, the equivalent 

inductance increases with increasing ‘a’ at a given frequency, but not necessarily linearly. In Fig. 

5(d), Q is calculated from the data in Figs. 5(a) and 5(b). Q decreases with increasing ‘a’ at a 

given fixed frequency and also decreases with rising frequency at a fixed ‘a’. With deeply 

subwavelength dimensions, the Q of this inductor is at the range of 102~105, much higher than 

the conventional inductors made of wound wire [2-4] or spiral strips [5-10]. This is one of the 

advantages of such inductors.  

 

The reactance and equivalent resistance as a function of frequency and ‘l’ are illustrated in Figs. 

5(e) and 5(f). At a fixed ‘l’, both the magnitude of reactance and the equivalent resistance 

increase with increasing frequency, following the similar reasons as mentioned above for ‘a’. At 

a fixed frequency, the magnitude of reactance decreases with increasing ‘l’, due to the increase 

of the effective area ‘A’. The electric field drops evanescently as it approaches the open ends. 

Therefore, ‘A’ changes little and the reactance also changes little as we increase ‘l’. The 

equivalent resistance decreases with increasing ‘l’, because longer ‘l’ causes less leakage of 

energy at the open boundaries. As illustrated in Fig, 5(g), the equivalent inductance is also a 

constant vs frequency at a given fixed ‘l’, and decreases with increasing ‘l’. The calculated Q is 

shown in Fig. 5(h).  When operating at lower frequency with a larger ‘l’, higher level of Q can be 

achieved. The height ‘d’ is also an important parameter for tailoring this equivalent inductance. 
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As shown in Figs. 5(i) and 5(j), the magnitude of reactance and the resistance both increase with 

rising frequency at a given fixed ‘d’. When we fix the frequency at a given value, the magnitude 

of reactance increases with increasing ‘d’, and can be explained by Eq. (2); and the equivalent 

resistance also increases with increasing ‘d’, due to the larger aperture for radiation leakage at 

the open boundaries. As is evident from Eq. (4), the equivalent inductance is almost linearly 

proportional to ‘d’, as shown in Fig. 5(k), and almost constant vs frequency when we fix ‘d’. In 

Fig. 5(l), the variation of Q with different ‘d’ and frequency is not obvious, but still a high level 

of 102~103 can be achieved. The diameter ‘t’ of the hole on the top PEC plate is chosen 

according to the dimension of the connecting coaxial cable, and its effect also is studied. As 

shown in Figs. 5(m) and 5(n), both the magnitude of reactance and equivalent resistance increase 

with rising frequency at a fixed ‘t’. At a given frequency, the magnitude of reactance increases 

with increasing ‘t’, because the effective area ‘A’ in formula (2) decreases. But the equivalent 

resistance almost stays the same with different ‘t’, due to the little energy leakage from the hole 

on the top PEC plate. As shown in Fig. 5(o), the inductance is constant as a function of 

frequency for a given ‘t’, and increases with increasing ‘t’, but not much. As shown in Fig. 5(p), 

the variation of Q with different ‘t’ and frequency is not obvious at a high level of 103~104. The 

relatively higher Q in such a structure may be explained by considering the fact that this is 

approximately a ‘closed’ structure in which most of the energy is stored inside the interior empty 

region. However, the conventional spiral and wound wire inductors are open structures and their 

wires have ohmic losses, and thus more energy loss is involved. From the above discussion, we 

list two advantages for the proposed inductors as compared with the conventional wire-based 

inductors: (1) the inductance is mainly determined by the height, with less effect from the area; 

and (2) higher Q can be achieved with the ‘closed’ waveguide structure here. We should also 



 13

point out that the quantitative values of equivalent inductance for this inductor are in the range of 

nH, a reasonable value in this range of operating frequencies. 

 

A question may naturally arise: Can these results be obtained using the conventional short-

circuited transmission lines? It is well known that by shorting the end of a parallel-wire 

transmission line, the impedance at the input port is inductive if the electric length of the 

transmission line is shorter than a quarter wavelength. When we view the structure under study 

in Fig. 2(d), one can at first treat this inductor as two shorted transmission lines with the length 

a/2<<λ in the x-y plane connected in parallel in the middle. From the theory of transmission lines, 

the input impedance of these two parallel-connected shorted transmission lines can be expressed 

as: ܼ ൌ െܼ݅଴݊ܽݐሺ2/ܽߚሻ/2                                                    (6) 

where Z0, β, and a are characteristic impedance, phase constant and length of the transmission 

line, respectively. Due to the subwavelength condition, βa/2≈0, we can write: ܼ ൌ െܼ݅଴݊ܽݐሺ2/ܽߚሻ/2 ൎ െܼ݅଴(7)                                         4/ܽߚ 

Since Z=-iωL, the inductance can be expressed as: ܮ ൎ ܼ଴4/ܽߚ/߱ ൌ ܼܽ଴ඥߝ଴੥଴/4                                          (8) 

showing L to be proportional to ‘a’ linearly. However, as shown in Fig. 5(c), the equivalent 

inductance in our structure, while it may increase with a, is not linearly proportional to a. The 

difference can be attributed to the mode distribution of field in the y-z plane inside the structure. 

In the transmission lines, when the length ‘a’ is much smaller than the operating wavelength, the 

voltage (and electric field) varies almost linearly along the transmission line. But the electric 

field distribution of (TE10) mode inside our structure, as shown in Figs. 2(e) and 4(a), varies 
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sinusoidally with y and evanescently with z regardless of how small a is, which is different from 

the case of transmission line. Considering Eq (3), we note that a larger value of ‘a’ results in 

reduction of the absolute value of the effective negative permittivity εeff.  However, the effective 

area ‘A’ increases as ‘a’ increases. Since both quantities, εeff and A, are in the denominator, the 

equivalent inductance does not vary linearly with ‘a’, a different feature than what can be 

obtained from the transmission line theory. 

 

It is also worth noting that in the waveguide community it is the well-known that a metallic post 

in a waveguide exhibits inductive reactance [20]-[21].  However, the formulation for such 

inductive post is for the propagating dominant mode in waveguides – different from our 

proposed structure which exhibits inductance for the scenario far below cut-off. 

 

Finally, as an example of application of this capacitor-inspired metamaterial inductor, we study 

an LC resonator with subwavelength dimension, as shown in Fig. 6. The resonator consists of the 

proposed inductor, connected to a capacitor placed on top of it (Fig. 6(a)). Due to similarity of 

structures of both elements, the capacitor is designed by adding another PEC plate above the top 

PEC plate of the inductor, as shown in Fig. 6(a). The detailed configuration of the model for 

simulation is illustrated in Fig. 6(b) (where the plates have been separated to show the internal 

structure and dimensions). Given the values of parameters ‘a’ and ‘l’, the resonance frequency 

can be tailored by changing the heights of the inductor and capacitor. The impedance of the LC 

resonator as a function of frequency, evaluated from our numerical simulation, is shown in Fig. 

6(c), with the magnitude (expressed in red) and the phase (shown in blue). The resonator 

resonates at 401.2 MHz, at which the magnitude of impedance is minimum as a short circuit, and 
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the phase of impedance goes through a shift from 90º to -90º. For frequencies lower than 401.2 

MHz, the phase of current is 90º behind ahead of the phase of voltage, thus behaving 

capacitively. For frequencies higher than 401.2 MHz, the phase of current is 90º ahead of the 

phase of voltage, thus the circuit acts inductively, in full agreement with a typical series LC 

resonator. In order to confirm the results, the inductance of the inductor and the capacitance of 

the capacitor are calculated separately, as shown in Figs. 6(d) and 6(e). The reactance of the 

inductor is negative and the magnitude increases with the increasing frequency. But the reactance 

of the capacitor is positive and decreases with the increasing frequency. As illustrated in Fig. 

6(d), two reactance curves cross at the frequency of 399.6, which agrees well with the LC 

resonator simulation. In the frequency band of 300~500 MHz, as shown in Fig. 6(e), the 

inductance of the inductor with a=40 mm, l=40 mm, and dL=9 mm is from 8.93 nH to 8.72 nH. 

The capacitance of the capacitor with a=40 mm, l=40 mm, and dC=1 mm ranging from 17.0 pF 

to 19.2 pF. Therefore, the calculated resonance frequency using the standard formula ߱ ൌ1 ⁄ܥܮ√  is around 399.6 MHz, which agrees well with the simulation result of 401.2 MHz. The 

overall dimension of the LC resonator shown in Fig. 6(a) is in a subwavelength scale, with the 

values of a=l=40 mm (0.053λ@401.2 MHz) and dL+dC =10 mm (0.013λ@401.2 MHz). 

 

V. CONCLUSIONS 

In conclusion, a geometrically simple RF/microwave lumped capacitor-inspired metamaterial 

inductor is proposed by bringing the notion of optical metatronics back into the RF/microwave 

domain.  Based on this design strategy, the inductance is mostly determined by the inductor 

height and less dispersive with the operating frequency, and can be evaluated in a way analogous 

with the capacitor. Relatively higher quality factor can be achieved with this ‘closed’ structure, 
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different from the conventional inductors made of spiral and wound wires. This component may 

offer potential applications for the subwavelength integrated resonators in RF/microwave 

domains.  
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Fig.1. Concept of capacitor-inspired metamaterial inductors. (a) A standard capacitor in RF 
and microwave, using two parallel metallic plates and a filling dielectric with positive 
permittivity; (b) An element with inductive impedance based on (a), by assuming a filling 
material with negative permittivity. (c) Our proposed structure for (b), which is based on (a) 
when two metallic side walls are added at the two ends parallel with the x-z plane. This structure 
functions with inductive impedance.  
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Fig. 2. Field distributions in our proposed structure as compared with those in a 
conventional capacitor: (a) Conventional RF/microwave capacitor with two PEC parallel 
plates; Snapshots of (b) the electric field and (c) the magnetic field distributions in the middle 
mathematical plane between the PEC parallel plates, with the 90º phase difference between the 
two snapshots; (d) our proposed structure of the capacitor-inspired metamaterial inductor. 
Snapshots of (e) the electric field and (f) the magnetic field distributions in the middle 
mathematical plane inside the inductor, with 90º phase difference between the two snapshots; 
Zoom-in view of the port connection on the top PEC plate of the inductor in (a) and (d). 
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Fig. 3. Simulation results of the basic model of proposed inductor: (a) The geometry and the 
dimensions of the inductor of Fig. 2(d). The top plate has been removed in order to show the 
details of interior geometry. (b) The simulated magnitude (red curve) and phase (blue curve) of 
the impedance of the basic model with dimensions a = l = 10 mm, d = 1 mm, and t = 1 mm. (c) 
Simulation results for the equivalent resistance (due to the wall loss and radiation leakage) of the 
basic model with different materials and different boundaries. 
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Fig. 4.  Field distributions on the middle mathematical plane of proposed structure in Fig. 
2(d). Magnitude distributions of (a) Ex, (b) Hy, and (c) Hz; Phase distributions of (d) Ex, (e) Hy, 
and (f) Hz.. 
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Fig. 5.  Simulation results for the parameters of our proposed structure: (a) Reactance; (b) 
Equivalent resistance; (c) Equivalent inductance; and (d) Q as a function of frequency and a 
(inductor width); (e), (f), (g), and (h), the same as (a), (b), (c), and (d), but as a function of 
frequency and l (inductor length); (i), (j), (k), and (l),the same as (a), (b), (c), and (d) but as a 
function of frequency and d (inductor height); (m), (n), (o), and (p),the same as (a), (b), (c), and 
(d) but as a function of frequency and t (hole diameter). 
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Fig. 6. LC resonator using the proposed inductor and a conventional capacitor. (a) 
Perspective view, (b) detailed view (when the top plates have been removed in order to show the 
interior details), and (c) simulation result for the magnitude and phase of the impedance as a 
function of frequency. (d) Reactance and (e) inductance and capacitance as a function of 
frequency, for the individual inductor and individual capacitor. 
 
 


