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Abstract 
 

Incorporation of ions into battery electrodes can lead to phase transformations. When multi-
particle phase-transforming electrodes charge or discharge, two processes must occur in each 
particle:  the new phase must nucleate, and then grow until the particle is fully charged or 
discharged. A fundamental question is which of these two processes is rate limiting.  Here we 
construct a simple stochastic model that shows how the relative rate of nucleation compared to 
growth determines the particle state-of-charge distributions in the electrode.  We find that the 
number of particles that are partially charged at any time increases as the relative nucleation rate 
increases.  The maximum number of particles that are actively charging occurs just before the 
time when the first particles are becoming completely charged.  By comparing measured state-
of-charge distributions to the model, the relative rate of nucleation can be determined.  We apply 
this procedure to measurements of the evolution of particles in LiFePO4 cathodes and show we 
can account for the particle state-of-charge distribution as a function of the electrode state of 
charge. 
 
 
Introduction 
 
A thorough understanding of how battery electrodes charge at a microscopic level will be 
ultimately crucial to improving their macroscopic performance.   For example, in multi–particle 
electrodes, a crucial question is how many particles are charging or discharging at any particular 
time.   Small numbers of actively charging particles can lead to locally high current densities and 
degrade battery performance.   Consequently, several techniques have recently been developed to 
image the nanoscale evolution of electrodes [1-4].   These experiments can be difficult to 
interpret in terms of distinct atomic processes because the diffusion of electrons/ions, charge 
transfer kinetics at interfaces, and phase transformations all must be understood thoroughly in 
chemically complex materials that can be far from equilibrium. Usually these quantities are not 
individually directly accessible to the experiments. A promising approach that has recently been 
taken is to compare experiment with comprehensive electrode models [4-6].  But still it is a 
challenge to isolate the effects of particular atomic processes on the configuration of an 
electrode. 
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Our goal in this paper is to provide a simple baseline model to which experimental data can be 
compared. We focus solely on the mechanisms of nucleation and growth in two-phase multi-
particle electrodes, even though it is likely that other processes are also important in any real 
electrode. The problem to be solved is, given snapshots in time of the charging process, how can 
information about the relative importance of nucleation and growth be extracted?    For example, 
how does the number of actively charging or discharging particles depend on how fast nucleation 
occurs?  
 
In multi-particle phase transforming electrodes, nucleation and growth are competitive processes.  
Initially a fully charged battery electrode has all particles in the same state.   The first step is that 
a new phase must nucleate in some of the particles. This nucleation is a stochastic, random 
process that can be specified by some overall rate (which in classical nucleation theory can be 
associated with some critical nucleus size).   Once the new phase nucleates, further 
transformation can occur by motion of the phase boundary within the particle. Both the boundary 
velocity and nucleation rate depend on the charging current, as well as the number of particles 
transforming. Because the number of transforming particles changes with time, a non-trivial 
problem arises.  It is not possible to predict the microscopic configuration of the electrode at one 
point in time, by just specifying a discharge current at that time.  For example, there can be many 
particles with slow moving boundaries or a few particles with fast moving ones.   Because this 
configuration depends on the past history of the electrode, one must model the complete time 
evolution, starting from the untransformed state.   As we will show below, a requirement of such 
a model is that it must consider the distribution of the state of charge of the actively charging 
particles.  We find that the time dependence can be captured by a single parameter, the ratio of 
nucleation rate to growth rate.   (The kinetics model proposed by Bai and Tian [7] although very 
similar in spirit to ours, does not include such effects of the particle state of charge distribution.)  
As an illustration of the use of our model, we compare its predictions to observations of cathodes 
consisting of LiFePO4 (LFP) particles, the prototypical example of a system in which lithiation 
involves a phase transformation. 
 
Stochastic model of particle filling 
 
We first assume that the battery electrode consists of 𝑁 identical particles.  We model the 
situations in which the charging or discharging rate is constant.   Each particle is taken to have a 
capacity of L units of charge. In a particular unit of time a set amount of charge or discharge will 
occur. We chose this time interval to correspond to adding or subtracting one unit of charge.  
Initially all of the particles are assumed to be empty.  In the first time interval one charge unit 
(e.g., a lithium ion or lithium vacancy) is added to a randomly chosen particle.  Thereafter there 
are two choices for the added charge unit.  Either it is added to an empty particle (i.e., nucleation 
occurs) or to a partially filled one (i.e., a phase boundary is moved).  𝑃empty is the probability that 
the charge unit is added to an empty particle, while 𝑃active is the probability it is added to a 
partially filled one.  The assumption of constant charging rate dictates 𝑃empty+𝑃active=1. If there 
were no extra barrier to nucleating, 𝑃empty and 𝑃active	would be equal to the fraction of empty or 
partially filled particles, respectively. With a nucleation barrier, there will be additional 
proportionality factors 𝑎% and 𝑎& that bias against adding to empty particles: 
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𝑃empty =

𝑎%𝑁empty

𝑁empty + 𝑁active
, (1) 

and 
 𝑃active =

𝑎&𝑁active

𝑁empty +𝑁active
. (2) 

 
The ratio 𝑟	 = ,-

,.
 is a measure of the difference of the barriers for nucleation and boundary 

motion; r < 1 if a nucleation barrier exists.  For simplicity we assume r does not depend on time.  
These equations implicitly assume that only one nucleation event occur per particle.    Given 𝑟, 
the values of 𝑎% and 𝑎&	are determined by the requirement that 𝑃empty+𝑃active=1.  
 
The consequences of this model on the particle filling dynamics can be readily computed with a 
Monte Carlo simulation.  For purposes of illustration, we choose 𝑁	 = 	10000 and 𝑀	 = 	100, 
i.e., 10000 particles, each of them with a capacity of 100 units of charge. We start with a cathode  
which all particles are empty and add charge (i.e., lithium or lithium vacancies) according to the 
above algorithm, with probabilities generated at each time step using a random number 
generator.   Figure 1 shows the population of empty, partially filled and full particles as a 
function of total electrode state of charge for various choices of 𝑟.   If 𝑟 is very small (i.e., 
nucleation is difficult compared to boundary motion), as in Fig. 1(a), the number of active 
particles is always very small, approaching one in the limit of vanishing 𝑟.  This is the “particle-
by-particle” limit described in Ref. [8].  As 𝑟 increases as shown in Figs. 1(b-d), the number of 
active particles becomes larger throughout the discharge process. In the limit of large 𝑟 (Fig. 
3(e)), all of the particles become active.   This is the “concurrent intercalation” limit of Ref. [8].   
 
It is important to note that the number of active particles changes during the discharge, and 
reaches a maximum 𝑁active	

max at a certain intermediate state of charge, q.     By examining the q 
dependence of the number of filled particles plotted in Fig. 1, it is evident that this maximum 
corresponds to when the first particles are becoming full.  In the “particle-by-particle” limit, 
particles become full immediately – the time to discharge a single particle is much smaller than 
the time to discharge the entire cathode.   As 𝑟 increases, the “incubation time” becomes larger.  
In the limit of large 𝑟, the time to fill a particle becomes comparable to the cathode discharge 
time.  
 
To explain this behavior, and give explicit expressions for 𝑁active

max  and the incubation time in 
terms of physical properties, we now develop the model analytically in the limit of large N and L.  
To analytically describe the problem, we divide the time evolution of the transforming electrode 
into two parts: before and after the first particle becomes filled. Before that moment, there will 
only be empty and active particles competing. We will then proceed to calculate the moment the 
first particle becomes filled. Finally, we will calculate the distribution of active and filled 
particles at every state of charge. 
 
At the early stages of discharge, the cathode has only empty and active particles. From Eqs. (1) 
and (2), the probability to add charge to an empty particle is 
    
 𝑃empty 	= 		𝑟	𝑁empty/(𝑁active + 𝑟𝑁empty). (3) 
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Since no particle has had time to fill 𝑁active + 𝑁empty = 	𝑁.   In this regime 
     
 𝑃empty 	= 	𝑟	𝑁empty/(𝑁 − (1 − 𝑟)	𝑁empty). (4) 

 
When the unit of charge 𝑑𝑄 added at each step is infinitesimally small compared to 𝐿 and 𝑁, we 
can write 
 

𝑃empty 	= 	−
𝑑
𝑑𝑄 𝑁empty.	

 

 

 
Combined with Eq. (4) this gives a differential equation for 𝑁empty: 
 
 9𝑁 −	(1 − 𝑟)𝑁empty:

𝑑
𝑑𝑄𝑁empty 	= 	−𝑟	𝑁empty. (5) 

 
From the boundary condition the   𝑁empty(𝑄 = 0) = 	0	  and using the fact that Lambert-W 
function [9], defined by 𝑊(𝑦)𝑒>(?) = 𝑦, is the solution of 𝑦(1 +𝑊)𝑑𝑊/𝑑𝑦 = 𝑊 one finds: 
 
 𝑁empty(𝑄) = 	− @

A
%BC

D𝑊 E−(1 − 𝑟)𝑒BF%BCG
HI
J KL.     (6) 

   
 
This result is of course only valid when there are no filled particles.   
 
To express Eq. (6) in terms of a macroscopically measurable quantity, we introduce the 
dimensionless parameter  𝛼 = 𝑟𝑀.  In terms of the time scales of particle filling, 𝛼 can be 
straightforwardly interpreted as:  
 
 𝛼 =

𝜏fill

𝜏nucleate
, (7) 

 
where 𝜏fill is the time (at some particular state of charge) to fill a particle after nucleation and 
𝜏nucleate is the corresponding average time between nucleation events.  Or, equivalently, in terms 
of rates: 
 
 𝛼 = OnucleationP

Q
, 

 
(8) 

where 𝑘nucleation is the nucleation rate at some time and 𝑣 is the phase boundary velocity at the 
same time, and L is a linear dimension of the particle.     
 
We propose that the parameter 𝛼 is a useful way of quantifying the behavior of phase 
transforming electrodes. It provides a qualitative way of predicting how the particle populations 
change with charging/discharging conditions.  For example, nucleation rate generally depends 
more strongly on the overpotential than the growth velocity [10].   So as charging/discharging 
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rates are increased, one expects, from Eq. (7), that 𝛼 will increase, leading to a larger number 
active particles. This provides a simple explanation of the observations in Ref.  [8]. 
 
 
In the limit of large M (i.e. when the unit of charge added to a particle is much smaller than the 
total capacity of a particle) we can take the limit  	𝑟 → 0, with a fixed.  In terms of the state of 
charge of the entire multiparticle electrode 𝑞 = 𝑄/𝑁𝑀, Eq. (6) then becomes 
 
 
 𝑁filled

𝑁 = 0 
 

(9)  𝑁empty

𝑁 = −𝑊[−𝑒B(%G,W)] 
 

 𝑁active

𝑁 = 	1 +𝑊Y−𝑒B(%G,W)Z. 
 
 
 
To determine that state of charge  𝑞[	, when particles begin to fill, the rate of boundary motion in 
individual particles needs to be considered. Since each active particle receives charge with the 
same probability, in the limit that the amount added to a particle in each step is small compared 
to the total charge of a particle, all the active particles will receive charge at the same rate 
𝑃active/𝑁active. Consequently, the first particles to be filled will be those that are nucleated first.  
As shown in Appendix A this occurs when the state of charge is 
 
 

𝑞[ = 	1	 +
𝑒\

𝛼 –
1
𝛼		. 

 

   (10) 

   
Once particles begin to become full, the number of active particles begins to decrease.   This is 
because at this stage the rate of creation of active particles – i.e. the nucleation rate – is smaller 
than it was initially, so that the rate at which the active particles fill is greater than the rate at 
which they are created. 
 
The subsequent evolution of filled, empty, and active particle populations in the electrode after 
particles begin to become full (i.e., for 𝑞 > 	𝑞[), is calculated from the distribution of the state of 
charge of individual particles.   Defining the particle state of charge 𝑞_ it is shown in Appendix 
B  that the probability of finding 𝑞_ for all total q, is given by 
 
 𝑝9𝑞_: =

\
abB%

𝑒\Wc . 
        

(11) 

 This constancy of the distribution leads directly to the result (see Appendix C for the   
derivation)  that  the number of filled, empty and active particles varies linearly with q: 
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 𝑁filled

𝑁 = 1 −
𝛼(1 − 𝑞)𝑒\

𝑒\ − 1  
 

𝑁filled

𝑁 = 0 
 
(12) 

(11)    𝑁empty

𝑁 =
𝛼(1 − 𝑞)
𝑒\ − 1  

 

 
 

 𝑁active

𝑁 = 	𝛼(1 − 𝑞). 
𝑁active

𝑁 = 	1 +𝑊Y−𝑒B(%G,W)Z. 
 
 
 The maximum number of active particles is therefore 
 
 𝑁active

max 	= 		𝛼(	1 − 𝑞[)	𝑁. 
 

 

The entire evolution for the case of 𝛼 = 0.8 is shown in Fig. 1(f).  Comparison with Fig. 1(c) 
shows that the analytic model accurately reproduces the simulation results.  We have numerically 
confirmed that this analytic model is precise when N and M are very large.   
 
 
  
Comparison with experiment 
 
Cathodes consisting of (LFP) are an example of a phase transforming system for which the 
answer to the question of the role of nucleation of new phases is important.  In past work we 
have shown that all the particles of LFP electrodes do not charge or discharge concurrently 
[3,11].  Only a fraction of the particles at any time are actively charging or discharging.  Most of 
the particles are either single phase FePO4 or LiFePO4. The fraction of active particles becomes 
smaller when the charge/discharge rate decreases [3,4,8]. We proposed that the qualitative 
underlying reason for this behavior is a competition between nucleation and growth rates within 
individual particles.  We now compare the model discussed above with experimental results on 
particle evolution in slowly discharged LFP to show how the model can be used to quantify this 
competition.   Previous studies have presented evidence that there exist other phenomena that 
might be important in determining the fraction of active particles.  For example, nucleation can 
be so difficult that, the phase transformation is suppressed and charging and discharging occurs 
through an intermediate metastable solid solution phase [4,12-14].  Li diffusion between particles   
driven by the minimization of the total area of  FePO4 /LiFePO4 phase boundary also can be 
important [15,16]. Somewhat surprisingly, we can account for the particle evolution in the 
discharge reaction by assuming this competition is dominant and neglecting the existence of 
metastable phases and interparticle coarsening.   
 
 
Experimental details 
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Scanning transmission X-ray microscopy (STXM) and the recent development of ptychography 
for x-ray microscopy [17] allows for the particle-by-particle  characterization of the 
configuration of LFP electrodes.  The chemical state within each particle in a region of an 
electrode charged to a specified state is mapped as described below.     
 
Sample preparation details have been given in a previous publication, but we will repeat them 
here for completeness. The electrodes consist of 88 wt% carbon-coated LFP (Mitsui Engineering 
Shipbuilding), 6 wt% polyvinylidene fluoride (PVDF) and 6 wt% Shawinigan acetylene black 
carbon. PVDF was first dissolved in N -methyl-2-pyrrolidone. LFP and carbon black were added 
to the slurry to obtain a viscosity of ~200 cP. The slurry was then cast onto a carbon-coated 
aluminum current collector using a reverse comma coater. Solvent was dried at 100 ˚C in 
ambient and subsequently dried under vacuum at 100 ˚C for ~12 h. The electrode mass loading 
and thickness were ~9 mg cm−2 and 60 µm, respectively. Finally, the LFP electrode was 
assembled in a 2032 coin cell, which consisted of a Li anode, a 50 µm Tonen separator, and 1.2 
M LiPF6  in 3:7 (wt/wt) ethylene carbonate/ethyl methyl carbonate electrolyte. 

 
The battery was first operated by initiating five delithiation and lithiation cycles (with rates C/12 
and C/6, respectively) with voltage limits of 3.8 V for delithiation and 2.5 V for lithiation. The 
resulting capacity at this point was ~150 mAh/g. Subsequently, the cell was completely 
delithiated at rate C/2 and then lithiated at a rate of 5C to q = 42% . After reaching the desired 
state of charge, to restrain any further processes from occurring the cell was rapidly 
disassembled and rinsed with excess dimethyl carbonate in a dry room to prevent any further 
process from occurring. The entire process was completed in less than 4 minutes which is faster 
than typical voltage relaxation times in LiFePO4 [18,19].  Finally, we used an ultramicrotome to 
cross-section the LiFePO4 cathode and current collector into 300-nm-thick strips that are thin 
enough for transmission x-ray microscopy.  
 
STXM at beam lines 11.0.2, 5.3.2.2 and 5.3.2.1 in the Advanced Light Source (LBNL) was used 
for local state of charge maps (~30 nm resolution) using the Fe L3 x-ray absorption edge. For 
sub-particle state of charge mapping, we used peak energies of 704 eV for pre-edge, and 707.5 
and 710 eV for identification of LiFePO4 and FePO4 phases, with high-resolution ptychography 
STXM at ~ 10 nm resolution. 
 
Figure 2(a) shows a snapshot of a local configuration of the LFP electrode made using 
ptychography STXM.  The green and red regions represent FePO4 and LiFePO4, respectively. 
Most of the particles (69%) are entirely composed of one phase.  But 31% of the particles are 
mixed phase, i.e., active.   Previous studies could not resolve the nature of the active phase 
particles [3,8,11].  Fig. 2(a) shows they contain a single sharp phase boundary.   We determine 
the state of charge 𝑞_ of each of these actively transforming particles.  In Fig. 2(b) we show the 
histogram of the number of particles at each 𝑞_. 
 
As emphasized above, the state of a many particle electrode depends crucially on its past history.  
So it is essential that our model reproduce the entire state-of-charge dependence of the particle 
population dynamics.  To test this, we performed a least squares fit to Eqs. (9-12) to the active 
and full particle fractions shown in Fig. 3.  We find 𝛼 = 0.76.   Clearly the model accounts for 
all of the observations, which is remarkable, given that only one parameter was adjusted.   
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Another test of the model is that it reproduces the distribution of the state of charge of the active 
particles. Fig. 2(b) shows the result of a least-squares fit of the data to Eqs. (11), giving	𝛼 =
0.73, essentially the same value deduced from Fig. 3.     
  
Discussion 
 
A factor that we have neglected but that could reduce the number of actively charging particles is 
interparticle Li transport due to chemical potential gradients [15,16] in the electrode.  For 
example,  each phase boundary costs some free energy.  Thus in principle there is a Li chemical 
potential gradient between particles if a flow in Li would reduce total phase boundary area.  One 
way this could happen is if initially nucleated phase boundaries contained more phase boundary 
per moved Li, than established active particles, causing a flow from less filled particles to more 
completely filled particles.  The signature of such an effect would be fewer active particles with 
small domains than that given by Eq. (9).   Fig. 2(b) shows that there is no such depletion of 
small domains for LFP and that the state-of-charge distribution can be modeled well assuming 
that no interparticle transport occurs, at least for the rates of discharge rate of this experiment.   
Of course, whether interparticle diffusion  is significant  in general will depend on the overall 
charging rates. 
 
For large charging rates,  X-ray diffraction experiments [12] suggest that nucleation is avoided 
and instead the particles are in a metastable solid solution state during charge/discharge.   If this 
scenario were to apply to our (lower charging rate) data, the domain boundaries we observe 
would have developed after the discharge stopped.  However, even in the case of charging 
through a metastable solid solution, our statistical model might be expected to still apply if, as 
has been proposed [4,8], the rate of filling the solid solution depends on the particle state of 
charge.   In this case, the “activation” barrier” [8]  for the initial particle filling would play the 
role of the nucleation barrier in our model.   
 
The model provides a simple rationalization for the observed asymmetries [8,20] between 
charging and discharging, since nucleation rates for charging and discharging (and hence 𝛼) will 
in general be different because forming phase A in phase B will require different structural 
rearrangements than B in A.  For example, the speed for random thermal fluctuations in Li rich 
phases will be different that in a Li poor phase because of differences in Li diffusivities.   
 
In real electrodes there will be a distribution of particle sizes.  Because smaller particles would 
fill more quickly, one effect of a distribution of sizes would be to smear out the discontinuous 
change in particle filling rates that occurs at qF as smaller particles.  Such  effects would be 
compounded if nucleation rates depend strongly on particles size.   For example, if small 
particles nucleated new phases more quickly, the “incubation time” for particle filling would be 
further reduced.  (For LFP,  the size dependence on nucleation rates is claimed to be small [3].)  
 
The model also suggests strategies for enhancing the performance of battery electrodes.  For 
example, the high electrical current density within individual particles produces a small number 
of active particles which might be harmful.  However, our model demonstrates that number of 
active particles depends on the past history of charge/discharge rates.  Momentarily increasing 
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charging rates to increase the number of active particles would, at least temporarily, result in an 
increased number of active particles and lower current densities during the charge/discharge 
cycle.  Similarly, not completely discharging the electrode before charging could initially 
increase the number of active particles. 
 
Bai and Tian’s earlier model [7] of multi-particle phase transforming particles also emphasizes 
the importance of the competition between (stochastic) nucleation and phase boundary motion.   
However, it differs from our model in one crucial respect:  Bai and Tian assume (in their Eq. (3)) 
that the rate of increase of the number of filled particles is simply proportional to the total 
number of active particles, whereas we, more physically, consider the states of charge of the 
active particle and take the rate of filling proportional to the number of almost full particles.   So 
for example, Bai and Tian’s model would not predict the “incubation time” for the creation of 
full particles, and cannot be used to compute the charge distribution of Fig. 2(b). 
 
 
Conclusion 
 
Our model is an attempt to determine the consequences on multi-particle electrodes of the 
competition between phase nucleation and phase boundary motion.  Since we ignore all diffusive 
processes that would decrease boundary area after nucleation, our model represents the extreme 
case where the electrode configuration is determined entirely by the kinetics of particle filling.   
Equations (9-12) represent the principal result:  they describe how the ensemble of particles fill 
when the charging rate is constant assuming that there is a barrier for nucleating the new phase in 
each particle.    They predict that the maximum number of particles that are actively charging 
occurs just before the time when the first particles are becoming completely charged.   
 
Increased spatial resolution to < 10nm using ptychography STXM data has confirmed that only a 
fraction of particles in LFP battery electrodes are active at any one time during charging and 
discharging.   The model quantitatively accounts for the evolution of this active fraction.    
Somewhat surprisingly, we find that it is unnecessary to invoke interparticle Li diffusion and 
metastable solid solutions to explain this data.  
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Appendix A 
 
To compute the value of the total charge 𝑄 of the electrode at the point when particles begin to 
be filled, we need to determine the state of charge 𝑥h of these first nucleated particles. This is 
just 
 
 𝑥h(𝑄) = 	∫ 𝑑𝑄′k

h 𝑃active(𝑄’)/𝑁active(𝑄’). (A1) 
 
 
Using 𝑁active 	= 	𝑁 − 𝑁empty , 𝑃mnopqr 	= 1 − 𝑃empty  and Eqs. (4-6), this becomes 
 
 

𝑥h(𝑄) = 	s 𝑑𝑄t
k

h
	1/𝑁(1 + 	𝑊((−1 + 𝑟)	𝑒B(%BCGCk’/A)))	

	=
𝑄
𝑁 +

1
𝑟
u−𝑊 F(−1 + 𝑟)𝑒(B%GC)K + 	𝑊 v(−1 + 𝑟)𝑒FB%GC	B

Ck
A K	wx 

(A2) 

 
Setting 𝑥	 = 	𝑀 and solving for 𝑄, gives the total electrode charge 𝑄[  when the first particles 
begin to be filled: 
 
 𝑄[ = 	𝑁𝑀	 F1	 + ayH	z

C{
– %
C	{

+ %
{
− ayH	z

{
K, 

 

 

yielding Eq. (11) in the continuum limit of large M and small r with 𝑞[ =
k|
A{
.  

 
Appendix B 
 
To compute the  evolution in the electrode after particles begin to become full, we consider the 
distribution of state of charge of individual particles and define 𝑛(𝑄, 𝑥)𝑑𝑥  as the number of 
active particles that have charge between 𝑥 and 𝑥 + 𝑑𝑥. (For a cylindrical particle with 
nucleation at one end and a phase boundary transverse to its length, 𝑥 is the distance the phase 
boundary has propagated, in units of some lattice constant.)  The value of 𝑛(𝑄, 𝑥)𝑑𝑥 at 𝑥 = 0 is  
determined by the nucleation probability times the number of steps required to move the phase 
boundary by 𝑑𝑥, i.e. 𝑑𝑥/	(𝑃mnopqr/𝑁mnopqr)  
 
 𝑛(𝑄, 0)𝑑𝑥	 = 	𝑃r~�o�	𝑑𝑥	/(𝑃mnopqr/𝑁mnopqr) 	= 	𝑁r~�o�(𝑄)	𝑟	𝑑𝑥  

or 
  
 𝑛(𝑄, 0) = 	𝑁r~�o�(𝑄)𝑟. (A3) 
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To compute the number of particles with state of charge 𝑥, we note that a phase boundary at 
position 𝑥 at total charge 𝑄 moves to position 𝑥 + 𝑑𝑄	/(𝑃mnopqr/𝑁mnopqr) when the state of charge 
is 𝑄 + 𝑑𝑄: 
 
 

𝑛(𝑄 + 𝑑𝑄, 𝑥) = 	−	𝑛 �𝑄, 𝑥 −
𝑑𝑄
𝑃mnopqr
𝑁mnopqr

� ,	

 

 
 
or 
 𝜕𝑛

𝜕𝑄 = 		−(𝑃mnopqr/𝑁mnopqr	)
𝜕𝑛
𝜕𝑥 .	

 

 
The solution to this partial differential equation with the boundary condition of Eq. (A3) and the 
requirement that all particles are initially empty, is 
 
 𝑛(𝑄, 𝑥) = 	𝑟	𝑁r~�o�(𝑄)𝑒C� 𝑥	 < 	 𝑥h (A4)  0 𝑥 > 	𝑥h 

 
where 𝑥h(𝑄) is how far the boundaries nucleated at 𝑄 = 0 have moved when the total charge is 
𝑄, as given by Eq. (A2). Substituting the definitions qp=x/M and a=r/M into Eq. (A4), and 
normalizing the probability distribution, results in Eq. (11). 
 

	
Appendix C 
 
Once the particles begin to become full (𝑥h = 	𝑀), the average state of charge of the active 
particles is 
 

< 𝑥 >	= s 𝑑𝑥
{

h
𝑥	𝑛(𝑄, 𝑥)	/s 𝑑𝑥

{

h
	𝑛(𝑄, 𝑥)		

 

 

 = 𝑀�1 −
1
𝑀𝑟 +

1
𝑒{C − 1�. 

 

 
 
After the particles begin to become full, the total state of charge of the electrode can be written 
as  
 
 𝑁filled𝑀			 + 		𝑁active < 𝑥 >		= 	𝑄.	  

	 
Or, after differentiating, 
 

𝑀	
𝑑𝑁filled

𝑑𝑄 +< 𝑥 >
𝑑𝑁active
𝑑𝑄 	= 	1.	
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Further, because the rate of particle filling is proportional to the number of particles with state of 
charge near 𝑀, we have from Eq. (10): 
 
 𝑑𝑁filled

𝑑𝑄 	= 	−𝑒C{
𝑑𝑁empty

𝑑𝑄 .	
 

 
With the requirement that 𝑁empty 	+ 	𝑁filled +𝑁active 	= 	𝑁, and using 𝛼 = 𝑟𝑀, one finds that: 
  
 𝑑𝑁filled

𝑑𝑄 = 		α	e\/(e\ − 1) 

 

 

 𝑑𝑁empty

𝑑𝑄 = −α/(e\ − 1) 

 

 

 𝑑𝑁active

𝑑𝑄 = −𝛼	. 

 

 

Integrating these equations using  𝑁filled=0  at 𝑄 =	𝑄[	 results in  Eq. (12). 
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Figures and Captions 
 
 

 
 
Fig. 1  (a-e) Number of active (black), filled (red) and empty (green) particles a function of the 
state of charge q for various values of r, for the Monte Carlo model described in the text (for 
M=100).  (a) 𝑟 = 8	 × 10B�, (b)	𝑟 = 8	 × 10B�, (c) 𝑟 = 8	 × 10B� (d)  𝑟 = 8	 × 10B&, (e) 𝑟	 =
1 − 10B�.  To compare (c) with the analytic results, (f) plots Eq. (9) and Eq. (12) with 𝛼 = 𝑟𝐿 =
0.8. 
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Fig.	2.		(a)	Ptychography	STXM	image	of	a	LFP	electrode	at	q	=	42%.	The	green	and	red	
regions	represent	FePO4	and	LiFePO4,	respectively.		Some	examples	of	particles	with	phase	
boundaries	are	circled.			(b)	Histogram	of	the	number	of	active	particles	with	state-of-
charge	𝑞_	measured	from	(a).			Solid	line:		best	fit	to	Eq.	(11),	giving	𝛼 = 0.73. 
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Fig.	3.		Points:	measured	fraction,	f,		of	empty,	active	and	full	particles	as	a	function	of	the	
electrode	state	of	charge	q.			Solid	lines:		best	fit	to	Eqs.	(9)	and	(12),	giving	𝛼 = 0.76.	


