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One-way edge states at the surface of photonic topological insulators are of significant interest
for communications, nonlinear and quantum optics. Moreover, when reciprocity is broken in a pho-
tonic topological insulator, these states provide protection against disorder, which is of particular
importance for slow light applications. Achieving such a one-way edge state, however, requires
the construction of a two-dimensional structure. Here, we show how unidiriectional Floquet bands
can arise in purely one-dimensional, adiabatically-modulated dynamic systems, in contrasts with
the higher dimensionality needed in topological insulators. We also show that, using realistic ex-
perimental parameters, the concept can be implemented using both a coupled-resonator optical
waveguide and a photonic crystal waveguide. Furthermore, we illustrate the associated protection
against disorder, and find it to be of a novel nature when compared to Floquet topological insulators.

I. INTRODUCTION

Photonic devices incorporating slow light can serve to
enhance optical nonlinearities and light-matter interac-
tions, and as optical delay lines for information storage
[1, 2]. The group index ny = ¢/vy, defined as the ratio
of the speed of light in vacuum to the group velocity in a
slow-light device, is thus a particularly important figure
of merit [3]. Using periodic structures like a coupled-
resonator optical waveguide (CROW) [4] or a photonic
crystal (PhC) waveguide [2], the group index can in fact
be made arbitrarily large at the frequency at the edge
of the photonic Brillouin zone — at least in theory. In
practice, however, small fabrication imperfections intro-
duce strong scattering of the photonic modes into modes
propagating in the opposite direction [5-8], leading to a
degradation of the transport, and, in the extreme case,
to Anderson localization of light [9]. For a fixed disorder
magnitude, these undesirable effects grow stronger with
increasing ng4, inevitably setting a limit on the highest
value achievable in experiment.

Recently, topological photonics has become a strong
research focus [10], motivated both by an interest in the
fundamental physical properties of topological insulators
[11-13], and by the promise of unidirectional, disorder-
immune propagation of light [14-21], which could lift the
limit on the group index that is imposed by disorder in
slow-light structures. However, the unidirectional fre-
quency bands of topological insulators always correspond
to states on the edges of a two- (or higher-) dimensional
system [10]. This is required for the non-trivial winding
of the one-dimensional edge bands in the Brillouin zone,
but it literally adds an extra dimension of complexity to
the fabrication of waveguides based on this effect. Re-
cently, it was realized that the Floquet quasi-frequency
bands that arise in periodically-modulated systems [22]
have a topological classification that is richer than that of
ordinary frequency bands [23], which arises from their pe-
riodicity in quasi-energy (or quasi-frequency) space. One
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illustration of this is the appearance of ‘anomalous’ edge
states in gaps between quasi-frequency bands with a zero
associated Chern number difference [24], but this effect
arises once again in a two-dimensional structure. The
only previous discussion of a unidirectional band in a
one-dimensional system was given in Ref. [23], but only
through an idealized model with no corresponding phys-
ical realization.

In this paper we show that, within the adiabatic
approximation, unidirectional Floquet quasi-frequency
bands can be achieved in a purely one-dimensional,
dynamically-modulated waveguide. This leads to a sig-
nificant simplification of the structures needed for unidi-
rectional light transport. Specifically, we show how such
bands can be achieved both in a modulated CROW, and
in a modulated PhC waveguide using experimental pa-
rameters relevant to state-of-the-art integrated photonic
devices. Furthermore, we find that many of the appealing
properties of the edge states in topological insulators are
preserved, most importantly — robustness with respect to
imperfections in the system. We also discuss the details
of this disorder protection, and highlight that it is differ-
ent, and in some cases superior, to that of photonic topo-
logical insulators based on dynamic modulation [19, 20].

The paper is organized as follows. In Section IT we
provide the theoretical background. In Section III, we
illustrate how a unidirectional Floquet band with a con-
stant group velocity can be implemented in a modulated
CROW, and show the associated robustness to disorder,
as compared with a standard slow-light CROW. In Sec-
tion IV, we extend these results to the case of a mod-
ulated photonic crystal waveguide. Finally, in Section
V, we discuss some experimental considerations regard-
ing the implementation of our proposed devices and the
group index that can be expected, as well as the nature
and magnitude of the protection against disorder.



II. FLOQUET BANDS AND ADIABATIC
EVOLUTION

We start with an overview of Floquet theory for time-
periodic systems [22]. Consider a quantum mechanical
Hamiltonian H(t) such that H(t) = H(t + T) for a
given period corresponding to a modulation frequency
Q = 27/T. For such systems, the Floquet theorem can
be employed, asserting that the evolution of any state
under H(t) can be written as a linear combination of
Floquet quasi-eigenstates defined as

[Pa(t)) = e_isatlva(t»’ (1)

where €, are the quasi-energies, « is an eigenmode index,
and the states |v, (t)) are time-periodic with period T and
determined by the eigenvalue equation

(H(t) —i0)|va(t)) = ealva(t)). (2)

The states ¢, (0)) are themselves eigenstates of the time-
evolution operator U (t) = T exp (—i fot ];I(t’)dt') at time
t =T, with eigenvalues determined by the quasi-energies
as

U(T)|9a(0)) = 6a(T)) = e “=T|6a(0)).  (3)

We note that the quasi-energies are only defined mod-
ulo €, i.e. the time-periodicity introduces periodicity in
frequency-space.

As a simple physical example, which is also related
to both systems that we study later on in this paper,
consider the Hamiltonian H = V(z,t)|z) (x| correspond-
ing to a potential that is uniformly sliding towards the
positive-z direction, V(z,t) = V(x—wvt,0). If V(z,0) also
has spatial periodicity with period L, then the potential
is time-periodic with period T' = L/v. A schematic ex-
ample is illustrated in Fig. 1(a)-(c), where we show a
periodic lattice of potential wells separated at a distance
L, uniformly sliding to the right. The spatial periodicity
of V(z,t), which is preserved at all times, also means that
the Bloch momentum £ is conserved (modulo 27 /L).

Ref. [23] put forth an intuitive derivation of the quasi-
energy band e; corresponding to a sliding potential as
the one in Fig. 1(a)-(c), in the limit in which the
wells are sufficiently deep such that the dynamics can
be projected on the basis consisting of only the local-
ized states. We repeat this here for pedagogical pur-
poses. In this limit, a starting state |¢)(0)) = |¢,) local-
ized at position z moves together with its potential well,
such that |[¥(t)) = [)y—ut). Defining the reciprocal-space
states 1) such that [¢(t)) = Y, e~ |h, ), we then
find |x(T)) = 3, e *|gp_r) = 3, e *EH|y,) =
e~ L9 (0)). Thus, for every k, |¢x(t)) is a Floquet
quasi-eigenstate as per eq. (3), with an associated quasi-
energy ¢, = kL/T. This is illustrated in Fig. 1(d), and
it can be seen that it has a non-trivial winding that is
only possible because of the folding of the Brillouin zone
in quasi-energy space.
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FIG. 1. (a)-(c): Schematic of a lattice of potential wells uni-
formly sliding to the left, shown at times (a): ¢ = 0; (b):
t =T/3; and (c): t = 27/3. (d)-(f): In the limit of deep
wells, (d): quasi-energy band; (e): instantaneous frequency
band at ¢t = 0; and (f): Berry phase after one period.

The significance of such a non-trivial winding of
the Floquet band — in particular for photonic systems
— comes from the fact that the Floquet quasi-energy
of a band defines a time-averaged group velocity of
a wavepacket in the same way as the band frequen-
cies of a static system determine the group velocity.
Namely, assume we have a starting wavepacket ¢(x,t =
0), expanded on the basis of the Bloch wavefunctions

|§0koz(t)> = eikx‘uka(t»:
ot =0) = / AW g (0). ()

We assume further that the expansion coefficients W(k)
are narrowly centered around some Bloch vector kg, and
Taylor-expand

aeka
ok |,

= Ekooz —+ (k — ko)@a(ko).

€ka = €koa + (k - kO) (5)

Using eq. (3), we find at t =T
plar, T) =eoriekoaT ®

dkW (k) etk —ko)(@=ta (ko) T) |y, (0)).
BZ

The position of the wavepacket thus shifts by o, (ko)T
after every period T, which justifies interpreting v, (ko)
as the group velocity of band « at kg, averaged over
one cycle. The intuitive relationship between v and the
Thouless charge transport [25] has been discussed in Ref.
[23], where it was shown that the integral of the Floquet
group velocity ¥, (k) over the Brillouin zone is equal to



the charge pumped over one cycle associated to the filled
band «, as discussed by Thouless. However, as opposed
to solid-state systems, filled bands do not naturally arise
in photonic systems. The group velocity, on the other
hand, is still a very important figure of merit, deter-
mining for example the maximum delay as well as the
strength of the light-matter interaction in delay lines.
Furthermore, a constant, unidirectional group velocity
in the entire Brillouin zone implies complete absence of
backscattering and hence robustness in the presence of
disorder introduced into the waveguide. Thus, the sig-
nificance of the Floquet band of Fig. 1(d) goes beyond
Thouless pumping.

The main result of this Section is now to derive an
expression for the Floquet quasi-energies that is gener-
ally valid in the adiabatic limit, but does not assume an
infinitely deep potential. This will allow us to study re-
alistic systems, and to propose in Sections III and IV
physical photonic structures in which a Floquet disper-
sion like the one of Fig. 1(d) can be implemented. We
start from the instantancous eigenstates of the Hamilto-
nian H(t), defined as

wia (D) ra(t)) = H(O)|ra (1)), (7)

where wy, (t) denote the instantaneous eigen-frequencies.
These states form a complete basis set at every time £,
and thus the time evolution of any arbitrary state in the
system can be expanded as

U(1)) = D ara(t)[hra(t))e =), (8)

where O (t) = fot wka (t')dt’. The Schrodinger equation
can thus be re-written as a system of coupled differential
equations for the expansion coefficients ag,, namely

0 0
L8 =~ za:aka <1/Jk/3 ‘81&

This is thus far an exact result. Now, if we assume a
slowly-varying Hamiltonian, to first order in the time
derivative the solution expanded around a starting in-
stantaneous eigen-state |k, ) is given by [13, 25-27]

wka>ei(9kﬁ(t)—9ka(t)) )

W o () —e Wra(t) givka(t) (10)

[Uka(t)) =i Y Kag(k,O)ldrs(®) | |
B#a

(Yrs(1)|0/Ot|¢ra(t))
Wha (1) — wip(t)

Kop(k,t) = (11)

valid in the limit |K,(k,t)| < 1, V¢, 8. For subsequent
use we refer to K,g(k,t) as the overlap factor. Its mag-
niitude measures how well the adiabatic condition is sat-
isfied. The perfect adiabatic evolution is achieved when
the overlap factor approaches zero. The quantity 7k (t)

is the Berry phase, i.e. the integral over the Berry con-
nection, for band momentum &k and band «:

ealt) = i / (o (1)]0) Ot ra () (12)

Since the eigenstates of eq. (7) are only defined up to
an arbitrary gauge that depends on k and t, this quan-
tity is generally also gauge-dependent. However, in the
case of cyclic dynamics, H(t +T) = H(t), the Berry
phase Yo (T') (modulo 27) becomes a gauge-independent,
observable quantity [13, 27]. Now, assuming adiabatic
evolution, as well as single-valued instantaneous eigen-
states such that |tk (0)) = |[Yra(T)), the state |[Pra(t))
as given in eq. (10) obeys

WialT)) = e e et Dgy, 0), (13)
and is a Floquet quasi-eigenstate with quasi-energy
kol = Ora(T) — Yra(T). (14)

For the case of the uniformly sliding potential of Fig.
1(a)-(c), the instantaneous frequencies wgq (t) are in fact
time-independent. More generally, assuming that wye (t)
is approximately time-independent on the scale of €2, as
will be the case in our subsequent examples, we obtain
simply

€ka /= Wka(0)/Q2 = ka(T)/(27). (15)

This relationship is illustrated schematically in Fig.
1(d)-(f) for the case of the deep sliding potential. The in-
stantaneous eigen-frequency band wy,, is flat in this limit.
Thus, the winding of the quasi-energy band implies that
the Berry phase also has to wind in the Brillouin zone,
as shown in Fig. 1(f). In other words, we could infer
the Berry phase based on our knowledge of the quasi-
energies. However, more generally, and in realistic sys-
tems, the utility of eq. (15) goes the other way around.
Namely, there is a variety of ways to compute the in-
stantaneous eigenstates of eq. (7), and thus both terms
on the right-hand side of eq. (15). These can then be
used to compute the Floquet dispersion when the evolu-
tion is adiabatic, which is particularly useful in practice,
since direct numerical and analytic calculations of the
quasi-energy band by diagonalization of eq. (2) can be
far more involved as compared to the computation of the
instantaneous band structure.

The main conclusion of this Section is that a sliding
potential can lead to unidirectional waveguiding that is
expected to be robust to disorder. Based on Fig. 1 and
our discussion above, we can more specifically identify
three requirements needed for the unidirectional Floquet
band: (1) we need a Berry phase that winds in the Bril-
louin zone, (2) we need adiabatic evolution, and (3) we
need an instantaneous starting band that is narrow-band
when compared to the modulation frequency. In the next
Section, we show how these conditions can be met in re-
alistic physical systems, and how the unidirectional band
emerges as predicted.
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FIG. 2. (a): Schematic of the system. There are N cav-

ities within an elementary cell of unit length (blue dashed
rectangle), with first-neighbor coupling J and time-varying
resonance frequencies wy(t). (b): Resonance frequency vs.
position for A/Q = 10, N = 16, at times ¢t = 0, T'/3, and
2T/3.

III. IMPLEMENTATION IN A GENERIC
COUPLED-CAVITY WAVEGUIDE

A. Setup and theory

The first system that we consider is a spatially-discrete
analogue of a uniformly sliding cosine potential, V (z,t) =
cos(2mx/L — Qt). Namely, we study a CROW as in
Fig. 2(a), in which the resonance frequency of each
cavity w;(t) is sinusoidally modulated in time. We set
the starting, unmodulated frequency of each cavity to
wo = 0, since a non-zero wy would only appear as a
constant frequency offset in all the results presented be-
low. We further impose a real-space periodicity IV, such
that w;(t) = w;+n(t), and denote the cavity positions
Zm = m/N for integer m, such that the unit cell is
of unit length. The coupled-mode theory equations de-
scribing this system [28-31] can be written in the second-
quantization form of a single-particle Hamiltonian as [19]

H(t) = Z Acos(2mxy, — Qt)al am+ (16)

(Jal ami1 + h.c.),
where the operator a, creates a particle at position x,,.
Fig. 2(b) shows the spatial distribution of w;(t) for

A/Q =10, N = 16, at three instants, t = 0, t = T/3,

t = 2T'/3. Defining the k-space operators

aLn:ZeikaN+”La;r)N+n, n=0...N—-1, pe2Z
P

(17)

the Hamiltonian becomes

H(t)= [ A[H(kt)Axdk, (18)
with Al = (af;,af,....a]y), and
H(k,t) = (19)
wi(t) Jek/N 0 . 0 Je k/N
JeTR/N wy(t)  Jetk/N 0 0
0 0 0 wy_1(t) Je*k/N
Jeik/N 0 0 Je HRIN N (t)

Diagonalizing the matrix H(k,t) thus yields the instan-
taneous eigen-frequencies wyq (). We can also numer-
ically compute the quasi-energies using standard Flo-
quet theory. The states |vpq(t)) of eq. (2) are space-
and time-periodic, and can be expanded on the basis
In,p)i, = eipmazn|0>7 where p is an integer, i.e.

[oka(t)) = Y vka(n,p)In, D). (20)

The inner product defining the Hilbert space of the Flo-
quet Hamiltonian (H(t) — i0;) of eq. (2) is defined as
((o]®)) = + f0T<0|0>dt. We can thus compute the non-
zero matrix elements of the Floquet Hamiltonian in the
|n, p)r basis as

<k<n/ap/‘H - Zat|nvp>k> = (21)
Q2 p=p,n=n
Hnn/(kz O) b= p/a n 7é n'

= (AeiQ”"/N)/Q pzp/—l,nzn/

(Ae—i27rn/N)/2

p=p +1n=n'

where H,,,,s denote the matrix elements of eq. (19). The
Floquet Hamiltonian can thus be readily diagonalized nu-
merically by restricting the matrix elements of eq. (21)
to a certain order pmax such that |p|, [p'| < Pmax. This
value is chosen high enough to achieve convergence.

We can now explore the dependence on the system pa-
rameters of some of the quantities relevant to our tar-
get structure. In Fig. 3(a)-(b), we show the depen-
dence of the Berry phase of the lowest-frequency band
of the CROW for various values of N and A/J. This
was obtained numerically by computing the instanta-
neous eigenstates on a discretized mesh in time. As can
be seen, the Berry phase winds around the Brillouin zone
for all values of N apart from N = 2, in which case the
system is time-reversal invariant. With increasing N and
A, the Berry phase approaches the simple dependence
vk1(T) = —k, as can be expected from our previous dis-
cussion of an infinitely deep, continuous potential.

As discussed in Section I1, a winding Berry phase is one
of three conditions needed for achieving a fully unidirec-
tional Floquet band. The other two are adiabatic evo-
lution, as well as a narrow starting band wyq(0). Thus,
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FIG. 3. (a)-(b): Berry phase of the lowest-frequency band for
a chain with (a): A/J = 1 and several values of N, and (b):
N = 16 and several values of A/J. (c): Maximum overlap
term Kmax (see text) as a function of A and J, for N = 16.
(d): Same, but for the bandwidth of the lowest-frequency
band. The white cross marks the parameters used in subse-
quent Figures in this Section.

in Fig. 3(c), we plot the maximum magnitude of the
overlap term for the first band as defined in eq. (11),
ie. Kmax = maxy ¢ g(|K15(k,t)|), as a function of A and
J, with N = 16. For the adiabatic condition to hold,
we need K a.x < 1, which in turn requires both J > Q
and A > Q. Intuitively, when J goes to zero, the states
become fixed at individual lattice sites and cannot fol-
low the moving potential, while when A goes to zero,
the potential becomes too shallow and the states are not
bound to the local minima. In Fig. 3(d), we plot the
bandwidth Awy; of the lowest-frequency instantaneous
band at ¢ = 0, which increases with J and decreases
with A. Still, as can be seen, there is a broad range of
possible parameters that fit all requirements. For the
remainder of this Section, we set N = 16, A/Q = 10,
and J/Q = 25 (white crosses in Fig. 3(c)-(d)), for which
Kmax = 0.015 < 1 and Awy;/Q = 0.009 < 1.

B. Floquet bands

We can now test the main result of Section II using
the concrete physical system as described above. In Fig.
4(a), we plot the instantaneous band structure wgq(0)
of the CROW, while in Fig. 4(b), we show with black
dots the exact Floquet bands computed numerically af-
ter diagonalizing eq. (21). We note once again that
the quasi-energy axis is folded with period 2. This, to-
gether with the fact that some of the bands in panel (a)
have a bandwidth significantly larger than €2, results in
the speckled appearance of the exact quasi-energies, as

60

40

20

w(0)/Q

-20

-40

-60 s fuA
4 05 0 0.5 1 4 05 0 0.5 1

k/m k/m

FIG. 4. For a chain with A/Q = 10, J/Q = 25, N = 16,
(a): instantaneous band-structure at ¢ = 0, and (b): Floquet
quasi-energy bands. Black dots are computed through exact
diagonalization. The colored lines are computed from eq. (15)
for the correspondingly-colored bands in (a).

the bands are re-folded many times into the frequency
Brillouin zone. Importantly, however, several continuous
black bands stand out, each of which has a bandwidth on
the scale of Q. We will now show through eq. (15) that
these bands can be associated with adiabatically guided
states from the two lowest- and highest-frequency bands
of panel (a).

We first look at the lowest-frequency band, plotted
in red in panel Fig. 4(a). For this band, we compute
and plot in panel (b) the band of the quasi-energy using
eq. (15), with the associated Berry phase taken from the
green curve in Fig. 3(b). The resulting line matches well
one of the black bands from the exact diagonalization,
apart from a small systematic offset. Next, we note that
there is a symmetry of the bands with respect to w = 0,
and so for example between the red and the blue bands
in panel (a). In particular, the frequency in such a pair
of symmetric bands is given by w1 (0) = —wk16(0), while
we also find numerically that the term K,,x and the
Berry phase yxo(T') are the same. Thus, the green line
in Fig. 4(b) shows the adiabatic prediction associated to
the highest-frequency band in panel (a), and it accounts
for the second straight band visible in black. We can
repeat the same procedure for bands number two and fif-
teen (orange and blue lines in Fig. 4(a), respectively),
for which the term K, = 0.028 is still much smaller
than one, justifying the application of eq. (15). The
corresponding results are again shown in Fig. 4(b), and
account very well for the remaining two continuous black
bands visible in the panel. The offset here between the
analytic calculation and the exact numerical diagonal-
ization arises since the adiabatic condition is not strictly
satisfied, i.e Kax is not strictly zero. We have checked,
using different parameters A, J, and N, that the differ-
ence between the analytic prediction of eq. (15) and the
exact quasi-frequencies decreases with decreasing K ax.

In short, as seen in Fig. 4(b), we have achieved fully
unidirectional Floquet bands, which are also well ac-
counted for by eq. (15).
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FIG. 5. (a): Time evolution of the field intensity in the
CROW with A/Q =10, J/Q =25, N = 16, given a source of
frequency w, /2 = —55.9 in the cavity at x = 0. (b): Reso-
nance frequencies and field intensity (arbitrary normalization)
at times t = 0.57, t = 1.757, and t = 3T (shown with white
dashed lines in (a)). The z = 0 cavity where the source is
located is marked in orange. (c): Peak of the emitted pulses
versus source frequency.

C. Unidirectional source emission

As shown in Section ITIB, the dynamically modu-
lated CROW can exhibit a unidirectional quasi-energy
band. In order to use this band to demonstrate unidirec-
tional light transport, we will need to selectively excite
it. Moreover, as light propagates, a mode in such a uni-
directional band should not couple to other modes of the
system. In general, in a Floquet system, any two quasi-
energy bands that intersect can couple to one another.
Thus, in principle, a mode from a given unidirectional
band of Fig. 4(b) would couple with any other mode in
the system that has the same quasi-energy and wavevec-
tor. In our case, however, due to the adiabatic consid-
eration, an excitation of a mode in the lowest band of
the instantaneous band structure is expected to stay in
the same band. Consequently, the coupling of modes in
the quasi-energy band formed from the lowest instanta-
neous band to all the other modes in the system should
be minimal, in spite of the fact that the quasi-energy
bands form a near continuum due to the folding along the
quasi-energy axis, as shown in Fig. 4(b). Therefore, to
demonstrate unidirectional light transport, it is sufficient
to place an excitation source in one of the resonators, and

choose the frequency of the excitation source to be close
to the frequency of the lowest band of the instantaneous
band structure.

In Fig. 5(a), we show a dynamic simulation of the field
intensity |¢(x,t)|? inside the CROW of Fig. 4, assum-
ing a continuous-wave source at frequency ws/Q = —55.9
(i.e. close to wy1) placed in the cavity at position z = 0.
In panel (b), we show snap-shots of w(x,t) and |¢|? at
three different times (white dashed lines in panel (a)). As
can be seen, the source emits the strongest at the times
when the cavity in which it is placed is at its lowest fre-
quency. This is because the instantaneous eigenstates
corresponding to wg; are, at any given time, localized
around the lowest-frequency cavity region. The instanta-
neous eigenstates in fact look very similar to the emitted
pulses shown in Fig. 5.

As expected due to the linear, one-way Floquet band,
the result of the dynamic simulation looks qualitatively
the same regardless of the source frequency, as long as
it only couples with the first band, ie. |ws — wp1] <
lws — wg,i1]. The difference, however, is the maximum
intensity of the emitted pulses, which are the strongest
when the source is exactly resonant with wgy. This is
shown in Fig. 5(c), where we plot the maximum intensity
vs. source frequency. We note that the bandwidth of the
resonance is comparable to €2, and significantly larger
than that of the instantaneous band wg1, which is much
smaller than €.

D. Disorder-protected delay line

Next, we show how a unidirectinal optical delay line
protected against disorder can be built on the basis of
the modulated CROW. In Fig. 6(a)-(b), we first show
a regular delay line made from an unmodulated CROW.
Specifically, we consider a chain of cavities with a nomi-
nal N = 16 (i.e. 16 resonators per unit length), but with
a resonance frequency wg = 0 at all times for all cavi-
ties. The dispersion is then given by w(k) = 2.J cos(k/N),
the group velocity of a pulse centered around wy is cor-
respondingly vy(k = 7/2) = 2J/N, and it can thus
be controlled through the coupling constant J. In Fig.
6(a)-(b), we plot a dynamic simulation of a pulse propa-
gating through a fast-light region with J;/Q = 25 for
cavities at x < 0, which then enters a slow-light re-
gion with J;/Q = 8/(2), such that the group velocity
is vy, = 1/T, i.e. one elementary cell in time 7. The
slow-light region extends to x = 1.4, at which point
the fast-light value J; is introduced again. The start-
ing pulse is ¥(z,t = 0) = ethore=(2=20)*/(202)  with
ko = w/2, xg = —8, and o, = 2.5, corresponding to a
bandwidth of Aw/Q = 1.25. To ensure strong in-coupling
of the pulse to the slow-light region, we apodize the cou-
pling constants at the interfaces between the fast- and
the slow-light regions [32]. In particular, we minimize
the reflection of the pulse with respect to the coupling
constants between the cavities at position —2/N and
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FIG. 6. (a): Time evolution of the field intensity in- and out-
coupled to a classical delay line. There are N = 16 cavities
within a unit length on the z-axis. (b): All cavities have
w = 0 at all times, while the coupling constant is J;/Q = 25
in the fast-light region < 0 and « > 1.4, and J,/Q = 8/(2n)
in the slow-light region z € [0,1.4]. (c)-(d): Field intensity,
resonance frequencies at time ¢ = 0, and coupling constants
for a delay line based on the modulated-CROW concept.

—1/N, —1/N and 0, and 0 and 1/N, which results in
Jo /2 = [24.9,7.5,1.8], respectively in the apodized re-
gion (Fig. 6(b)). For the out-coupling of the pulse, these
apodized coupling constants are taken in reverse order.
As can be seen in Fig. 6(a), the pulse enters completely
the slow-light region with minimum reflection (intensity
reflection coefficient < 1%), and is indeed slowed down
in the slow-light region. We note that the visible broad-
ening in that region is due to group-velocity dispersion
effects, since the pulse bandwidth is now comparable to
the total bandwidth 4.J; of the slow-light region.

In Fig. 6(c)-(d) we plot the same pulse, but this time
using the modulated CROW as a delay line. More pre-
cisely, in the spatial region = € [0,2] we take the modu-
lated chain of Figs. 4 and 5, with N = 16, 4/Q = 10,
J/Q = 25 (Fig 6(d)). The modulated CROW thus has
the same group velocity as the unmodulated slow-light
CROW of panel (a). However, light in- and out-couples
faster, which is why we use a slightly longer slow-light re-
gion to achieve the same delay. In the regions x < 0 and
x > 2, we have the same unmodulated fast-light CROW
as in panel (a), only this time we set the resonance fre-
quency of every cavity to wo/Q = —55.9, such that the
central pulse frequency is resonant with the lowest in-
stantaneous band wyy of the modulated structure. We
note that in this setup, the in-coupling of the pulse de-
pends on its starting position, or, alternatively, on the
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FIG. 7. Same as Fig. 6, but including random Gaussian
disorder in w with a standard deviation o/Q = 1.

starting time ¢y of the modulation. Furthermore, to en-
sure strong transmission, we again need to apodize the
coupling constants J,, defined above. Thus, we numeri-
cally minimize the reflection at the interface with respect
to J, and tg, which leads to J,/Q = [50.0,36.1, 33.7],
to = 0.347T, with a corresponding reflection of less than
3%. Notably, however, the couplings at the output end
do not need to be apodized: there are no available back-
propagating states for the pulse there, and it out-couples
with unity transmission. Finally, we note that the start-
ing pulse bandwidth was chosen such that it matches the
one of the outgoing pulse, which is approximately given
by Q. With these design, the modulated CROW indeed
achieves the same group velocity reduction as the unmod-
uated CROW, with a similarly high overall transmission
coefficient for the pulse used.

The superiority of our modulated scheme over a stan-
dard delay line is illustrated in Fig. 7, where we plot
the same pulse propagation as in Fig. 6, but now as-
suming random Gaussian disorder in the resonance fre-
quency of each cavity with zero mean and standard de-
viation ¢ = (). Disorder of this type is very common
in real systems, and, in regular CROWs, its detrimental
effect grows stronger as the group velocity decreases. In-
deed, as can be seen in Fig. 7(a), in the fast-light region
the pulse is not strongly affected by the disorder, since
Jr > o. However, inside the slow-light region we have
Js ~ o. This leads to more reflection at the interface be-
tween the two domains, while the light that does enter the
slow-light region is strongly distorted and localized. In
sharp contrast, the propagation through the modulated
CROW, shown in Fig. 7(c)-(d), works in the same way
as in the disorder-less case of Fig. 6(c)-(d). This is due



to the fact that here A > o and J > o everywhere, and
thus the disorder effects are much weaker. The numerical
results demonstrate that the unidirectional quasi-energy
band structure can indeed be used to overcome disorder-
induced backscattering in CROW structures.

IV. IMPLEMENTATION IN A PHOTONIC
CRYSTAL WAVEGUIDE

A. Setup and theory

We will now show how the ideas developed in the pre-
vious Sections can also be implemented in a photonic
crystal waveguide, opening our results to a broader class
of integrated photonic devices. Photonic crystal waveg-
uides have been used for a wide array of applications
[1, 2], but are to this day plagued by inevitable imper-
fections in the writing and etching process that lead to
strong back-scattering that is especially significant for
slow light [3, 6-8]. The results presented below offer an
approach to overcoming this limitation.

First, we derive the dynamics of electromagnetic ra-
diation in a photonic structure under a time-dependent
permittivity modulation, using an approach similar to
that of Section II, but starting from the Maxwell’s equa-
tions of the system. This can be done in the spirit of the
seminal works on topological photonics [14, 15], in which
the Berry phase associated to electromagnetic modes has
been defined. We assume no free charges and currents,
relative magnetic permeability 4 = 1 everywhere, and
an isotropic, lossless material with an instantaneous di-
electric response such that the permittivity e(r, ¢) is real,
scalar, and does not depend on the frequency w. At any
fixed ¢, Maxwell’s equations can then be written as a
generalized Hermitian eigenvalue problem for the instan-
taneous eigenmodes u, = (H,,E,)?, with E and H the
electric and the magnetic fields, respectively:

0 —iVx _ 1ol 0
(i )t =) (51 L) e
(22)
where I is the 3 x 3 identity matrix. We can thus, as
in Section II, expand the general dynamics of the elec-

tromagnetic system on the basis of these orthonormal
instantaneous eigenmodes, such that

u(t) = Zcu(t)uu(t)ew“(t), (23)

with 6,,(t) = ffot w,(t')dt’. Using eq. (22), Maxwell’s
equations can then be re-written as coupled differential
equations for the expansion coefficients:

by == ety i, ) O, (24)
n

where time-derivative is denoted by a dot, and the inner
product is defined as

. I 0 .
(wy,0,) = /drul (“00 sos(r,t)1> w, (25)

The discussion is thus far exact. In analogy with Sec-
tion II, we can similarly define the overlap factor whose
magnitude defines adiabacity,
Uy, U
K;w(t) — M

Wy — Wy

: (26)

as well as the Berry phase acquired under adiabatic evo-
lution,

(t) = i / (n (1), () (27)

We now apply this formalism to a model photonic crys-
tal system, shown schematically in Fig. 8(a). We con-
sider a silicon-slab PhC W1 waveguide, formed in a tri-
angular lattice of circular holes, with one missing row of
holes. The physical parameters are, relative permittiv-
ity eg = 12.1 in silicon and €; = 1 in air, slab thick-
ness d = 220nm, lattice constant a = 400nm, and hole
radius 7 = 100nm. The eigenfrequencies and the full
electromagnetic eigenmodes of this structure can be ef-
ficiently and reliably simulated using the guided-mode
expansion method [33, 34]. In particular, we use a com-
putational cell of length L, in the z-direction and L,
in the y-direction, while the z-direction is included an-
alytically. Everywhere below, we set L, = 7v/3a, while
L, is determined by the periodicity in the z-direction.
The Bloch momentum k, is a conserved quantity, with
a Brillouin zone of width 27/L,. The Bloch bands of
the unmodulated PhC (L, = a) are shown in Fig. 8(c).
The physical parameters were chosen such that the op-
erational frequency wyp, roughly defined by the slow-light
region of the lowest guided band (blue), corresponds to
a free-space wavelength close to 1550nm.

To achieve modulation, we assume that the structure
has an intensity-dependent index, and is illuminated from
above with two plane waves at slightly different frequen-
cies wy, we, lying above the photonic band-gap of the un-
derlying PhC lattice. Furthermore, we assume the plane
waves have the wavevectors k; = (k1,0, Jw?/c2 — k?),
ko = (ka,0,\/w3/c? — k3), corresponding to waves with
slightly different angles of incidence (Fig. 8(a)). We fur-
ther assume that the difference in the k,-components is
small enough, such that the electric field of the combined
beam is approximately constant in the z-direction on the
length-scale of the slab thickness d (this is justified for
the range of parameters we use below). Thus, the electric
field intensity inside the slab due to the beating of these
two illuminating plane waves can be written as

I(z,y,t) = Inp X (2+ 2cos(Agz — Q)), (28)

with Ay = ko — kp and Q = ws — wy. Then, assum-
ing an optical material non-linearity that gives rise to
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FIG. 8. (a): Schematic of the simulated setup — a photonic
crystal waveguide is illuminated from above by two interfering
fields, which generate a traveling-wave intensity pattern. (b):
Permittivity e(r,t) of the modulated structure with I, = 16a
and A. = 0.3, at z = 0 and times ¢t = 0, t = T/3, and
t = 27/3 . (c): Photonic bands of the unmodulated PhC.
The two guided bands (red and blue) have opposite symmetry
with respect to the xz-plane. The black dashed line is the
light cone. (d): Brown: band structure of the modulated
waveguide at ¢ = 0, with I, = 16a and A. = 0.03. Blue:
band structure of the unmodulated waveguide computed with
a supercell of length I, in the z-direction. (e): Electric field
|Ex, (r)|? of the lowest-frequency guided mode corresponding
to the brown bands in panel (c), with k; = 0.

an intensity-dependent refractive index, this leads to an
optically-induced modulation of the refractive index. For
concreteness, we consider free-carrier dispersion, which
has already been used in a similar setup [35, 36]. For
simplicity, we assume that the response is instantaneous
with respect to (2, which in practice sets an upper bound
on () that depends on the details of the implementa-
tion. The permittivity in the material then becomes
es — es + Ae(r,t), with a permittivity change due to

the illuminating waves given by
Ae(r,t) = —fIy x (24 2cos(Agz — Qt)), (29)

We rewrite Eq. (29) as
Ae(r,t) = —egA. sin® (77E - @> , (30)

for positions such that r is in silicon. For simplicity we
assume that the modulation occurs only for |y| < I,
and Ae(r,t) = 0 otherwise. In what follows we set [, =
2v/3a, but we note that the results below do not depend
qualitatively on this particular choice. In eq. (30), we
defined the real-space periodicity I, = 27/A, as well as
the maximum induced permittivity change A., relative
to €g.

In Fig. 8(b), we show &(r,t) in the plane at z = 0,
at t = 0,t = T/3, and t = 2T/3, for A, = 0.3 and
l, = 16a (as before, T' = 27 /Q). We note that the mod-
ulation amplitude is set to an unphysically high value in
this panel only for illustrative purposes. This modulation
thus imposes a supercell in the z-direction containing 16
unit cells of the unmodulated waveguide. This periodic-
ity is preserved for all ¢, hence the Bloch momentum k,, of
light propagating along the modulated waveguide is still
a conserved quantity, but the Brillouin zone is now folded
to the region k, € [-Ay/2,Ax/2]. In Fig. 8(d), we plot
the instantaneous band structure at t = 0, computed
with the guided-mode expansion with L, = [, = 16a
and A, = 0.03. As can be seen, the lowest-frequency
band is flattened by the modulated permittivity. Fur-
thermore a band-gap separating it from all the higher-
frequency bands is opened. This band structure is thus
a promising starting point for implementing a unidirec-
tional transport scheme analogous to that of Section III.
Finally, we note that the modes of the lowest band are
localized around the maximum of the permittivity distri-
bution. This is illustrated in Fig. 8(b), where we plot
the electric field intensity of the lowest-frequency mode
at k, = 0 (the modes of this band look qualitatively
similar at all k;). The gradual modulation of the per-
mittivity in essence creates a coupled-cavity waveguide,
with a gently-confined photonic crystal cavity similar to
the one of Ref. [37] at each node.

B. Dynamic simulation

The instantaneous eigenstates (Hy,, (t), Ex,(t)) at any
time t can be computed using the guided-mode expan-
sion. We note that this method is approximate in that
the coupling to modes in the radiative continuum is only
included perturbatively. However, this should be an ex-
tremely good approximation for the modes we study here,
since they are formed by the part of the guided band of
the underlying PhC that lies below the light cone (Fig.
8(c)). Indeed, we obtain an extremely high quality fac-
tor @Q > 10'2 for all modes of the lowest-frequency band



shown in panel (d). Once the eigenmodes are computed
over a discretized mesh in time, using the expansion in
egs. (24) we can also simulate the full dynamics of a
given starting state

u(r,t =0) = Z e ep (0)upy (1, 0), (31)
k,v

defined by the expansion coefficients ¢, (0). Everywhere
below, we label the lowest guided band (e.g. the lowest
brown band of Fig. 8(d)) with the index v = 1, and con-
sider a starting state that only contains modes in that
band, i.e. ¢g,(0) x d,1. We note that the dynamic simu-
lation performed in this way is in principle exact, in the
limit in which all (infinitely many) bands are included
in the summation. As can be expected, for an adiabatic
modulation, we find that the summation converges fast,
with the strongest mixing occurring only within the few
bands that are closest in frequency to the starting one.

As we already discussed in Sections IT and III, there are
three requirements for unidirectional transport: winding
Berry phase, adiabatic evolution, and a flat starting band
on the scale of the modulation frequency 2. Thus, in Fig.
9(a), we first plot the Berry phase 7x1(T") associated to
the first band, computed as in eq. (27), for I, = 16a and
three different values of A.. The sliding permittivity
causes the Berry phase to wind in the Brillouin zone in
the same way as in our system of Section III. Next,
in Fig. 9(b), we explore the parameter range in which
the remaining two conditions are satisfied. We define,
as before, Kmax = maxy (| K1, (k,t)|), with Ky, from
eq. (26). The adiabatic condition is thus defined by
Kiax < 1, or approximately within the region below the
red line in Fig. 9(a), which shows K,.x = 0.1. The blue
line in the plot, on the other hand, delimitates the region
in which the modulation frequency §2 is much larger than
the bandwidth Aw; = maxy (wg1)—ming (wk1). Thus, the
green region between the two curves shows the target
parameter space in A., €2, for the particular choice of
l, = 16a.

In Fig. 9(c)-(e), we plot the time evolution at three
different times for a starting wavepacket centered around
x = 0, assuming A, = 0.02 everywhere, and 2 = 10~2¢/a
in (c), @ = 1073¢/a in (d), and Q = 107%c/a in (e)

(parameters marked by crosses in panel (a)). In other
words, the starting coefficients are given by
¢k (0) =01y, VE, (32)

i.e. the first band is filled while the others are empty.
In all panels, we also show with white vertical lines the
position along the x-axis of the center of mass of the
wavepacket, which we define as

o Jr (B ) + |Ey (y, 0)) do
T (B (2, 0)]% + By (y,0)?) dar

(33)

In panel (c), the evolution is not adiabatic — the mod-
ulation frequency €2 is too high, and the mode is not
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FIG. 9. (a): Berry phase for the first guided band under a dy-
namic modulation with three different amplitudes. (b): The
green shaded region shows the parameter space in modulation
amplitude A, and frequency Q within which unidirectional
transport can be expected. Below the red line, the maximum
overlap term Kpmax for the first band is much smaller than
one. Above the blue line, the bandwidth Aw; is much smaller
than €. (c)-(e): Snapshots at times ¢ = 0, t/T = 25/16, and
t/T = 50/16 of the electric field |E,|* + |E,|? corresponding
to the propagation of a wavepacket initially localized around
xz = 0, for the modulation parameters shown by crosses in
panel (b), namely A. = 0.02 and (c): Qa/c = 1072, (d):
Qaj/c = 1073, and (e): Qa/c = 107*, where ¢ denotes the
speed of light. The vertical white lines show the position of
the center of mass of the wavepacket at each time.

well-guided. Namely, the wavepacket broadens, and its
center of mass moves slower than the permittivity modu-
lation. In contrast, both panels (d) and (e) represent
adiabatic evolution, and are in fact an illustration of
Thouless pumping. In both cases, the center of mass
of the wavepacket slides together with the sliding po-
tential (here, the permittivity). However, the difference
between the two panels serves to once again illustrate
the need for a sufficiently flat starting band (see panel
(b)). In the case of panel (e), the modulation frequency
Q is too small compared to the bandwidth of the starting
band wgi. Thus, while the center of mass shifts adiabat-
ically with the modulation, the mode broadens signifi-
cantly. The best adiabatic guiding is thus observed in
panel (d), in which the modulation parameters lie in the
green region of panel (b). Using these parameters and



starting wavepackets narrowly centered around a given
ko, we have further checked that the group velocity v(ko)
is constant throughout the whole Brillouin zone, confirm-
ing that the unidirectional light transport discussed in
Sections IT and IIT can also be achieved in the photonic
crystal setup presented here.

V. DISCUSSION AND CONCLUSION
A. Experimental considerations

So far, we used generic parameters expressed in units
of the modulation frequency 2 in Section III, or ¢/a in
Section IV. Here, we discuss the experimental feasibility
of the modulation parameters, as well as the group index
of the slow light that can be expected in several sample
structures.

The group index for the adiabatic unidirectional guid-
ing in both of our proposed implementations is given by

T 2me

ng—ch—QLc, (34)
where L. is the distance travelled by a pulse within one
cycle. The coupled-cavity waveguide of Section III is
conceptually straightforward to implement with e.g. mi-
croring or microdisk cavities, which can be modulated
at frequencies in the range of tens of GHz [38-40]. For
this system, L, = Nd,., where N is the periodicity of the
modulation defined in Section III, and d, is the center-
to-center distance between nearest neighbor rings, which
is approximately the ring diameter. Thus, as an ex-
ample, for the modulation scheme used in Figs. 5, 6,
and 7, assuming d, = 10pum and a modulation frequency
/(27) = 10GHz, we compute through eq. (34) a group
index ng, = 188. This is already in the range of the largest
slow-light values ever reported [3], and can be further
increased by decreasing 2, or by decreasing the ring di-
ameter. We note that a lower bound on the modulation
frequency is set by the intrinsic loss k associated with
each cavity, which has to be such that kK < . In our ex-
ample, a quality factor of @ = 10° is sufficient, as it cor-
responds to a damping rate k = w/(2Q) ~ 1GHz, assum-
ing w/(2m) &~ 200THz. Thus, high-Q cavities are needed,
but the value is still two orders of magnitude smaller than
what has been demonstrated in state-of the art silicon-
based [41, 42] or lithium niobate [43] resonators. We
also note that absorption losses are straightforward to
estimate for the CROW composed of microrings. Given
a linear absorption coefficient «, the associated quality
factor in each ring can be computed as Q, = wn, /(ca),
where n, is the group index for propagation inside the
ring. Thus, the absorption coefficient associated to prop-
agation in the CROW is given by acrow = ang/n,, with

ng the slow-light group index computed from eq. (34).
For the PhC waveguide of Section IV, we simply have
L. = l,. Using the parameters of Fig. 9(d), namely
a = 400nm, I, = 16a, and Q = 1073¢/a, i.e. Q/(27) ~
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119GHz, we thus compute ny = 393. We note, however,
that this particular modulation frequency is challenging.
Thus in Fig. 10 we further explore the parameter range in
order to find experimentally accessible parameters within
which adiabatic guiding is possible. We also note that
the particular example of a modulation scheme that we
studied in Section IV was only taken for concreteness, but
other schemes could also apply, including electro-optic
modulation as in [44, 45], or using the x®-nonlinearity
of materials like lithium niobate [39, 46].

In Fig. 10, we show how the range in parameter space
with which adiabatic guiding can be achieved depends
on the modulation periodicity [,. Generally speaking,
we observe that the green region shifts towards lower
Q and A, with increasing [,. Thus, for example for
l, = 36 (Fig. 10(b)), adiabatic guiding can be achieved
for Q/(27) = 10GHz, i.e. Q/(27) = 1.33x1075(¢c/a), and
for A, = 0.004, i.e a relative refractive index change in
the material of An/n = 0.2%. These parameters are rea-
sonable for state-of-the-art technologies, and the group
index computed through eq. (34) is ny, = 2,089. For
the waveguide with I, = 46a of Fig. 10(c), and the
same value of A, = 0.004, we can have Q/(27) = 1GHz,
corresponding to a group index of n, = 16,345. Such
high group indexes are possible in the PhC implemen-
tation because of the extremely compact field concen-
tration, i.e. very short l,. Our scheme thus provides a
way to radically overcome the group-index limit set by
back-scattering in standard photonic structures.

B. Protection against disorder

It is important to highlight that the protection against
disorder shown in Fig. 7 is of a completely novel nature.
In particular, we have managed to decouple the group
index, ngy < 1/(2L;), from the maximum disorder mag-
nitude o for which transport persists. In other words,
for any arbitrary group velocity that can be set by con-
trolling © and/or L., we can in principle have arbitrarily
large disorder protection by increasing J and Ag. This
is in sharp contrast with the case of a regular slow-light
CROW (as in Fig. 6(a) and 6(b)). In such a device,
setting the group velocity directly sets a limitation on
the maximum allowed disorder. This is because vy o< Jg,
where J; is the slow-light coupling constant, and o < J,
is required for operation.

Our system should also be contrasted with the case
of photonic topological insulators achieved through dy-
namic modulation [19, 20]. In these systems, one-way
Floquet bands have also been predicted, but the topo-
logical band gap is inevitably given by a fraction of the
modulation frequency 2. The size of this band gap is
in fact what determines the magnitude of the disorder
protection, which means that in these systems o < (2
is required. On the other hand, the band gap also de-
termines the bandwidth of the one-way edge state, and
hence the group velocity is again proportional to €2, as
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FIG. 10. Same as Fig. 9(b), but with (a): I, = 26a; (b): l» = 36a; and (c): I, = 46a.

well as to the spatial periodicity. In short, however, just
as in the case of the standard CROW, the maximum dis-
order and the maximum group index are again related,
only this time through €2 instead of through J,. Fur-
thermore, in certain systems, the requirement o < {2
could be much harder to achieve compared to o < J, Ay,
which is needed in our system. Thus, we have uncovered
a regime of protection against disorder which is funda-
mentally different from the effect associated to Floquet
topological insulators, and which leads in certain cases to
stronger protection, despite the fact that it is achieved
in a purely one-dimensional system.

Finally, we would like to point out that our system
is also fundamentally different from photonic topolog-
ical insulators with preserved time-reversal symmetry
[17], which are inspired by the Spin Quantum Hall effect
[47, 48]. The one-way edge states that arise in these sys-
tems are chiral, meaning that there are two (pseudo-)spin
subspaces that propagate in opposite directions, and the
topological protection is only valid as long as the mixing
of these subspaces is negligible. Here instead, the time-
reversal symmetry is broken by the dynamic modulation,
which allows us to induce one-way propagation even in a
chain of single-mode cavities. Furthermore, for a CROW
composed of resonators with two degenerate eigenmodes,
our analysis holds equivalently for both subspaces, i.e.
they will be guided in the same direction. Thus, the light
transport is expected to be protected even with respect
to mixing of the two modes due to imperfections.

C. Conclusion

In conclusion, we have proposed and extensively stud-
ied a paradigm for unidirectional light transport in a
one-dimensional waveguide that can be achieved through
dynamic modulation. The theoretical considerations in
Section II provide some general insights that apply to var-
ious systems, including outside the domain of optics, like
cold-atom [49] or acoustic [50] platforms. The particular
examples given in Sections III and IV use a modulated
CROW and a modulated PhC waveguide, respectively,
both of which are standard building blocks of integrated
photonic devices. We have identified a range of possi-
ble parameters that achieve the unidirectional transport,
and we have shown that a part of this range falls within
what can be implemented in state-of-the-art photonic
technologies. In terms of applications, the unidirectional
waveguide can be used for example for nonmagnetic op-
tical isolation [51], for robust buffering and routing of
signals [52, 53], or for slow-light enhanced effects [1, 2].
On the fundamental level, we have identified a concep-
tually novel regime of disorder protection. In particular,
we have demonstrated that the robustness with respect
to imperfections that is a hallmark of two-dimensional
photonic topological insulators can also be achieved in
one-dimensional dynamically modulated systems. This
could significantly strengthen the significance of the ro-
bust transport for practical applications.
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