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Abstract 

Formation of nanoporous structures is an effective approach to manipulate heat conduction and 

has been experimentally demonstrated to largely reduce thermal conductivity. Thermal 

conductivity reduction of nanoporous materials depends on structural parameters such as size, 

shape and position of the pores, and their distributions, which are hard to explore in experiments. 

In this work, by systematically performing ray-tracing Monte Carlo simulations of nanoporous 

silicon crystal, we have evaluated impacts of the structural parameters on the thermal conductivity 

reduction. As a result, we found that the thermal conductivity reduction with spherical pores is 

insensitive to the spatial configuration and size distribution of the pores, even in the regime of 

quasi-ballistic phonon transport. Although the sensitivity does increase as phonon scattering by 

the pores becomes directional as for rectangular pores and porosity increases, the overall results 

deliver aspects that are useful in practice: the thermal conductivity of nanoporous structures can 

be well described by a phonon scattering model with a single length scale. 



 2 

I. Introduction 1 

Influence of pores on lattice heat conduction through a solid is important in developing 2 

thermal-functional semiconductors and insulators. Particularly nanoscale pores are omnipresent 3 

in materials produced by processes that involve nucleation, deformation, and phase transition. 4 

Presence of pores reduces thermal conductivity, which can be good or bad depending on the 5 

application and situation. A case that benefits from the reduction for instance is thermoelectrics 6 

that enables direct conversion between heat and electricity. Thermoelectric figure-of-merit of a 7 

material can be expressed as zT=(S2σ/κ)T, where S, σ, and κ are Seebeck coefficient, electrical 8 

conductivity, and thermal conductivity at a given temperature T [1]. In the course of aiming to 9 

enhance zT by reducing thermal conductivity, there have been a number of reports that formed 10 

nanostructures in materials by sintering [2], deposition [3], or precipitation [4,5]. The process 11 

typically results in nanoscale pores whether intentionally or unintentionally, which also 12 

contributes to suppressing thermal conductivity. 13 

The way nanostructures influence heat conduction depends on their geometries. For instance, 14 

in polycrystalline materials with nanoscale grains (nanocrystalline materials), the grain 15 

boundaries potentially suppress heat conduction by scattering phonons with mean free path 16 

(MFP) larger than the grain size. Here, the actual problem is more complex because heat is carried 17 

by a wide range of phonons with different modes (wavevectors and branches) and thus MFPs, 18 

which makes the suppression mode-dependent and multiscale. These dependences of the 19 

scattering on phonon modes and structure size also apply to pores, however, the extent of 20 

reflection is clearly different; pores perfectly prohibit phonon propagation, whereas grain 21 

boundaries allow transmittance particularly of phonons with long MFP (low frequency). Note that 22 



 3 

transmittance of long-wavelength phonon is almost one even at incoherently-bonded grain 1 

boundaries [6]. Therefore, pores have potential to cause larger thermal conductivity reduction, 2 

which may be beneficial for applications such as thermoelectrics if that can be done without 3 

appreciably sacrificing electrical conductivity by utilizing the MFP difference between phonons 4 

and electrons. 5 

Thermal conductivity reduction by nanopores has been experimentally measured 6 

particularly for thermoelectric materials. Boor et al., fabricated nanoporous silicon (Si) crystal by 7 

means of an electrochemical etching, and reduced thermal conductivity to 5% of bulk Si thermal 8 

conductivity [7]. Takashiri, et al., made nanoporous-nanocrystalline Bi2Te3 by sintering and 90% 9 

reduction of thermal conductivity was achieved even though the intrinsic thermal conductivity of 10 

bulk Bi2Te3 is as small as 1.5 W/m-K at room temperature [8,9]. Song, et al., applied the liquid 11 

phase deposition method to bismuth and fabricated porous Bi structure with extremely low 12 

thermal conductivity [4]. However, electrical conductivities in these samples were also noticeably 13 

reduced, and consequently zT enhancement was limited. In contrast, by means of lithography 14 

technique and self-assembly structures as a template, holey thin films have been fabricated and 15 

shown to possess large zT (0.4 at 300 K for Si [10] and 1.8 at 300 K for Bi2Te3 [3]).  16 

To predict and understand the effect of nanopores on thermal conductivity for further 17 

materials development, there is a need for a theoretical model that represents the effect of 18 

nanopores with geometrical distributions. Numerous theoretical models based on effective 19 

medium theories (EMT) such as Eucken model [11] and Bruggeman model [12,13] have been 20 

used to predict effective thermal conductivity (κeff) of porous materials [14]. These models are 21 

expressed as  22 
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𝜅eff
𝜅"#$%

=
2 − 2𝜑
2 + 𝜑

,	 (1) 

𝜅eff
𝜅"#$%

=
(2 − 3𝜑) + |2 − 3𝜑|

4
.	 (2) 

Here, κbulk is the thermal conductivity of bulk Si, and φ denotes a volume fraction of void. In these 1 

models, reduction in thermal conductivity is merely a function of volume fraction and 2 

independent of the geometry of each pores. Although, these models show good agreement with 3 

the effective thermal conductivity of micron-sized porous materials, they cannot predict the 4 

effective thermal conductivity of nanoporous materials with nanopores smaller than the intrinsic 5 

MFPs of phonon-phonon scattering since thermal conductivity of quasi-ballistic phonons strongly 6 

depends on the distance between the interfaces, and thus the geometry. 7 

A model that takes phonon scattering into account from microscopic viewpoint is proposed 8 

by Kim and Majumdar [15]; which has been used to describe phonon scattering by nanoparticles 9 

[15-19]. 10 

Λpore34 =
𝑛

𝜎734 + 𝜎834
.	 (3) 

Here, σs and σl represent scattering cross-sections in the limits of short-wavelength and long-11 

wavelength, respectively, and n is the number density of pores. Although the validity of the 12 

phonon-nanoparticle scattering model has been verified by Monte Carlo and molecular dynamics 13 

simulations for nanoporous systems with several geometrical parameters such as pore size, shape, 14 

alignment, and volume fraction [20,21], in typical materials, those geometrical parameters are not 15 

uniform in space, and thus the validity and robustness of the model is still an open question. 16 

Therefore, in this work, we have evaluated the impacts of the geometrical parameters and their 17 

distributions in reducing thermal conductivity by systematically performing the ray-tracing 18 
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Monte Carlo (RTMC) simulations [22-24] for two kinds of Si-based nanoporous structures 1 

(spherical and rectangular pores) illustrated at Fig. 1. 2 
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II. Method 4 

On the basis of the kinetic gas theory, effective thermal conductivity (κeff) of nanoporous 5 

structure is given by [25] 6 

𝜅eff =
1
3
:; 𝐶7

=7

(𝜔)𝑣7(𝜔)Λeff,7(𝜔)𝑑𝜔,	 (4) 

where Cs(ω), vs(ω), and Λeff,s(ω) are respectively specific heat including density of states, group 7 

velocity, and effective MFP of phonon with angular frequency ω and branch s. Λeff,s(ω) includes 8 

not only intrinsic phonon-phonon scattering but also phonon-pore scattering. Defining MFPs of 9 

phonon-phonon and phonon-pore scatterings with Λbulk and Λpore and adopting the Matthiessen’s 10 

rule [25], Λeff is expressed as  11 

Λeff34 = Λbulk34 + Λpore34 .	 (5) 

In this work, Λpore for spherical and rectangular pores were calculated by using RTMC simulation. 12 

As illustrated in Fig. 1, this method calculates a transmittance (τ(θ,φ)) of incident phonon with 13 

azimuthal angle φ and polar angle θ by counting the number of phonons reaching the x-y plane at 14 

z=L. Here, phonons enter the material at z=0 on x-y plane, where an incident azimuthal and polar 15 

angles are randomly chosen. In the case that pores are uniformly distributed on the x-y plane, the 16 

transmittance only depends on the polar angle (τ=τ(θ)). In the calculation, phonon-pore scattering 17 

is treated as diffusive, which means that phonons are scattered diffusively in all directions 18 

uniformly (i.e. a random direction) without reference to the direction of the incident radiation [26]. 19 
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As for the outer boundaries of the simulation cell, specular reflection condition is applied to the 1 

walls normal to the x- and y-axes, which is equivalent to having periodic boundary condition in 2 

the sense that the boundaries do not inhibit phonon/thermal transport. The side length of cross-3 

section and length along the z-direction are respectively set to ten times the pore diameter and 20 4 

µm, which is so long that transmittance is well converged. Under the detailed balance [27], 5 

combination of the Landauer formula and Boltzmann-Peierls equation leads to the expression for 6 

Λpore by the τ(θ) [24]  7 

Λpore =
3𝐿
2
; 𝜏(𝜃
D/F

G
)sin(𝜃)cos(𝜃)𝑑𝜃.	 (6) 

On the other hand, frequency-dependent Λbulk was calculated from first-principles-based 8 

anharmonic lattice dynamics [28-30]. Details of RTMC and anharmonic lattice dynamics 9 

calculations are given elsewehere [24,29,30]. Here, we should note that the RTMC simulations is 10 

also capable of directly evaluating Leff without resorting to Matthiessen’s rule, which may be 11 

somewhat more accurate. As for the validity of the Matthiessen’s rule, Hori, et al. have shown 12 

excellent agreement between results with and without Matthiessen’s rule for polycrystalline 13 

silicon with random grain boundaries and lead telluride with rectangular nanopores [24,31]. 14 

Although this should certainly have limitation, particularly when directional scattering occurs at 15 

multiple interfaces with short distance between, in the current work, we used the Matthiessen’s 16 

rule as it is much less computationally intensive and beneficial for handling complex systems 17 

such as the nano-porous structures.  18 

 19 

III. Results and Discussions 20 

Figure 2 shows the volume-fraction dependence of thermal conductivity reduction for 21 
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randomly-placed spherical pores with different diameters. The effective thermal conductivity 1 

decreases with increasing volume fraction φ and the reduction in thermal conductivity is enhanced 2 

by decrease in diameter. For a constant φ, as diameter decreases, scattering cross-section of a 3 

single spherical pore quadratically decreases, but the number of pores cubically increases. This 4 

gives rise to monotonous reduction of thermal conductivity as diameter decreases. As for the 5 

volume-fraction dependence, thermal conductivity rapidly decreases with increasing volume 6 

fraction from zero, and gradually saturates as volume fraction becomes larger. Therefore, an 7 

efficient strategy to reduce thermal conductivity would be to decrease the pore diameter while 8 

keeping their volume fraction low. This may be beneficial particularly in case of thermoelectric 9 

materials if electrons are transported diffusively and its reduction is dominantly determined by 10 

the volume fraction of pores. Here it is noted that the dependence of thermal conductivity on pore 11 

diameter is determined by the thermal conductivity spectrum of the material. The accumulation 12 

function of thermal conductivity of single crystal Si at 300 K obtained from first principles [29] 13 

(see Fig. A1 in the Appendix) shows that phonons with MFPs longer than 40 nm contribute to 14 

almost 90% of overall thermal conductivity. Thus, the thermal conductivity is largely reduced 15 

when the diameter of spherical pore is comparable to the onset MFP (~ 40 nm). 16 

Figure 2 also compares the RTMC results with the theoretical models. As for macroscopic 17 

models such as Eucken model [11] and Bruggeman model [12,13], it is natural that these models 18 

do not reproduce RTMC results and underestimate the reduction of thermal conductivity since 19 

these do not account for the geometry of spherical pore and thus phonon ballisticity. Now we 20 

compare simulation results with the scattering model [19]. In Eq. (3), the scattering cross-sections 21 

at the limits of short-wavelength σs is set to be 2πR2, where R is the radius of spherical pore. The 22 
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long-wavelength scattering cross-sections, which corresponds to phonon-wave scattering, was 1 

ignored since a phonon is treated as particle in the RTMC simulation. Note that this is a reasonable 2 

assumption in reality for pores larger than several nanometers at room temperature because the 3 

nominal phonon wavelength is a few nanometers. Specifically, in this work, the minimum pore 4 

size was set to 10 nm, and the size is larger than wavelength of phonon contributing to heat 5 

conduction ranging from 0.03 to 6 nm. Meanwhile, averaged distance between two pores surfaces 6 

was 3.8 nm when the pore size was set to 10nm. Here, when considering phonon coherent length 7 

is comparable to wavelength of thermal excited phonons, nominal phonon coherent length in bulk 8 

silicon at room temperature is approximately 1 nm [32]. Therefore, other wave effects such as slit 9 

diffraction and localization, which could be an issue when the distance between surfaces of two 10 

pores becomes small at high volume fraction, are also ignored. In fact, Oyake et al., showed that 11 

the phonon gas kinetic model can describe thermal conductivity of silicon nanocrystal with a 12 

diameter of 3 nm [33]. These simplifications reduce the scattering model to a general scattering 13 

model incorporating only the geometry, and thus we here address the model as the geometrical 14 

scattering model (GS model). Comparing RTMC results with the GS model, both are in good 15 

agreement in entire ranges of volume fractions and pore diameters. Furthermore, as seen from the 16 

comparison to the experiment [2], RTMC and GS model reasonably reproduce experimental 17 

results, which suggests the GS model is effective for explaining thermal conductivity reduction 18 

in nanoporous materials.  19 

We next consider the diameter distribution of spherical pores. We defined the diameter 20 

distribution of spherical pore by a Gaussian function and evaluated how its standard deviation σ 21 

affects the reduction of overall thermal conductivity. In the calculation, we fixed the mean 22 
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diameter as 100 nm and took the full diameter distribution into account for estimating porosity. 1 

Besides, random configuration of pore was considered. The result in Fig. 3 shows that the change 2 

in thermal conductivity with increase of σ is small, and even with the distribution as wide as 3 

σ=0.75, variation from σ=0 is only a few percent. Such insensitivity of thermal conductivity to 4 

the diameter distribution has been already reported for grain size distribution in polynanocrystals 5 

[24] using the same RTMC simulations. As for the impact of pore alignment of spherical pores 6 

on heat conduction, as shown in Fig. 4, we confirmed that the pore alignment does not noticeably 7 

affect the thermal conductivity reduction either. Similar results have been obtained by previous 8 

Monte Carlo simulations for PbTe with nanopores [34]. These results show that effects of size 9 

distribution and alignment of spherical pore are small on thermal conductivity reduction. 10 

Now an important question is whether the thermal conductivity would remain insensitive 11 

even with more complicated distributions. For this, we considered a system with bimodal 12 

distribution with two peaks at pore diameters that differ by an order of magnitude. In terms of 13 

thermal conductivity spectrum, a presence of bimodal diameter distribution can potentially affect 14 

phonons with specific and different ranges of MFPs. For instance, hierarchical nanostructuring, a 15 

combination of nanocrystalline structures and nanoparticle precipitation, has been experimentally 16 

demonstrated to noticeably reduce overall thermal conductivity [35]. Figure 5 shows volume ratio 17 

dependence of the thermal conductivity reduction for three different volume fractions. In these 18 

calculations, the two diameters were set to 20 nm and 200 nm. Note that although each peak has 19 

no distribution i.e. grain-size distribution is composed of two delta functions at 20 nm and 200 20 

nm, this is equivalent to two peaks with significant width because thermal conductivity is 21 

insensitive to the peak width as discussed above. Thermal conductivity with bimodal pore 22 



 10 

distribution monotonically decreases with the volume ratio of the smaller diameter pores to the 1 

larger ones since the number of spherical pores with smaller diameter increases. We further 2 

compare the RTMC results and GS model, where the scattering rates for two different diameters 3 

are summed as, 4 

Λpore34 = 𝑛4𝜎74(𝑑) + 𝑛F𝜎7F(𝐷), 𝑛4 =
6𝜑𝛾
𝜋𝑑Q

, 𝑛F =
6𝜑(1 − 𝛾)
𝜋𝐷Q

,	 (7) 

where γ denotes the volume ratio of larger-diameter spherical pore. As seen in Fig. 5, the 5 

superposition of individual phonon-pore scattering reasonably explains the overall trend of 6 

RTMC results indicating. This result shows that the thermal conductivity reduction by bimodal 7 

pore distribution can be described by the GS model with average diameter of each mode. Namely, 8 

the single phonon-pore scattering is dominant in individual pore, and the effect of multiple 9 

phonon-pore scattering is not large. The above should be extendable to more number of peaks in 10 

the distribution and thus multi-modal systems in general. 11 

We have so far considered spherical pores. Now we discuss the shape dependence by taking 12 

the case of randomly-placed rectangular pore as illustrated at Fig. 1(b). In the RTMC simulation, 13 

the rectangular pores were aligned along the cross-plane, i.e. normal to the heat flux. Figure 6 14 

shows thermal conductivity reduction of nanoporous Si versus side length of rectangular pore (a). 15 

Monotonic reduction of thermal conductivity by both increase of volume fraction and decrease 16 

of side length can be explained in terms of total scattering cross-section increased by the number 17 

of pores, similar with the case of spherical pores. Unlike the spherical pore, scattering directivity 18 

or backward scattering is strong in the rectangular case, thus the GS model cannot be simply 19 

applied to the rectangular pores. Nevertheless, when regarding the rectangular pore as assembly 20 
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of cubic pores with effective scattering cross-section defined as 𝜎7 = √2𝑎F, where a denotes side 1 

length of the small cubic, thermal conductivity reduction can be described by the GS model, 2 

depending on porosity and side length.  3 

We further calculated the spatial configuration dependence and influence of anisotropy of 4 

rectangular pores on thermal conductivity reduction, which are shown in Figs. 7 and 8, 5 

respectively. These results show that effect of pore alignment on thermal conductivity reduction 6 

is not negligible in contrast with the results of spherical pore, and the cubic alignment results in 7 

lower thermal conductivity than the hexagonal alignment. The difference should come from the 8 

difference in scattering directivity. On a rectangular pore, phonons are more frequently 9 

backscattered as illustrated in Fig. 6(c), whereas, on a spherical pore, phonons are more likely to 10 

be forwardscattered (Fig. 6(b)). Therefore, influence of spatial configuration in rectangular-pore 11 

systems on thermal conductivity reduction is larger than spherical pore systems. The results are 12 

consistent with the previous report [33]. Furthermore, the difference is enhanced by increasing 13 

porosity and side length of pore. As shown in Figs. 7 and 8, for high porosity and large side length, 14 

thermal conductivity reductions are less than the values calculated by the GS model. The cause 15 

of a discrepancy between RTMC and GS model can be due to the influence of multiple scattering. 16 

At high porosity and large side length limit where the distance between two interfaces become 17 

small, a phonon experiences multiple-scattering, and thus, each phonon-pore scattering can no 18 

longer be regarded as independent event and the GS model is no longer applicable. Even though 19 

the applicability of the GS model strongly depends on geometrical shape of pore, the GS model 20 

is useful for low porosity. In addition to size and alignment of rectangular pores, we investigate 21 

the effect of non-straight shape of rectangular pores on thermal conductivity reduction. As shown 22 
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in Fig. 9, tortuosity of rectangular pore weakens thermal conductivity reduction because the 1 

increase in total scattering cross-section projected to phonon propagation direction decreases; The 2 

total scattering cross-section is increased by tortuous in the vertical direction to heat flux, and, 3 

tortuous in parallel direction of heat flux does not change total scattering cross-section. In this 4 

case, although the GS model overestimates thermal conductivity reduction, it can be corrected by 5 

appropriately scaling the cross-section with the projected one as shown in Fig. 9. 6 

 7 

IV. Conclusion 8 

In summary, we have evaluated impacts of pore geometry and distribution on thermal 9 

conductivity reduction by performing the RTMC simulations for nanoporous Si. As a result, we 10 

found that thermal conductivity of Si with spherical nanopores is mostly determined by total 11 

scattering cross-section that increases with decreasing size and increasing volume fraction. 12 

Presence of size distribution, even with multi-modal distribution, does not influence the reduction, 13 

which suggests that detailed structural manipulation in experiments would not lead to further 14 

thermal conductivity reduction. Considering other pore shapes namely rectangular pores with 15 

stronger directionality of surface phonon scattering, influence of spatial configuration on the 16 

thermal conductivity reduction is no longer negligible. On the technical side, RTMC results can 17 

be well reproduced by the GS model considering only geometrical scattering cross-section unless 18 

directional multiple phonon-pore scattering becomes important at high porosity. These findings 19 

provide practical means to understand and design thermal conductivity of nonporous materials 20 

not only for thermoelectrics but for heat transfer materials in general. 21 

 22 
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Appendix 7 

Figure A1 shows the accumulation function of thermal conductivity of bulk Si as a function 8 

of MFP calculated from first-principles-based anharmonic lattice dynamics[28-30]. 9 
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Figures 

 
Fig. 1 A schematic of phonon transport in nanoporous Si with different type of pores (a) 

spherical pore and (b) rectangular pore, respectively. Phonon transmittance calculation by Ray-

tracing Monte Carlo (RTMC) simulation is illustrated in (a). Phonon is incident on x-y plane at 

z=0 with azimuthal angle φ and polar angle θ. Transmittance τ is calculated by counting the 

number of phonons reaching on x-y plane at z=L. Phonon-pore scattering is treated as diffusive, 

and perfect specular boundary condition is applied along x- and y-directions. d and a denote a 

diameter of spherical pore and side length of rectangular pore, respectively. 
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Fig. 2 Volume fraction dependence of effective lattice thermal conductivity (κeff) of 

nanoporous Si at 300 K for spherical pores with different diameters. κbulk denotes the thermal 

conductivity of bulk Si. Dashed and dotted lines are results of Eucken model [11] and 

Bruggeman model [12,13]. Solid lines denote geometrical scattering (GS) model [Eq. (3)] 

[16,19]. Filled circles are experimental results previously reported [2]. 
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Fig. 3 Impact of diameter distribution of randomly located spherical pores on thermal 

conductivity reduction of nanoporous Si at 300 K. The standard deviation σ of Gaussian for 

diameter distribution is varied as 0 (black open circle), 0.25 (red open square) 0.5 (green 

open triangle), and 0.75 (blue open diamond). Mean diameter is set to 100 nm. 

 

 

Fig. 4 Impact of alignment of spherical pores on thermal conductivity reduction of 

nanoporous Si at 300 K. Three different configurations (random, cubic, and hexagonal) 

considered in this calculation are illustrated in the inset figure. In this calculation, the 

diameter of spherical void is fixed to 100 nm.  
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Fig. 5 Influence of the bimodal distribution on thermal conductivity of nanoporous Si at 300 

K for different volume fractions. The open circles and solid lines are results from RTMC 

and GS model calculations, respectively. 

 

 
Fig. 6 (a) Side-length dependent κeff of nanoporous Si at 300 K for randomly-placed 

rectangular pores with different volume fraction (red: 10%, black: 30%). Squares and solid 

lines are results of RTMC simulation and GS model, respectively. (b) A schematic of 

phonon-pore scattering with spherical void, (c) A schematic of phonon-pore scattering with 

rectangular void. 
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Fig. 7 Impact of alignment of rectangular pore on thermal conductivity reduction calculated 

by RTMC simulation. Squares and diamonds are results of RTMC simulation with cubic 

alignment and hexagonal alignment, respectively. Solid lines are results of RTMC simulation 

and GS model, respectively.  
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Fig. 8 Impact of pore width of rectangular pore on thermal conductivity reduction calculated 

by RTMC simulation. Squares and diamonds are results of RTMC simulation with cubic 

alignment and hexagonal alignment, respectively. Solid lines are results of RTMC simulation 

and GS model, respectively. Circles are a ratio of calculated thermal conductivity of 

hexagonal and cubic alignment.  

 

 
Fig. 9 Impact of tortuous on thermal conductivity reduction calculated by RTMC simulation. 

Four different configurations are considered (straight, random tortuous, tortuous with x-y 

plane, and tortuous with z-x plane) as illustrated in the inset. Solid line and dashed line are 

0.1

1
κ e

ff /
κ b

ul
k

100806040200
Pore width (nm)

1.0

0.9

0.8

0.7

κ
H

EX  /κ
SQ

y

z

1.0

0.8

0.6

0.4

0.2

0.0

κ e
ff
/κ

bu
lk

0.100.080.060.040.020.00
Volume fraction, φ

Straight
Tortuous
Tortuous with XY plane
Tortuous with ZX plane



 23 

results of GS model and modified GS model in consideration of actual scattering cross-

section on tortuous structure, respectively. In this calculation, the side length of rectangular 

void is fixed to 100 nm.  

 

 
Fig. A1 Normalized cumulative thermal conductivity of bulk Si at 300 K calculated from 

first-principles-based anharmonic lattice dynamics [29]. 
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