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Abstract

The multiple scattering of light presents major challenges in realizing useful in vivo imaging

at tissue depths of more than about one millimeter where many answers to health questions lie.

Visible through near-infrared photons can be readily and safely detected through centimeters of

tissue, however limited information is available for image formation. One strategy for obtaining

images is to model the photon transport, and a simple incoherent model is the diffusion equation

approximation to the Boltzmann transport equation. Such an approach provides a prediction of

the mean intensity of heavily scattered light and hence provides a forward model for optimization-

based computational imaging. While diffuse optical imaging methods have received substantial

attention, they remain restricted in terms of resolution because of the loss of high spatial frequency

information that is associated with the multiple scattering of photons. Consequently, only relatively

large inhomogeneities, such as tumors or organs in small animals, can be effectively resolved.

Here, we introduce a super-resolution imaging approach based on point localization in a diffusion

framework that enables over two orders of magnitude improvement in the spatial resolution of

diffuse optical imaging. The method is demonstrated experimentally by localizing a fluorescent

inhomogeneity in a highly scattering slab and characterizing the localization uncertainty. The

approach allows imaging through centimeters of tissue with a resolution of tens of microns, thereby

enabling cells or cell clusters to be resolved. More generally, this high-resolution imaging approach

could be applied with any physical transport or wave model and hence to a broad class of physical

problems. Paired with a suitable optical contrast mechanism, as can be realized with targeted

fluorescent molecules or genetically-modified animals, super-resolution diffuse imaging should open

new dimensions for in vivo applications.

∗ webb@purdue.edu
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I. INTRODUCTION

The interaction of light with tissue has received intense study due to a myriad of appli-

cations in biomedical science [1–3]. Near the tissue surface, coherent methods are used to

image with spatial resolutions at the diffraction limit [4]. However, in deep tissue where

the propagation direction of light is randomized due to optical scattering, forming an image

becomes a much greater challenge. Coherent imaging is still possible, for example, through

feedback control of the amplitude and phase of the incident wavefront, which has allowed

focusing of light to depths of about 1 mm in tissue [5]. Alternatively, the tissue can be char-

acterized through measurement and inversion of a field transmission matrix, allowing image

formation [6–8]. These types of coherent methods can achieve high resolution, however they

are generally less effective as the amount of scatter increases, limiting their applications in

deep (> 1 cm) tissue. Coherent imaging through almost any amount of scatter is possi-

ble using speckle intensity correlations over object position [9, 10]. However, this method

requires that the positional change of the object is known or can be estimated.

Deep tissue imaging is achievable with diffuse optical imaging (DOI), a computational

imaging method where a model of light transport in scattering media allow extraction of

images from incoherent light [2, 3, 11, 12]. For example, in diffuse optical tomography

(DOT) [3, 13–15], three-dimensional images of the spatially-dependent optical properties

are iteratively reconstructed from boundary measurements of highly scattered light. With

the addition of fluorescent contrast agents, fluorescence diffuse optical tomography (FDOT)

allows computational imaging of targeted biochemical pathways [16, 17]. FDOT has proven

especially useful for in vivo small animal studies of, for example, targeted drugs [18] and

misfolding of protein aggregates [19]. However, the low resolution of DOI methods such as

FDOT compared to coherent methods [20] has restricted the applications.

Here, we present a method to circumvent previous DOI resolution limits. We use optical

localization, where information about the location of the centroid of an inhomogeneity is ex-

tracted. We call the method super-resolution diffuse optical imaging (SRDOI). The case we

consider is a small region embedded in a heavily scattering background that contains fluo-

rophores. Multiple fluorescent regions could be similarly imaged at high resolution when the

emission from each region is separable, for example, through sufficient spatial, temporal, or

spectral separation, or a combination of these. The results indicate that by localizing many
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inhomogeneities individually within a highly scattering medium and combining the positions

into a single image, high resolution DOI can be achieved. Previous studies have localized

fluorescent inhomogeneities in deep tissue [21–24]. For example, boundary measurements of

fluorescence emission have allowed extraction of the location of fluorescing tumors [23, 25].

In these studies, tumor masses were localized after injecting mice with fluorescent contrast

agents that targeted specific cancer cells. However, the implications and limits for high

resolution imaging have not been previously examined.

In Section II, the diffusion model for light propagation is described, and the spatial res-

olution that has been achieved by DOI in the literature is considered, as a comparison for

SRDOI. In Section III, the fluorescent localization method is presented, including the deriva-

tion of the forward model and the optimization procedure. In Section IV, the performance

of SRDOI is characterized with numerical simulation and experimental validation in a slab

geometry. The SRDOI results demonstrate two orders of magnitude improvement in the

spatial resolution compared to FDOT.

II. DIFFUSE OPTICAL IMAGING

Optical transport in tissue can be described by the radiative transfer equation, and under

restrictions on scattering strength (weak), absorption (weak), and time (long compared to

the scattering time), and with sufficient scatter, the diffusion approximation provides a

simple model [3, 13]. In the frequency domain, the light source is modulated at angular

frequency ω, i.e., we assume exp(−iωt) variation. For a fluorescence source in a locally

homogeneous medium, the coupled diffusion equations can then be written in the form of

wave equations as [17]

∇2φx(r) + k2
xφx(r) = −Sx(r, ω) (1)

∇2φm(r) + k2
mφm(r) = −φx(r)Sf(r, ω), (2)

where r denotes position, φ (W/mm2) is the photon flux density, the subscripts x and

m, respectively, denote parameters at the fluorophore excitation and emission wavelengths,

λx and λm, k2 = −µa/D + iω/(Dv), where D = 1/[3(µ′
s + µa)] (mm) is the diffusion

coefficient, µ′
s is the reduced scattering coefficient, µa is the absorption coefficient, v is the

speed of light within the medium, Sx(r, ω) is the excitation source, and Sf (r, ω) describes
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the fluorescence emission. In an infinite homogeneous space, the frequency domain diffusion

equation (written as a lossy wave equation) Green’s function is

g(r′, r) =
eik|r−r

′|

4π|r− r′| , (3)

where r′ is the position of a point source and the complex wave number k is applied at λx

or λm in (1) or (2) respectively.

Solutions to (1) and (2) are called diffuse photon density waves (DPDW’s) [2, 26, 27].

Here, we refer to data formed through experimental detection of DPDW’s as measurements.

In Section IIIA, we derive a forward model using (1) and (2), which we treat as an esti-

mate of the expected values of the measurements. In contrast, images recovered using an

inversion method (an indirect imaging method that extracts desired parameters (e.g., r′)

from measurement data (e.g., φ) through inversion of a forward model) are referred to as

reconstructed images. The resolution of a reconstructed image depends on the method used

(see for example, [28, 29]). Of note, the treatment of the nonlinear nature of the inversion

process and the use of constraints (or a prior model in a Bayesian sense) can be of substantial

consequence.

Even without absorption, the DPDW wavenumber is complex, implying that there is

always both propagation and attenuation at any spatial frequency [27]. The wavelength of

DPDW’s for typical tissue and modulation frequencies (10 MHz or so) is on the order of a

few centimeters. Measurements are therefore usually made within distances less than about

one wavelength from a source location, placing them in the near field in this sense. However,

the attenuation of high spatial frequencies is still severe, causing a significant reduction in

resolution with depth. Here, we define resolution as the full width at half max (FWHM) of

the point spread function (PSF), where the PSF is the image of a point source located in

the scattering medium. Equivalently, the resolution is the distance between two identical

point sources such that their PSFs intersect at their FWHM.

The dependence of the resolution on depth is nonlinear and has been estimated using the

FWHM of the propagation transfer function in a homogeneous infinite medium [27]. The

resolution is unrelated to the diffraction limit because DPDW’s have a complex wavenumber

and are measured in the near field. The resolution depends primarily on µ′
s, µa, and the

distance from the source to detectors. Practically, however, the resolution depends on many

other factors, including the measurement signal-to-noise ratio (SNR), the medium geometry,
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the source-detector diversity, the contrast between the inhomogeneity and the background,

and the experimental setup. For the case of reconstructed images, the resolution will also

depend on the computational method used for reconstruction.

As a comparison for the work presented here, Fig. 1 shows a plot of the resolutions

achieved based on both measured data (without reconstruction of an image) and image

reconstructions (though a computational imaging procedure). The red symbols are recon-

structed image resolutions (without prior information), and the blue symbols are direct

measurement resolutions. The blue curves are analytical resolution limits of direct mea-

surements for µ′
s and µa typical of tissue, as calculated by Ripoll et al. [27]. From Fig. 1,

we find that for optical properties similar to tissue and beyond a depth of about 1 cm, the

reported reconstructed image resolution is typically about depth/2, as represented by the

dashed black line.

The resolution in Fig. 1 can be improved with the incorporation of prior information that

constrains the inverse problem. When combined with other imaging modalities, such as

MRI [30, 31], the resolution can be improved to that of the higher resolution method. Here,

we show that the resolution of DOI can be greatly improved through localization, where

the problem becomes finding the position of a point source [21–23]. The prior information

that is incorporated into the inversion is that a measurement data set contains information

about only a single fluorescent inhomogeneity. Practically, such measurements could be

made, for example, if the inhomogeneities have sufficient separation in space, time, and/or

emission spectrum. Furthermore, we model every inhomogeneity as a point source, an as-

sumption that has been shown to be valid numerically and experimentally for fluorescent

inhomogeneities with diameters up to 10 mm at depths of 10-20 mm in tissue-simulating

1 % Intralipid [23]. This assumption holds because of the rapid attenuation of high spa-

tial frequencies within the scattering medium. Here, the efficacy of localizing a cylindrical

fluorescent inhomogeneity with 1 mm diameter and 2 mm height is demonstrated. With

sufficient SNR, smaller inhomogeneities could be localized, and previous work [23] suggests

that larger inhomogeneities with diameters of at least 10 mm could also be localized. If

needed, the forward model could be modified for structured or larger inhomogeneities [32],

extending localization beyond a single point in space.
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III. LOCALIZATION FOR SUPER-RESOLUTION

We propose localization as a means for finding fluorescent inhomogeneities embedded

within a highly scattering medium with great precision. The method estimates the location

of an inhomogeneity by fitting measured intensity data to a diffusion equation forward model

for a point emitter, allowing extraction of the 3-D position of the inhomogeneity. For the

forward model, we use an analytical solution to the diffusion equation in an infinite slab

geometry [1], and we note that analytical solutions can be derived for more complicated

geometries [33], or the forward model could be solved using a numerical method [34].

A. Forward Model

Equations (1) and (2) can be used to derive a forward model for comparison with measured

data. For experimental simplicity, we set ω = 0, so that the data is an integration over the

measured temporal response at each measurement location. As seen in Fig. 2, a single point

excitation source corresponding to the laser excitation is positioned at rs. In this case,

Sx(r, ω) = Soδ(r − rs), where So is the laser excitation power density (W/mm3) and δ is

the Dirac delta function. Furthermore, N point detectors at λm that correspond to camera

pixels behind an emission bandpass filter are placed at positions ri, where i is an index

form 1 to N . Finally, in the example we consider, a single fluorescent point source is located

at rf , such that Sf(r, ω) = ηµaf δ(r − rf), where η is the fluorophore’s quantum yield and

µaf is its absorption. Estimating rf constitutes localization. Under these conditions, we

let gx(rs, rf) represent the Green’s function for (1) at λx (the excitation wavelength) and

gm(rf , ri) be the Green’s function for (2) at λm (the fluorescent wavelength), assuming an

infinite slab geometry. Then, the ith element of the forward model vector, describing the

fluorescence emission measured at ri, f̃i, is

f̃i(rf) = w [gm(rf , ri)gx(rs, rf)] (4)

≡ wfi(rf), (5)

where w is a multiplicative constant that incorporates η, So, and the efficiency of light

coupling into the medium, and fi(rf) depends nonlinearly on rf . The excitation laser light

incident upon the medium is approximated in the model as an isotropic point source located
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one mean-free path length (l∗ = 3D) into the medium [1, 13, 23], where l∗ is the distance

for photon momentum randomization. Similarly, the light collected by the detectors, in our

case each pixel of a camera, is modeled as that given by a diffusion model at points located l∗

into the medium. We derive fi using the extrapolated zero flux boundary conditions shown

in Fig. 2 to simulate an infinite homogeneous slab geometry [1]. The extrapolated boundary

condition can accommodate mismatched background refractive indices at the surface. We

set the extrapolated boundary ls = 5.03D away from the physical surface, analogous to an

interface between air and scatterers in water [35] and useful in our earlier experiments [23],

to approximately model the physical boundary for the experimental results we present.

Four pairs of excitation and fluorescent image sources are placed to approximately enforce

φ = 0 at the extrapolated boundary. Superposition of the physical and image sources allows

analytic expressions for gx(rs, rf) and gm(rf , ri) to be obtained that have the form in (3).

B. Position Estimation

If a fluorescent inhomogeneity is present, which can be determined subject to some proba-

bility of detection [23], in order to localize it, we must estimate rf . This can be accomplished

through minimization of the cost function

c(rf ) = min
w

||y− wf(rf)||2Υ−1 (6)

over all rf of interest, where y is a vector of N measurements, f(rf ) is a vector of N

normalized forward calculations fi(rf), from (5), Υ = αdiag[|y1|, . . . , |yN |] is the noise co-

variance matrix, for which we assume a Gaussian noise model characterized by α [13], and

for an arbitrary vector v, ||v||2
Υ−1 = vHΥ−1v, where H denotes the Hermitian transpose.

A two step procedure can be used to solve this optimization problem [23, 32, 36], where the

minimization in (6) with respect to w leads to

w̃(rf) =
fT (rf)Υ

−1y

fT (rf)Υ−1f(rf)
, (7)

found by taking the derivative with respect to w and setting the result equal to zero, and

this estimate results in the modified cost function

c(rf) = ||y− w̃(rf )f(rf)||2Υ−1. (8)
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The maximum likelihood estimates are then

r̂f = argmin
rf

c(rf) (9)

ŵ = w̃(r̂f ), (10)

where (8) is minimized over a set of values for rf bounded by the slab geometry. Therefore,

the estimate r̂f in (9) is the position within the slab that returns the lowest value of the cost

function (8). In our illustrative example of a homogeneous scattering slab, this minimization

can be computed quickly because the Green’s functions from (4) used to calculate f(rf ) are

closed-form and given by (3). However, the forward model data could also be generated using

finite element or related numerical methods [34], at the cost of increased computational time.

C. Noise Model

A Gaussian noise model is implied by (6), and the use of non-zero elements only on the

diagonal of Υ is a consequence of the assumption of independent measurements. The model

assumes that each measurement is normally distributed with a mean equal to the noiseless

measurement and a variance that is proportional to the DC (ω = 0) component of the

noiseless measurement [13]. Simulated noisy data can therefore be numerically generated as

Re[yi] = Re[f̃i(rf)] + [α|f̃i(rf)|]1/2N(0, 1) (11)

Im[yi] = Im[f̃i(rf)] + [α|f̃i(rf)|]1/2N(0, 1), (12)

where N(0, 1) is a zero mean Gaussian random variable with unit variance. The signal-to-

noise ratio (SNR in dB) at the ith detector is then

SNRi = 10 log10

(

1

α
|f̃i(rf)|

)

. (13)

This noise model assumes that the uncertainty in the estimated position of the fluorescent

inhomogeneity (r̂f) is dominated by measurement noise. This would not be the case, for ex-

ample, if if the fluorophores changed position or diffused significantly during the integration

time of the measurement [37, 38].
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IV. RESULTS

A. Simulation and Localization Uncertainty

We first generate 50 noisy independent measurements for an assumed 30 dB SNR us-

ing (11) (for ω = 0) to demonstrate the localization of a fluorescent inhomogeneity in a

highly scattering slab. Figure 3 shows the geometry we considered, where the positions of

an excitation source, a fluorescent inhomogeneity (which is modeled as a point fluorescent

source), and N = 400 detectors are shown as red, green, and blue points, respectively.

The true location of the fluorescent inhomogeneity is rft, and the slab is 18 mm thick with

µa = 0 and µ′
s = 0.9 mm−1. A region of interest of size 2× 2× 1.8 cm3 was discretized into

a 3-D grid. Following the localization procedure of Section III B, w̃(rf) from (7) and then

c(rf) from (8) were evaluated at each grid point. Values for r̂f and ŵ were then calculated

using (9) and then (10). Example simulation results are presented in Appendix A, along

with a multiresolution method that proved to be computationally efficient. We used this

multiresolution approach to localize the fluorescent inhomogeneity and achieve SRDOI.

Because the measurements are noisy, each localized position r̂f falls within an under-

lying probability distribution function p(rf) with mean µ = rft and variance σ2. The

performance of the localization can therefore be evaluated by estimating σ, the localization

uncertainty [37–39]. By the central limit theorem, σ can be estimated from a sufficient

number of samples of p(rf) [40]. Therefore, σ̂x, σ̂y, and σ̂z can be calculated, which are the

estimates of σ corresponding to each of the (x, y, z) coordinates of rf . The same geometry,

optical properties, rs, ri, and rf as in Fig. 3 were used to obtain numerical samples of p(rf)

as follows. Each simulated measurement data set was then used to determine r̂f using (9)

with multiresolution. Finally, σ̂x, σ̂y, and σ̂z, were calculated from the 50 values of r̂f .

The results from this statistical analysis are shown in Fig. 4. The depth of the fluorescent

inhomogeneity, or its distance from the detector plane, was 13 mm, as shown in Fig. 3.

Figure 4(a) gives plots of σ̂x, σ̂y, and σ̂z versus SNR, and Fig. 4(b) shows a subset of this

data as ellipses, where the major and minor axes have dimension 4σ̂x or 4σ̂y. We chose 4σ̂x

and 4σ̂y to indicate the space containing 95% of the localized points. Figure 4(c) presents

plots of σ̂x, σ̂y, and σ̂z versus depth for a constant SNR of 30 dB, and Fig. 4(d) shows plots

of ellipses for different depths. It is clear that σ̂z is consistently larger than σ̂x and σ̂y. This
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occurs because the detectors are on a constant z-plane. The value of σ̂z could be reduced to

the levels of σ̂x and σ̂y by placing additional detectors in the x − z or y − z planes. Thus,

σ̂x and σ̂y are better indicators of the achievable localization uncertainty for the geometry

in Fig. 3. The reason σ̂x does not equal σ̂y and the ellipses are not perfect circles is be-

cause of the uncertainty in the estimations and the fact that the 400 detectors locations

in Fig. 3 are not perfectly symmetric around the fluorescent inhomogeneity. Even though

we use the same equation for the forward model that was used to generate the simulated

data, it is not guaranteed that the localization will work due to the addition of simulated

noise. In the next section we will validate our localization scheme with experimental data

and demonstrate that the simulated results closely match those from the experiment.

B. Experiment

We present the results of an experimental study of the accuracy of SRDOI with measure-

ment data collected using the arrangement shown in Fig. 5(a). A highly scattering slab of

thickness d = 18 mm was created by stacking three pieces of white plastic (Cyro Industries,

Acrylite FF, a clear acrylic with 50 nm TiO2 scatterers) with dimensions 140×140×6 mm.

A hole with a diameter of 1 mm and a depth of 2 mm was drilled into the top-center of the

bottom slab. The size of this hole is large relative to the expected localization uncertainty,

however it is small enough to be well approximated by a fluorescent point source in a heavily

scattering medium [23]. A 10 mM stock of the fluorophore Maleimide ATTO 647N (peak

λx = 646 nm, peak λm = 664 nm) in dimethyl sulfoxide (DMSO) was used to prepare a

10 µM diluted solution of the fluorophore. This fluorophore solution was carefully placed

into the drilled hole in the bottom highly scattering slab using a pipette and a needle to

remove air bubbles.

The filtered output of a pulsed supercontinuum source (EXR-20 NKT Photonics, 5 ps

seed pulse width, 20 MHz repetition rate, VARIA tunable filter) was used to generate the

excitation light at λx = 633 nm with a 10 nm bandwidth, as shown in Fig. 5(a). With

this bandwidth, the average excitation power was approximately 15 mW. Measurements at

λm = 676 nm were made through an OD6 bandpass filter having a bandwidth of 29 nm

(Edmund Optics 86-996), to reject the excitation light. Measurements at λx were performed

by removing the bandpass filter. All measurements were pseudo-CW (corresponding to
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unmodulated light data and ω = 0 in (1) and (2)), with the CCD camera (PIMAX, 512 x

512 pixels) integration time being long compared to the pulsed laser repetition rate (20 MHz).

A λx measurement result with an integration time of 30 ms is shown in Fig. 5(b).

All λm measurements were calibrated by subtracting corresponding measurements of the

filter bleed-through, according to yi = yslabi −ybleedi , where yi is the ith component of y, yslabi is

the ith experimental datum captured from the slab, and ybleedi is the ith experimental datum

from the slab without the fluorescent inhomogeneity present. A calibrated λm measurement

with an integration time of 1 s is shown in Fig. 5(c). We selected N = 400 detector locations

(pixels) around the maximum value, as shown by the blue dots. The values (indicated by

the color bar) at these positions were used to construct the data vector y in (6).

In order to calculate the forward solution in (4), µ′
s, µa, ri for each detector along with

rs must be known. To determine these, first the positions of all pixels in Fig. 5(b) and (c)

were found in mm using images of a ruler like that shown in Fig. 5(d). Care was taken in

the alignment of the experimental components so that the distance between each pixel in

the x and y dimensions was approximately the same (0.043 mm). The xi and yi coordinates

of the vector ri could then be determined from the positions of the chosen 400 detector

pixels, and the z coordinate was (18− 3D) mm, to satisfy the zero-flux boundary condition

at the top of the scattering medium [1]. The point directly below the maximum intensity

in Fig. 5(b) indicates the source position, rs. This position of maximum intensity was

estimated by fitting a 2-D Gaussian function [37] to Fig. 5(b). This procedure resulted in

rs = (8.09, 9.07, 3D) mm, where the z component is 3D to satisfy the boundary condition at

the bottom of the scattering medium [1]. The 2-D Gaussian fit was also used to estimate the

true location of the fluorescent inhomogeneity using a data set with 50 times the integration

time of that used for Fig. 5(c), resulting in a much higher SNR than that of Fig. 5(c). The

true location was estimated as the centroid with coordinates rft = (12.77, 10.79, 5.0) mm,

where the z component at the center of the drilled hole was found from the thickness of

the white plastic slabs (6 mm) and the depth of the drilled hole (2 mm). We note that the

2-D Gaussian fit does not provide depth information, motivating the use of the localization

method in Section III even in this simple example.

The optical parameters of the slab, µ′
s and µa, were estimated by fitting (3) to the

data shown in Fig. 5(b), where in this case, r′ = rs, r = ri, and the z components of rs

and ri depended on µ′
s and µa. The data in Fig. 5(b) was captured with the fluorescent
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inhomogeneity present, but because the bandpass filter used in the experiment attenuated

the excitation light by a factor of 106, the fluorescent signal in Fig. 5(b) was assumed

to be negligible compared to the transmitted excitation light. It was also assumed that

the scattering medium background exists throughout the small volume occupied by the

fluorophore. The scattering slabs used have very low absorption in the wavelength range for

these experiments, so we set µa = 0. The estimated µ′
s of the slab (at 633 nm) was found to

be 0.9 mm−1, giving 3D = 1.111 mm. These values are within the uncertainty of previous

estimates using the same method [41]. The positions rs, ri, and rft, are those indicated in

Fig. 3, and were used for the corresponding numerical simulations in Appendix A and Fig. 4,

so that the simulation and experimental results can be compared.

The forward solution calculated in (4) using the experimental parameters, along with

the experimental measurement vector y, allow localization of the fluorescent inhomogeneity

embedded in the highly scattering slab. In order to characterize the experimental localization

uncertainty, the λm measurement shown in Fig. 5(c) was repeated 50 times. Localization

using these 50 measurements then allows calculation of the experimental σ̂x, σ̂y, and σ̂z.

The resulting values are shown plotted as an ellipse in Fig. 6(a), with an axial ratio of

σ̂y/σ̂x = 0.0232/0.0229 (i.e., close to circular), and presented in Table I.

In order to validate the SRDOI method, the experimental results in Fig. 6(a) can be

compared to the numerical data in Fig. 4. These results were all generated using the same

rs, ri, and rft, and identical scattering medium optical parameters, µ′
s and D. In order to

estimate the SNR of the experiment, we calculated the ML estimate of the noise parameter

α from the full form of (6) [42], giving

α̂ =
1

N
||y− ŵf(r̂f )||2Υ̃−1

, (14)

where Υ̃ = diag[|y1|, . . . , |yN |] uses measured data. The SNR of the ith detector was then

estimated using (13) as

SNRi = 10 log10

(

1

α̂
|ŵfi(r̂f)|

)

. (15)

The SNR was calculated for all 400 detectors using (15) and one of the 50 experimental data

sets and its corresponding values for ŵ and r̂f . The mean experimental SNR was found to be

28.9 dB, its standard deviation across detectors was 0.62 dB, and its maximum was 29.9 dB.

We used this mean SNR to generate the blue ellipse in Fig. 6(b), which is plotted with

the red ellipse from Fig. 6(a). The values for the numerical localization uncertainties are
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also presented in Table I. Note that the experimental and numerical uncertainties are close,

signifying that (13) describes the noise process well. The difference between the experimental

mean and the true location is likely due to the fit approximation used to determine the true

location and estimation error.

C. Resolution

A natural way to compare the localization uncertainties to the resolution of diffuse optical

imaging is to calculate the FWHM of the density function p(rf) that describes the localized

positions. For a localization uncertainty σ and a Gaussian spread of localized points, we can

write the resolution as

Resolution = 2
√
2 ln 2 σ ≈ 2.36 σ, (16)

corresponding to the full width at one half of the maximum. The numerical and experimental

results are summarized in Table I for the case of depth = 13 mm, as shown in Fig. 3, and a

mean SNR of 28.9 dB, found for the experiment. The µ̂x, µ̂y, and µ̂z are the mean of the

localized position components. The FDOT resolution is estimated as depth/2.

V. DISCUSSION

We have developed a localization method that allows imaging of fluorescent inhomo-

geneities deep in heavily scattering media with unprecedented spatial resolution. The

method was validated numerically and experimentally, demonstrating an improvement of

two orders of magnitude in resolution compared to DOI. An analytic forward solution in

an infinite slab geometry was used, but analytic solutions could be derived for arbitrary

geometries using the Kirchhoff approximation [33]. Alternatively, numerical methods such

as the finite element method could be used to solve the forward problem for inhomogeneous

media, where DOT could be employed to determine µ′
s and µa [43, 44]. However, the limited

resolution to which µ′
s and µa could be estimated with DOT in inhomogeneous media may

increase the localization uncertainty. The localization constraints could be incorporated

into the FDOT framework [17, 45], potentially allowing reconstruction of super-resolution

images. Also, (6) could be minimized using alternative optimization methods, such as a

gradient search.
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The diffusion model presented in (1) and (2) assumes that the photon current density

does not change over one transport mean free path, l∗ = 3D. For the white plastic slab used

here, l∗ = 1.11 mm at 633 nm, which is much larger than the localization uncertainties in

Table I. Therefore, SRDOI can find a fluorescent inhomogeneity with a resolution that is

much less than the minimum length described by the physics in the diffusion model. This is

possible because of the prior information that has been incorporated into the localization.

The results suggest that the localization uncertainty is dominated by measurement noise

and not inaccuracies in the model. Therefore, a more accurate model, such as the radiative

transfer equation (RTE), is not required unless the combination of the diffusion equation

forward model and the prior information is insufficient for accurate localization. This could

be the case with weak scatter or high absorption, for example.

We found that a single excitation source position, rs, was sufficient for the situation

considered, which is practical for experimentation. However, multiple excitation source

positions or expanded beam excitation may increase the fluorescence emission and reduce

the localization uncertainty. A low-pass spatial filter could be applied to the experimental

data before estimating rf in order to further reduce the localization uncertainty (results

not shown). This would smooth the noisy experimental data prior to the localization. The

computational time could be reduced and the experiment simplified by using fewer detec-

tors [23]. A few sensitive photodetectors placed at the surface of a scattering medium should

be sufficient to localize an inhomogeneity with higher SNR than what can be achieved with a

CCD camera. Figure 5(a) shows a transmission measurement, but a reflection measurement

could be performed. Also, the localization uncertainty may be reduced through the use of

modulated light (non-zero ω). For in vivo applications, longer wavelengths may improve the

SNR due to lower light absorption in tissue.

Practical application of SRDOI requires access to fluorescent light data that can be as-

sumed to originate from single fluorescent inhomogeneities. This could be accomplished

through known variations in space, time, the fluorescence emission spectrum, or a combi-

nation of these. Variation in space could simply be fluorescent inhomogeneities separated

by distances greater than the FWHM of the PSF. Variation in time could be a unique tem-

poral delay for each inhomogeneity, where measurements with short integration times (and

sufficient SNR) could allow separation of the temporal responses. Finally, if each inhomo-

geneity emitted photons at different energies, a spectral measurement could allow separation
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of each response. All of these variations are possible with blinking quantum dots of different

diameters [46], where each quantum dot could then be localized in deep tissue.

Localization techniques have also been developed in microscopy for improving resolu-

tion [47, 48]. For example, in stochastic optical reconstruction microscopy (STORM) [49], a

subset of fluorescent molecules that are separated by a distance greater than the diffraction

limit are switched between fluorescent and non-fluorescent states. Each molecule is then

located with an uncertainty that is much less than the diffraction limit. With multiple

measurements, a super-resolution image is formed by combining many localized positions.

However, this is a fundamentally different class of problem where scatter is largely ignored

and the imaging system objective function is incorporated into the localization framework.

In our case, a model for the heavily scattering domain is used in an optimization-based

localization framework. Interestingly, the improvement in spatial resolution that is achieved

with super-resolution in microscopy is comparable to what is achieved by SRDOI. For ex-

ample, a diffraction-limited resolution of 200 nm is improved to a few nanometers when

imaging single fluorescent molecules [50], an improvement of about two orders in magni-

tude. The localization technique presented here enables super-resolution imaging in other

physical imaging problems that use forward models, such as photoacoustic tomography [51],

electrical impedance tomography [52], seismic waveform tomography [53], and microwave

imaging [54]. While the experiments differ, the premise we presented should apply.

One potential application of SRDOI is brain imaging [55–57]. Signaling between neurons

is accompanied by an increase in the local concentration of calcium, which can modulate

the emission of fluorophores within the brain [58, 59]. Each neuron can be treated as a

fluorescent inhomogeneity that, for example, emits photons when the neuron fires. In this

case, measurements by a CCD camera or a fiber array with an appropriate integration time

could provide data from individual neurons to allow each neuron or a set of neurons to be

localized. In principle, this could provide an image of a whole animal brain or the brain

surface in vivo at a resolution of tens of micrometers. These images would provide new

information on how the brain encodes perceived information into chemical and electrical

neural activity, and how local neural circuits interact with different brain areas. Correlation

maps with such data should prove useful for studying neurological diseases and developing

treatments [60].
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VI. CONCLUSION

We have introduced a new diffuse optical imaging modality where the positions of inho-

mogeneities embedded in highly scattering tissue-like media are estimated in order to achieve

high spatial resolution through localization. Examples of inhomogeneities include biological

structures such as cells that are stained with targeted fluorescent contrast agents. There-

fore, the SRDOI localization approach enables designed fluorescent studies of biochemical

processes in deep tissue and in vivo. Alternatively, absorbing inhomogeneities that do not

fluoresce could be localized [32, 36]. We demonstrated the capability of SRDOI numerically

and experimentally by localizing a fluorescent inhomogeneity at a depth of 13 mm in a highly

scattering slab. The localization uncertainty was characterized in order to understand the

limits to which the location of the inhomogeneity could be estimated. From this uncer-

tainty, we found that SRDOI can achieve a spatial resolution better than tens of microns,

an improvement of over two orders of magnitude compared to DOI methods such as FDOT.

This is the first super-resolution optical imaging method with the potential of deep in vivo

imaging, and can be applied to a broad class of physical problems that use forward mod-

els, addressing a critical need in biomedical imaging for deep-tissue high resolution optical

imaging.
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Appendix A: Localization with a Multiresolution Approach

In this Appendix, simulation examples of the localization methods used to generate the

results are presented. Consider a region of interest of size 2 × 2 × 1.8 cm3, as defined in

Section IVA. The localization procedure described in Section III B was performed on the

discretized region of interest with Nx = 17 points in the x dimension, Ny = 17 points in the y
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dimension, and Nz = 17 points in the z dimension. Figures 7(a) and (b) show plots of w̃(rf)

and c(rf) for a fixed y such that the plots contain the minimum of c(rf). The estimated

location of the fluorescent point source r̂f can then be determined. The localization error

was calculated as [(rft − r̂f)/rft × 100]%, and the error in Figs. 7(a) and (b) is relatively

high because of the spatial grid discretization over the region of interest.

In order to achieve high resolution, the grid spacing of the points within the region of

interest must be reduced from what is used in Figs. 7(a) and (b). However, this presents a

computational problem when evaluating w̃(rf) and c(rf), because (4) must be calculated for

each combination of ri and rf within the region of interest. For this reason, we apply a mul-

tiresolution method to simultaneously reduce the computational time and the discretization

error of the localization. This multiresolution approach is similar to multigrid in the general

sense that it incorporates a hierarchy of discretization grids into the localization [42, 61, 62].

However, multigrid algorithms propagate solutions back and forth between coarse and fine

grids to reduce errors, whereas our multiresolution approach iterates strictly in one direc-

tion from coarse to finer grids. Therefore, we use the term multiresolution to describe the

method, which is demonstrated in Fig. 7(c). First, the cost c(rf) is calculated and mini-

mized in the region of interest with dimensions 2× 2× 1.8 cm3, as before, but with a grid of

Nx = Ny = Nz = 5. The cost is then iteratively calculated on successively smaller regions of

interest that each encompass the point of minimum cost found from the previous iteration.

At each iteration after the first, the region of interest extends a distance equal to the grid

spacing of the previous iteration along each dimension around the point of minimum cost,

and the grid contains the same number of gird points (5×5×5). This procedure is repeated

until convergence, which we defined as two grids where the change in the minimum cost was

less than 0.1%, but not equal to zero. In Fig. 7(c), the first three iterations are shown. It is

observed that successive iterations appear to “zoom in” on the point of lowest cost. After

13 iterations, the convergence condition was satisfied and r̂f was calculated using (9). The

localization error is much less than that of Fig. 7(a) and (b) because multiresolution has

effectively minimized the discretization error. Multiresolution was important in achieving
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the results in Section IV because it substantially reduced the computational times.
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FIG. 1. Resolution of diffuse optical imaging as reported in the literature. Red symbols are image

reconstructions, where H, �,  , ◭, ⋆, N, and �, correspond to [28, 29, 63–67]. Blue symbols

are direct measurements (no inversion was performed), where �, H and � correspond to [68–70].

The background µ′
s and µa used in each paper varies, but their average values are 0.85 mm−1

and 0.0063 mm−1 (close to those of tissue-simulating Intralipid), where µ′
s is between 0.5 and

1.0 mm−1 and µa is between 0 and 0.01 mm−1. The blue curves are theoretical resolution limits

for CW (ω = 0) direct measurements, as calculated by Ripoll et al. [27]. The dashed blue curve

was calculated using breast tissue parameters, where µ′
s = 1.5 mm−1 and µa = 0.0035 mm−1. The

solid blue curve was calculated using the average values from the literature. The black curve is

depth/2.
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FIG. 2. Model geometry for an infinite slab of thickness d, where r = (x, y, z) and the y-axis is

going into the page. An excitation source (X) at rs and a fluorescence emission detector (O) at ri

are placed one scattering length l∗ = 3D away from the slab boundaries as shown. A fluorescence

inhomogeneity ( ) is at the unknown position rf . Zero flux (φ = 0) boundary conditions with

ls = 5.03D are used to simulate an infinite slab geometry [23].
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FIG. 3. Slab problem geometry with rs = (8.09, 9.07, 1.11) mm plotted as the red point, rft =

(12.77, 10.79, 5.0) mm plotted as the green point, and N = 400 detector locations ri plotted as blue

points. These positions were used so that the simulation and experimental results can be compared.

The slab has the same dimensions (18 mm thick) and properties as used in the experiment.
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FIG. 4. Uncertainty in the numerical localization of a fluorescent inhomogeneity in the slab ge-

ometry shown in Fig. 3. The standard deviations were estimated using 50 noisy independent

measurements that were generated using (11) and (12). (a) σ̂x, σ̂y, and σ̂z versus SNR plotted as

red, green, and blue curves, respectively. The depth of the fluorescent inhomogeneity was 13 mm,

as shown in Fig. 3. σ̂z is larger than σ̂x and σ̂y because the detectors are only in the x− y plane.

(b) Ellipses in the x−y plane with major and minor axes of lengths 4σ̂x or 4σ̂y and means given by

their center point. Red, green, and blue ellipses correspond to SNRs of 15 dB, 25 dB, and 40 dB,

respectively. (c) σ̂x, σ̂y, and σ̂z versus depth plotted as red, green, and blue curves, respectively,

with 30 dB SNR. (d) Ellipses in the x−y plane with major and minor axes of length 4σ̂x or 4σ̂y and

means given by their center point. Red, green, and blue ellipses correspond to depths of 13 mm,

8 mm, and 5 mm, respectively.
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FIG. 5. (a) Experiment setup for localization of a fluorescent inhomogeneity (green point). The

fluorescent inhomogeneity (ATTO 647N) is embedded in a highly scattering slab that is 18 mm

thick. The laser source is a filtered pulsed supercontinuum source (EXR-20 NKT Photonics, 5 ps

seed pulse width, 20 MHz repetition rate, VARIA tunable filter). The laser source is tuned to

λx, and detection is by a CCD camera with or without a bandpass filter at λm. (b) Light at λx

detected by the CCD camera without the bandpass filter. Because the bandpass filter attenuates the

excitation light by a factor of 106, the fluorescent signal is negligible compared to the transmitted

excitation light when the bandpass filter is not used. (c) Light at λm (after background subtraction)

detected by the CCD camera with the bandpass filter. The positions of the 400 detectors are shown

as blue dots. (d) CCD image of a ruler showing the field of view (about 22.02 mm by 22.02 mm).

Images of the ruler were used to convert pixels to mm.

29



x (mm)

12.75 12.8 12.85

y
 (

m
m

)

10.75

10.8

10.85

x (mm)

12.75 12.8 12.85

y
 (

m
m

)

10.75

10.8

10.85

(a) (b)

FIG. 6. Experimental localization uncertainty for the fluorescent inhomogeneity embedded in the

highly scattering slab of Fig. 5. Experimental values for σ̂x, σ̂y, and σ̂z were estimated using

50 independent experimental measurements. (a) Plot of the (x, y) components of the localized

positions as blue points. These points were used to calculate the major and minor axes of the red

ellipse, which have dimensions 4σ̂x or 4σ̂y, as well as its center red point, which is the mean. The

black point is the true location that was estimated with a 2-D Gaussian fit. (b) Comparison of

the experimental uncertainty to the numerical uncertainty. The blue ellipse was generated from

numerical data with mean SNR= 28.9 dB to match the experimental value, and the red ellipse is

the same as in (a). See Table I for the numerical values.
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FIG. 7. Numerical localization of a point fluorescent inhomogeneity embedded in a highly scatter-

ing slab with the same dimensions and properties as used in the experiment. The slab problem

geometry is illustrated in Fig. 3. Measurements were simulated using (4) with w = 10 and a 30 dB

SNR, and w̃(rf ) from (7) and c(rf ) from (8) were evaluated over the region of interest. (a) Plot

of w̃(rf ) slice and (b) plot of c(rf ) slice for fixed y, such that the plots contains the point that

minimizes c(rf ). The values of fixed y are shown above the plots, and the color bars have log

scales with arbitrary units. Using (9), r̂f = (12.94, 10.59, 5.29), and using (10), ŵ = 10.07. The

localization errors in the x, y, and z dimensions are 1.37%, 1.85%, and 5.88%, respectively. The

course discretization of the region of interest is a primary contributor to the estimation error. (c)

Localization with multiresolution. Plots of c(rf ) slices for fixed y are shown for multiresolution

iterations 1, 2, 3, and 13. At iteration 13, from (9), r̂f = (12.77, 10.78, 4.98), and from (10),

ŵ = 10.02. The localization errors in the x, y, and z dimensions are 0.05%, 0.05%, and 0.19%,

respectively. The discretization error has been minimized.
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TABLE I. Estimated numerical and experimental localization uncertainties, means, and resulting

resolution (mm). The resolution of FDOT is assumed to be depth/2.

SRDOI Numerical SRDOI Experimental FDOT

(σ̂x, σ̂y, σ̂z) (0.0225, 0.0222, 0.1301) (0.0229, 0.0232, 0.1089) –

(µ̂x, µ̂y, µ̂z) (12.769, 10.793, 4.972) (12.809, 10.802, 4.875) –

Resolution (0.0530, 0.0523, 0.3064) (0.0539, 0.0546, 0.2564) 6.5
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