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A neural network computation scheme is proposed based on perceptron model having processing
units which consist of spin-wave coupled spin-torque-oscillators. This is an oscillatory neural net-
work, where the relative phase of the oscillators is controlled by tuning the Dzylaoshinshkii-Moriya
interaction and applying oscillating magnetic filed. Each processing unit receives input signal which
is an oscillating magnetic field and transmits alternating current. The alternating current is a func-
tion of the relative phase and generates oscillating magnetic (Oersted) field around the wire where
the current flows through. The generated Oersted field then becomes an input signal to the next
processing unit. Solving the Landau-Lifshitz-Gilbert equation, we obtain an activation function of
the processing unit. Finally, an artificial neural network is constructed using the obtained activation
function to recognize the handwritten digits in the MNIST database.

I. INTRODUCTION

Artificial neural network (ANN) is a neuromorphic
computational construct designed to mimic the neural
network in the brain [1]. Recently, much attention has
been focused on information processing using ANNs, such
as for object detection and recognition [2, 3], and in
other business fields [4]. Because of the rapid progress of
the machine power of the computers in operation speed,
memory capacity, etc., software applications using ANN
have come close to meet the performance in practical us-
age. However, energy consumption of computers is much
larger than that of the brain.
Software applications are typically developed on cen-

tral processing unit (CPU) or graphics processing unit
(GPU) of computer machines, which are so-called von
Neumann architecture. In order to further improve the
performance of the ANN including energy consumption,
building non-von Neumann architecture is intriguing and
considerably attractive [5]. Neuromorphic architecture
has adopted TrueNorth chip which is fabricated by com-
plementary metal-oxide-semiconductors (CMOS) tech-
nology [2]. Not only the conventional devices in CMOS
technology [2, 6], but also the new functional devices are
candidates of elements for ANN such as atomic switch
[7], memristor [8–11], coupled phase oscillator [12, 13],
and spintronics devices [14–25].
Spintronics devices are easily fabricated on CMOS de-

vices because the technology to manufacture spintronics
devices is similar to that of manufacturing CMOS de-
vices, which is a great advantage in developing ANN op-
erating with CPU. Also they can typically be fabricated
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in nano-size scale, which is another advantage to reduce
the spatial dimension of ANN system as a whole. Among
various spintronics devices, spin torque oscillator (STO)
is one of the suitable candidates for ANN. This is because
neurons in the brain shows periodic spiking behavior, and
STO was found to essentially have the same oscillation
property with a biological neuron [26]. The STOs pro-
vide additional advantages. For example, the GHz band
precession of the STOs provides high speed operation.
Also, thermal tolerances and radiation resistance will be
beneficial for easing the limit of operation condition in
various environment. So far neuromorphic applications
using the STO operating principle are reported such as
associative memories [18–20], pattern matching [22–24],
and spoken-digit recognition [25]. Most of these stud-
ies were performed by focusing on the synchronization
property, i.e., whether STOs are locked, or not. In other
words, the artificial neuron is implicitly assumed to pos-
sess the activation function of a step function. However,
artificial neurons in software applications of ANN allow
other activation functions such as the sigmoid function
and the rectified linear unit (ReLU) function [3]. Be-
cause the performance of ANN can be improved by using
these non-linear functions. It is therefore interesting to
construct an artificial neuron which incorporates STO
having the activation function with other shapes of step
functions.

In this paper, a neural network computation scheme
using a spin-wave coupled spin-torque-oscillator is pro-
posed. Especially, the basic concept and working princi-
ples are brought into focus. The activation function of
the processing unit is obtained by solving the Landau-
Lifshitz-Gilbert equation. Then the ANN using the ob-
tained activation function is constructed to recognize the
handwritten digits in the MNIST database [27].
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FIG. 1. Schematic illustration of the processing unit consist-
ing of a spin-wave coupled STOs. The magnetization direc-
tions of the free layers of the left and the right STOs are
represented by the unit vectors mL and mR, respectively.
The direct current is applied to the STOs through each point
contact. The oscillating magnetic field, Hac, generated by the
alternating current is also applied. The alternating current,
Iac, which is the sum of the AC from the bias tees (BTs) at
each point contact, generates the oscillating magnetic (Oer-
sted) field, HOe, around the wire where the current flows
through as indicated by the dotted circles. The generated
Oersted field becomes an input signal to the next processing
unit. The Cartesian coordinates are also shown. The direc-
tion of the magnetization of the reference layer, p, is fixed to
the positive x-direction.

II. RESULTS AND DISCUSSION

A. Single unit

Figure 1 shows a schematic illustration of the process-
ing unit consisting of a spin-wave coupled STOs, which
is a laterally-long magnetic resistant device with double
point contacts. The magnetization directions of the free
layers of the left and the right STOs are represented by
the unit vectors mL and mR, respectively. The direct
current is applied to the STOs through each point con-
tact to induce the oscillation dynamics of magnetizations
underneath the point contacts, the dynamics of which are
coupled with each other by spin waves in the free layer.
The coupling is assumed to comprise the Heisenberg in-
teraction (HI) and the Dzyaloshinskii-Moriya interaction
(DMI). The HI prefers the collinear magnetic structure
on one hand, and the DMI prefers the non-colinear mag-
netic structure on the other hand. Tuning the ratio of
the strength of the DMI to that of the HI, one can control
the relative phase of the oscillations of mL and mR.
Summing up the alternating current from the bias tees

(BTs) at each point contact by a combiner, we obtain
the total alternating current, Iac, which is a function of
the relative phase. This comes from the fact that the os-
cillating component of the resistance of each STO is in-
versely proportional to the inner productmL(R) ·p, where
p is the direction of the magnetization in the reference
layer. The amplitude of Iac for the in-phase oscillation

is larger than that of the out-of-phase oscillation. The
relative phase can also be controlled by applying oscil-
lating magnetic field which exerts a torque on mL and
mR to result in the in-phase oscillation. If the spatial
separation of the STOs and the strength of the DMI are
designed such that the out-of-phase oscillation is induced
at Hac = 0, the output signal, Iac, increases with the in-
crease of the input signal, Hac. The output signal of the
processing unit is the oscillating magnetic (Oersted) field
generated around the wire where Iac flows through. The
function representing the relation between the input and
output signals of the processing unit is called activation
function, which plays an important role in ANNs.
The activation function of the spin-wave coupled STOs

is obtained by solving the Landau-Lifshitz-Gilbert equa-
tion having the Sloczewski spin torque term under oscil-
lating magnetic field,

dm

dt
= −γ(m×Heff) + vm× (m× p) + α

(

m×
dm

dt

)

,

(1)

where γ is the gyromagnetic ratio, and α is the Gilbert
damping constant. Here m = m(r, t) represents the
magnetization unit vector at position r and at time t.
The arguments r and t are omitted for convenience. The
effective field Heff is given by the sum of the HI field,
the DMI field, and the oscillating external magnetic field.
The HI field is given by,

HHI =
2A

µ0Ms
∇2m, (2)

where A is the stiffness constant, µ0 is the magnetic per-
meability of vacuum, and Ms is the saturation magneti-
zation. The DMI field is given by,

HDMI =
2D

µ0Ms

(

∂mz

∂x
,
∂mz

∂y
,−

∂mx

∂x
−

∂my

∂y

)

, (3)

where D is the DMI constant which ranges from 0.05 to
1.0 mJ/m2 depending on the materials [28]. Through-
out this paper we assume that the free layer is designed
in such away that the magnetic anisotropy field cancels
with the demagnetization field. The oscillating external
magnetic field is given by

Hac = Hac sin(2πft)ey, (4)

where ey is the unit vector pointing in the positive y-
direction, and f is the oscillation frequency. The second
term in the right-hand side in Eq. (1) represents the spin-
torque term, where p is fixed to the positive x-direction,
p = (1, 0, 0). The coefficient v is defined as

v =
g µB J P

2|e|Msd(1 + P 2m · p)
, (5)

where g is the Landé g-factor of the electron spin, µB

is the Bohr magneton, J is current density through a
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FIG. 2. (a) The time evolution of the x-component of mL

and mR at Hac = 0 are plotted by the blue and red curves,
respectively. (b) The same plot at Hac = 300 (Oe). (c) En-
larged view of (b) for t = 0− 0.6 (nsec). (d) Enlarged view of
(b) for t = 24 − 25 (nsec). (e) The time evolution of mac

x for
Hac = 300 (Oe).

region of the point contact, P is the spin polarization, e
is electron charge, and d is the thickness of the free layer.

The shape of the free layer is assumed as 2 nm wide, 40
nm long, and 1 nm thick. The free layer is modeled by an
one-dimensional magnetization chain and is divided into
the cells with the size of 2×2×1 (nm3). The simulations
are performed by using mumax3 code [29]. The STOs are
represented by the cells at the left and right ends, mL

and mR, where the direct bias current is applied. The
positive current is defined as the electrons flowing from
the free layer to the reference layer.

The material parameters for the free layer are assumed
as follows: Ms = 8 × 105 (A/m), P = 0.5, α = 0.01,
A = 7 × 10−12 (J/m), and D = 8 × 10−4 (J/m2). The
density of the direct bias current is J = 6×1011 (A/m2),
and the initial state is m = (0, 0, 1) for all calculations.

B. Activation function

The processing unit is carefully designed to show an
anti-phase oscillation at Hac = 0 as mentioned earlier.
The specific result is shown in Fig. 2(a), where the blue
and red curves represent the x-component of mL and
mR as a function of time, respectively. An application of
oscillating magnetic field drastically changes the relative
phase of mL and mR. Figure 2(b) shows the results
under the oscillating magnetic field, Hac = 300 (Oe) with
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FIG. 3. The value of the activation function F obtained at
each Hac.

f = 4 (GHz) which is the oscillation frequency at Hac =
0. The initial anti-phase oscillation shown in Fig. 2(c)
becomes nearly in-phase after a few nano seconds and
the in-phase oscillation is stabilized even after 25 nano
seconds as shown in Fig. 2(d).
The oscillating and non-oscillating components of the

current from the STOs are first separated by the bias-
tee. Then the oscillating components are summed up
by a combiner (hatched box) to produce Iac as shown in
Fig. 1. The alternating current Iac, and therefore the
magnetic field Hac generated by Iac are proportional to
the sum of the oscillating components of mL and mR,
which is denoted by mac

x and is shown in Fig. 2(e).
Let us introduce the activation function F defined as

H(out)
ac = c F

[

H(in)
ac

]

, (6)

where H
(in)
ac is the external oscillating magnetic field ap-

plied to the processing unit, and H
(out)
ac is the oscillating

magnetic field generated by the processing unit. The co-
efficient c is a constant, the value of which is determined
so that the activation function ranges from 0 to 1. The

F value at each H
(in)
ac is obtained by analyzing mac

x as
shown in Fig. 3, where the amplitude of mac

x is averaged
for t = 40 − 50 (nsec). It increases with the increase of

H
(in)
ac below 600 Oe because the precession cone angle in-

creases with the increase of H
(in)
ac . It shows a hump at

around 300 Oe because the mode of spin wave changes.

It also shows a jump at H
(in)
ac = 600 (Oe) above which

mR precesses with mz < 0.

C. Artificial neural network

Since the activation function obtained shown in Fig. 3
indicates a shifted-sigmoid-like function, one can expect
that the spin wave-coupled STOs work as nodes of an
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ANN. We constructed an ANN using the obtained ac-
tivation function to recognize the handwritten digits in
the MNIST database [27]. As shown in Fig. 4(a), the
ANN consists of three layers: the input layer, the hid-
den layer, and the output layer. The input layer has
784 nodes, receiving input signals from normalized gray-
scaled pictures with 28× 28 pixels. The hidden layer has
50 nodes. The output layer has 10 nodes, corresponding
to the numbers from 0 to 9 digits.
We briefly noted the hardware implementation of the

weights. As mentioned above, the input and output sig-
nals are the oscillating magnetic field, so that the weights
should modify the amplitude and the phase if the weight
is negative. These operations can be performed by using
a device such as an analog multiplier. In addition, the
product-sum operations between the output signals from
nodes and weights are performed as superposition of the
waves. However, in this study, we simply performed the
product-sum operations by summing the values as men-
tioned below.
Introducing the variable x

(i)
orig ranging from 0 to 1 to

represent the gray scale of the i-th pixel, the input sig-

nal of the i-th processing unit is set as H
(in)
ac,i = 900x

(i)
orig.

From Eq. (6), the input-output relation of the i-th pro-
cessing unit is given by

H
(out)
ac,i = c F

[

H
(in)
ac,i

]

, (7)

where the coefficient c is set as 90 Oe. The output signal
from the STO in the input layer is multiplied by the
value of weight W1. The input signal to the node j in
the hidden layer is given by

H
(in)
ac,j =

784
∑

i=1

H
(out)
ac,i W1,ij , (8)

where W1,ij is the weight.
The output signal from the j-th node in the hidden

layer is given by

H
(out)
ac,j = c F

[

H
(in)
ac,j

]

. (9)

Likewise, the input signal to the k-th node in the output
layer is given by

H
(in)
ac,k =

50
∑

j=1

H
(out)
ac,j W2,jk, (10)

where W2 is the weight between the hidden and output
layers. Finally, the output signal from the k-th node in
the output layer is obtained as

H
(out)
ac,k = c F

[

H
(in)
ac,k

]

. (11)

The node with the largest value indicates the digit pre-
dicted by the ANN. A learning is to update the value of
the weights to obtain an accurate prediction from ANN,
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FIG. 4. (a) Schematic illustration of the ANN we constructed
to recognize the handwriting digit in the MNIST database.
Figures in brackets indicate the numbers of processing unit.
The output signal from each layer is multiplied by the weight,
W1or2, and then the total amount of the signals are fed to the
next layer. (b) Transition of the accuracy for the recognition
obtained from conventional neural network (open circles) and
by this work (filled circles).

and is performed by the back propagation method. For
simplicity, in the back propagation, we replace the ac-
tivation function with the analytical sigmoid function as
F (x) = 1/{1+exp(−a(x−x0))} with a gain a = 0.02 and
a shift x0 = 600, which has a similar shape to that shown
in Fig. 3. The cross-entropy error function was used for
the estimation of error between the prediction by ANN
and the correct answer given by the MNIST database.
The 60,000 images were used for training (learning), and
other 10,000 images were used for testing. Figure 4(b)
shows the accuracy of the recognition as a function of
epochs. The conventional ANN consists of nodes with ac-
tivation function of the typical sigmoid function given by
F (x) = 1/{1+exp(x)}. The conventional ANN produces
95% accuracy on average from the same structure in Fig.
4(a). The accuracy of the STO-based ANN is 75%, which
is smaller than that of the conventional ANN. We noted
that the lower accuracy results from the shape of the acti-
vation function. One may consider that the reason of the
lower accuracy is a disharmony of the shape between the
activation functions for the forward and backward calcu-
lation during the training process. However, even when
the shifted sigmoid function was used for both the for-
ward and backward processes, the recognition accuracy
remains around 75%. In order to increase the accuracy,
one should rather tune the hyperparameters such as the
number of nodes in hidden layer, the number of hidden
layer, and learning rate.
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III. CONCLUSIONS

In summary, neural network computation is proposed
based on perceptron model having processing units which
consist of spin-wave coupled spin-torque-oscillator. The
activation function of the processing unit is obtained by
solving the Landau-Lifshitz-Gilbert equation incorporat-
ing Slonczewski term. The artificial neural network is
constructed using the activation function obtained from

the study. The recognition of the handwritten digits in
the MNIST database is demonstrated with the accuracy
of 75%.
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