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We present how to physically realize the recently introduced active plasmon-injection loss com-
pensation scheme. Particularly, we show that the characteristics of the auxiliary source described in
the active plasmon-injection scheme including tunable narrow-band and selective amplification via
convolution can be realized by using a hyperbolic metamaterial functioning as a near-field spatial
filter. Besides loss compensation, the proposed approach with the near-field spatial filter can be
useful for enhanced near-field superlensing and real-time high resolution edge detection.

I. INTRODUCTION

Our ability to control electromagnetic fields with meta-
materials has flourished since the turn of the century and
has in turn engendered a myriad of previously unthought
of applications. As opposed to the electromagnetic prop-
erties of naturally occurring materials, the properties of
metamaterials stem primarily from their subwavelength
structural details rather than their chemical properties
alone. By carefully controlling these subwavelength fea-
tures, one can fabricate an artificial material with electro-
magnetic properties which are very rare and sometimes
impossible to find in nature. One important application
of metamaterials is in the field of near-field superlens-
ing. The near-field optics coupled with plasmonics and
metamaterials has a wide range of implications from sub-
diffraction imaging [1] to enhanced absorption [2–4]. In
the context of imaging, the near-field contains informa-
tion about the subwavelength features of an object and
is evanescent in nature. Pendry envisioned [5] that a slab
of negative index material (NIM) can be used to amplify
these evanescent waves and renewed interest in the ob-
scure idea of NIMs first conceived by Veselago [6] in the
late 1960s.
In the years that followed, a NIM was realized [7] for

the first time by Shelby, et al. followed by the demon-
stration of a near-field superlens that exhibits imaging
beyond the diffraction limit [8, 9]. Subsequently, it was
realized that the presence of inherent material losses sub-
stantially degrade the performance of superlenses [10–12].
A robust loss compensation scheme was clearly necessary
and in the ideal case should be completely independent
of the object. Efforts to overcome this problem led to
the development of new approaches at loss compensa-
tion which employed gain medium [13–15], non-linear ef-
fects [16], and geometric tailoring [17]. However, these
approaches introduced additional complexities, such as
pump requirement, stability, and gain saturation issues,
among others, which are crucial especially for imaging
applications.
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We have been attempting to develop a new loss com-
pensation scheme, with no above complexities, where the
goal is to use an external “auxiliary” illumination to com-
pensate losses in the material. This was initially concep-
tualized in [18], where the losses suffered by a normally
incident wave were compensated by a coherent super-
position with an auxiliary field. Although the method
was studied in detail for a single wavevector, it inspired
two important questions. If one could develop a simi-
lar technique, where an auxiliary source provides com-
pensation for a large band of wavevectors, would it be
possible to perfectly reconstruct the original object in an
imaging scenario without having any prior knowledge of
the object? If so, could the technique be applied to dif-
ferent near-field imaging systems such as those employ-
ing NIMs or plasmonic lenses using, for example, silver
[19] and silicon carbide (SiC) [20], or hyperlenses [21] un-
der both coherent and incoherent illumination? In [18],
we used the name “plasmon-injection (Π) scheme,” re-
ferring to the above form of loss compensation which
employs an external auxiliary source to amplify the de-
cayed Fourier components propagating inside the lossy
plasmonic metamaterial (see figure 1a). It has been en-
visioned that the amplitude of each Fourier component
to be provided by the auxiliary could be estimated from
the transfer function of the imaging system. Subsequent
efforts were directed at answering the second question.
It was demonstrated theoretically that the technique in
general could be applied to different imaging systems
to improve their resolution limits [22–25]. However, no
physical auxiliary source was considered. It was simply
assumed that one already has the means to amplify an
arbitrary Fourier component as proposed in [18]. Before
attempting to physically realize the auxiliary source, it
was important to understand what properties the aux-
iliary should possess in order to compensate losses in a
realistic noisy imaging system. Continuing efforts [26]
showed that the auxiliary must provide “selective am-
plification” to a narrow-band of high-frequency Fourier
components to avoid large noise amplification. Addition-
ally, to recover Fourier components of the object buried
in the noise, the auxiliary source has to be constructed
by the physical convolution of the object field.
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In this work, we show that metal-dielectric systems
with a hyperbolic dispersion operating as a tunable spa-
tial filter can be used to construct the auxiliary source
and preserve the necessary characteristics shown in [26]
(see figure 1b). Selective amplification property relies on
the selective spatial filter functionality of such physical
systems. Since the auxiliary is to be applied in the deep
subwavelength region in the reciprocal space, the spa-
tial filter is designed to strongly suppress the propagat-
ing modes while allowing the transmission of a tunable
band of evanescent modes. Layered metal-dielectric sys-
tems with hyperbolic dispersion are one possible solution
for such spatial filters since they are known to support
wavevectors with large transversal components exceeding
the diffraction limit. This is due to the presence of cou-
pled surface plasmon polariton (SPP) modes at the inter-
faces. By modifying the permittivities of the constituent
materials one can control the eigenmodes supported by
the system.

FIG. 1. Implementations of active Π scheme. (a) In gen-
eral, a desired input (upper left) cannot be faithfully trans-
ferred through a passive metamaterial due to optical losses
and noise. However, in the Π scheme, the input is actively
superimposed with a correlated auxiliary source (lower left)
to compensate the losses, hence the output can be produced
with a high fidelity. (b) This superposition process can be
equivalently implemented by integrating the lossy metamate-
rial with a hyperbolic metamaterial (HMM) while simply el-
evating the illumination intensity. In both cases, with either
two sources in (a) or a single source in (b), linear transmission
through passive metamaterials is considered. The term “ac-
tive” refers to physically adding energy to the input desired
to be transferred.

II. THEORY

In section II.A, we briefly frame the essential math-
ematical properties of the active Π loss compensation
scheme [26] by envisaging a possible physical system to
realize described in section II.B. Throughout this paper
we consider plane waves propagating in the xy-plane.
The wavevector component ky represents a spatial vari-

ation along the transversal direction and the wavevector
component kz = 0. Therefore, by looking at the sign
of k2x one can distinguish between the propagating and
evanescent modes.

A. Active Π loss compensation scheme

The auxiliary source is essential to the active Π loss
compensation scheme since it is the means with which ap-
propriate levels of amplification are applied to the fields
which suffer attenuation while propagating through a
lossy metamaterial. It is important to emphasize that the
term “active” refers to physically adding energy to the
system (see figure 1). Still, linear transmission through
passive metamaterials is considered. This is in a sense
analogous to well-known active imaging and distinguishes
the active Π scheme from deconvolution-only based im-
plementations [22–25], where no external physical energy
is involved. Let Hi(y) be the spatial distribution of an in-
put field incident on a lossy metamaterial. The auxiliary
source is constructed during a convolution process be-
tween the input field and a function A(y) whose Fourier
transform, A(ky) = F [A(y)] is

A(ky) = 1 +A0G(ky), (1)

where G(ky) is a Gaussian centered at ky = kc and A0 is
a constant. The convolved input field distribution has a
selectively amplified Fourier spectrum provided that the
second term in Eq. 1 is larger than 1 for some bandwidth.
The amplification is controlled by the scaling factor A0,
while the central frequency and the bandwidth are tuned
by the Gaussian function. In the Fourier domain, the
auxiliary source is defined as the product of Hi(ky) with
A0G(ky) (i.e., the second term in the Fourier domain).
The modified incident field is then propagated through a
lossy metamaterial structure which has a transfer func-
tion T (ky). The resulting output field distribution Ho(y)
has the Fourier spectrum

Ho(ky) = Hi(ky)[1 +A0G(ky)]T (ky). (2)

The term Hi(ky)A0G(ky)T (ky) in Eq. 2 represents the
selectively amplified spectrum measured at the output
plane. In [26] this concept was proposed for a lossy NIM
structure in the presence of realistic noise. An iterative
loss-compensation scheme was developed where the aux-
iliary source was tuned to different high spatial frequen-
cies and the amplification provided to each selected spa-
tial frequency was controlled by A0. It was shown that
this compensation scheme can account for material losses
in the NIM structure while inhibiting the noise amplifi-
cation. However, a possible physical implementation of
this concept requires designing a metamaterial which can
structure the input field in above described manner. The
metamaterial should have a transmission shape similar
to Eq. 1 and its response should be shift invariant in the
plane perpendicular to the optical axis. A system is said
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to have shift invariance along a plane if its response to a
point source excitation changes only in spatial position
on that plane but not in functional form, as the point
source traverses the input plane. This is necessary be-
cause to generate the auxiliary source, the incident field
must be convolved with A(y). Additionally, the metama-
terial should have a relatively high transmission peak at a
tunable centre frequency and low transmission on either
side especially in the lower spatial frequencies. Therefore,
the metamaterial should possess the characteristics of a
tunable and high selectivity band-pass filter for high spa-
tial frequencies. Since the transfer function of a passive
physical system cannot easily take the mathematically
convenient form in Eq. 1, one needs a metric to deter-
mine how closely a passive physical system can emulate
the ideal one. As will be justified later, we assume that
the transfer function of the realistic passive physical sys-
tem is given by

a(ky) = b+ g(ky), (3)

where b is a constant low background transmission. g(ky)
represents the pass-band of the passive system that ap-
proximates G(ky) in Eq. 1. Let us define

S(ky) =
g(ky)

b
, (4)

to compare the “similarity” of Eq. 3 with Eq. 1. If the
selectivity S(kc) of the spatial filter is approximately the
same as the second term in Eq. 3 at the center frequency,
then Eq. 3 is said to be similar to Eq. 1 up to the factor
b. This can be easily seen if we rewrite Eq. 3 as

a(ky) = b[1 + S(ky)]. (5)

Once the transfer function given by Eq. 5 is multiplied
by A0 = b−1, we obtain approximately the same equation
as Eq. 1. However, this typically means amplification,
since b ≪ 1. Then, the question is, “How can we phys-
ically achieve an active transfer function from a passive
spatial filter described by Eq. 5, especially the amplifica-
tion step?” Note that this is necessary to construct Eq.
1, which in turn is required for the construction of the
auxiliary source in the loss compensation scheme. If a
band-pass spatial filter with the above mentioned prop-
erties can be designed and cascaded with the lossy meta-
material structure, then from Eqs. 2 and 5, the transfer
function of this cascaded system can be written as

TA(ky) = A0a(ky)T (ky)

= [1 + S(ky)]T (ky). (6)

Since TA(ky) is the transfer function of the system in
the presence of the auxiliary source, it is the modified
or “active transfer function” of the cascaded system [26].
Hence, the theoretical framework of the active Π com-
pensation scheme which employs an auxiliary source is
physically equivalent to integrating the lossy metamate-
rial with a passive band-pass spatial filter of the selectiv-
ity S(kc) and illuminating with a uniform plane wave of

amplitude increased by a factor of A0 = b−1. Note that
the required value of the selectivity S(kc) can be obtained
by optimizing the g(kc) and b. If the transmission peak
is improved at the center frequency of the spatial filter,
the suppression of the background transmission b can be
relaxed and the process becomes more efficient due to
the reduced A0. This spatial filter should have a tunable
pass-band with a high selectivity and the response must
also be shift invariant along a plane perpendicular to the
optical axis.

B. HMMs

Above properties in section II.A may be difficult, if not
impossible, to realize with isotropic materials, but it is
well known that there exists a class of metamaterials with
hyperbolic dispersion which supports the propagation of
evanescent modes. Spatial filtering using HMMs [27–31]
has not been studied before directly in the context of
loss compensation. Here we briefly review some of the
properties of HMMs which are relevant to this work [32–
34].
Without loss of generality, we assume magnetically

isotropic HMMs. Then, the dispersion relation for the
extraordinary waves can be easily determined from the
eigenvalue equation and is

k2x
ǫy

+
k2y
ǫx

=
ω2

c2
, (7)

where ω is the angular frequency and c is the speed of
light in vacuum. Eq. 7 describes a hyperbola if the
signs of the principal relative permittivity components
are not the same (i.e., ǫy < 0 and ǫx > 0). The isofre-
quency contour of such a medium for transverse magnetic
(TM) polarized light is shown in figure 2. The choice of
the parameters and the operating wavelength in the fig-
ure will be detailed later on. We should also note that
the contributions from the imaginary parts of the calcu-
lated relative permittivity to the isofrequency contour in
figure 2 are negligible. From this isofrequency contour,
one immediately concludes that the open form of the hy-
perbola allows for the propagation of modes with very
large transversal wavevector components, which gener-
ally leads to evanescent waves in conventional isotropic
and uniaxially anisotropic media. Additionally, we make
a note of the intercepts on the ordinate axis, which are
crossed in figure 2. This shows that the medium only
supports the propagation of high transversal wavevector
components ky beyond a certain cut-off.
A common type of HMMs are physically constructed

by alternately stacking metallic and dielectric layers. As-
suming that the electromagnetic parameters of individ-
ual layers are homogeneous and isotropic and the unit cell
thickness is sufficiently small compared to the wavelength
of the incident radiation such that the Maxwell-Garnett
effective medium approximation is valid, then the sys-
tem can be described as an anisotropic medium whose
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FIG. 2. Isofrequency contour plot of a HMM with ǫy < 0
and ǫx > 0 at wavelength λ0 = 365 nm. k0 is the free space
wavenumber. The red markers indicate the cut-offs for the
transversal wavevector components. The artificial material
corresponding to the plot is realized by stacking 8 periods of
alternating aluminium and quartz layers. The principal rela-
tive permittivity components are calculated with the effective
medium approximation (see text for details).

principal permittivities are

1

ǫx
=

1

1 + η

[

1

ǫd
+

η

ǫm

]

(8)

ǫy = ǫz =
ǫd + ηǫm
1 + η

, (9)

where η is the filling fraction, which is defined as the ratio
of the thicknesses of the two layers

η =
Tm

Td

, (10)

and ǫd and ǫm are the permittivities of the dielectric
and metallic layers, respectively. The cut-off transversal
wavevector components marked in the isofrequency con-
tour in figure 2 can be expressed in terms of the effective
parameters as

kcutoff
k0

= ±

√

(1 + η)ǫmǫd
ǫm + ηǫd

. (11)

This tells that the cut-off can be tuned by changing the
material and geometric parameters of the system. In
fact, later on we will use Eq. 11 to select the available
materials when constructing a spatial filter with a desired
cut-off frequency.

III. RESULTS AND DISCUSSION

In section III.A, we first analyze the convolution and
spatial filtering characteristics of the designed metal-
dielectric multilayered structure which exhibits hyper-
bolic dispersion to verify if the physical system preserves

FIG. 3. The geometries constructed in COMSOL to perform
numerical simulations (not to scale) shows the (a) HMM spa-
tial filter, and the lossy metamaterial (b) with and (c) without
the HMM. Magnetic field polarized along the z-axis is incident
on the input plane (dashed black lines) and the responses of
the systems are extracted from the output planes (solid black
lines). The red, orange, green, and blue regions are the metal-
lic and dielectric layers of the HMM, background dielectric,
and perfectly matched layers (PMLs), respectively. The pur-
ple region indicates the silver layer in the lossy metamaterial.
Scattering boundary conditions are applied to the edges of
the PMLs and highlighted in pink.

all mathematical properties discussed earlier. These
properties are essential to the auxiliary source which
forms the backbone of the active Π loss compensation
scheme. In section III.B, the HMM spatial filter is in-
tegrated with a lossy metamaterial to verify if the phys-
ically cascaded system behaves in accordance with the
theoretical loss compensation framework [26] described
in section II.A. This is achieved by studying the active
transfer function of the cascaded system in Eq. 6. Ad-
ditionally, the response of the cascaded system to an ar-
bitrary input (see Eq. 2) is studied to show that the
HMM spatial filter can be used to physically implement
the active Π loss compensation scheme. A 50 nm thick
silver film coated with a 25 nm thick dielectric layer on
each side is selected as the lossy metamaterial due to its
simplicity and relevance to a “superlens” [19] functional-
ity. The transmission of the structure degrades rapidly
as one progresses to especially higher spatial frequencies.
The transmission properties of the HMM spatial filter,
the lossy metamaterial as well as the response of the
integrated system to an arbitrary input are calculated
with the finite element method based commercial soft-
ware package COMSOL Multiphysics.

A. Convolution and spatial filtering with HMMs

The schematics of the HMM spatial filter, the lossy
metamaterial with, and without the HMM are shown
in figure 3. The same background dielectric material is
used in all the structures with the relative permittivity
ǫd = 2.5 similar to the dielectric used for an experimen-
tal silver lens in [19]. Multiple HMM spatial filters, all of
which use aluminium as the metallic layer are designed,
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each having the same overall thickness of 365 nm for
consistency. The parameters used to design each spa-
tial filter are listed in tables I and II. The edges of the
geometries are padded with PMLs shown in blue in fig-
ure 3 and backed by scattering boundary conditions in-
dicated by the pink lines. Each structure is illuminated
with a TM polarized field from the input plane and the
response is extracted as a complex magnetic field distri-
bution from the output plane. For the rest of this paper
we will set the operating wavelength at λ0 = 365 nm.
This wavelength is selected because there exist near-field
imaging systems and physical sources centered at 365 nm
[19]. The relative permittivities of aluminum and silver
at the selected wavelength are ǫAl = −18.179 − i3.2075
and ǫAg = −1.8752 − i0.5947, respectively, calculated
from the Drude-Lorentz model [35]. Initially, the results
with the Al−SiO2 HMM are presented by taking the rel-
ative permittivity of ǫd = 2.2147 for SiO2 at the selected
wavelength [36]. Using these parameters and assuming
that Eqs. 8 and 9 are valid, the relative permittivity
tensor elements of the effective anisotropic material are
ǫx = 3.5302−0.0391i and ǫy = −4.5832−1.0692i. In fig-
ure 2, we used these parameters to plot the isofrequency
contour for the extraordinary waves described by Eq. 7.
The transfer functions of the structures shown in fig-

ure 3 are calculated from the point spread functions
(PSF) of the systems in response to a TM dipolar point
source. A point source can be approximated by a Gaus-
sian field distribution as long as the FWHM is extremely
small compared with the operating wavelength. There-
fore, a TM polarized Gaussian field distribution with
FWHM = 6 nm is applied to the input planes of each
system to determine respective transfer functions. To
maintain a fairly high degree of accuracy in the calcula-
tions the spatial extent of the geometries along the y-axis
is set to 80 times the wavelength. This is necessary for the
shift invariance and capturing the sufficiently large extent
of the field from the output plane. The data should not
be abruptly truncated since this will introduce errors in
the Fourier transform calculations. Additionally, due to
the excitation of SPPs with large transversal wavevec-
tors, there will be rapid field oscillations on the output
plane, as well as at each metal-dielectric interface. To
capture this field accurately we used 9500 mesh elements
at each interface parallel to the y-axis with the smallest
mesh element being approximately equal to 3 nm.
Having explained the computational subtleties in the

transfer function calculation, we analyze in detail the
transmission characteristics of the Al−SiO2 HMM. The
amplitude and phase of the complex magnetic magnetic
field in response to a point source excitation are plotted
in figures 4a and 4b, respectively. If the system is shift
invariant, this field distribution becomes the PSF of the
system and the response to any arbitrary field distribu-
tion can be calculated from the PSF by using convolution.
In order to verify that the system is effectively shift in-
variant under the finite transversal extent of the HMM,
hence the convolution property, we applied an arbitrary

TABLE I. Geometric parameters of the HMM spatial

filters and the low cut-off wavevector components

Unit Filling Lower cut-off
HMM cells fraction wavevector

component (k0)
Al − SiO2 8 0.5 1.88071
Al − Al2O3 8 0.5 2.28849
Al − Si3N4 8 0.5 2.77659
Al− ZrO2 8 0.5 2.96987
Al −MoO3 12 0.7 3.54714
Al − T iO2 12 1.1 5.11537

TABLE II. Relative permittivities of dielectrics and

plasmonic metals at λ0 = 365 nm.

Materials Relative
permittivity

Ag −1.8752 − 0.59470i
Al −18.179 − 3.2075i
P t −4.2933 − 8.5848i
Ta −8.8170 − 9.0576i
SiO2 2.2147
Al2O3 3.18587
Si3N4 4.05373
ZrO2 5.06205
MoO3 6.031 − 1.1908i
T iO2 8.2886 − 0.10186i
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FIG. 4. Plots of the (a) amplitude and (b) phase of the com-
plex magnetic field distribution in response to a point source
excitation. This is the PSF of the shift invariant Al − SiO2

HMM and can be used to determine the response to any ar-
bitrary incident excitation by using convolution.
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FIG. 5. The effective shift invariance of the finite extent
multi-layered Al − SiO2 HMM. (a) An arbitrary TM polar-
ized real magnetic field is applied to the geometry. (b) The
amplitude and (c) the phase for the simulated response of the
system, shown by the black lines are compared with those
from the numerical convolution shown by the green lines.

TM polarized magnetic field distribution on the input
plane. The excitation field is chosen to be purely real and
is plotted in figure 5a. The corresponding response of the
system is determined with COMSOL and is extracted as
a complex magnetic field distribution from the output
plane. The simulated amplitude and phase of the output
magnetic field distribution are shown by the black lines
in figures 5b and 5c, respectively. If the convolution is
satisfied, this simulated response should be equal to the
convolution of the input field shown in figure 5a with the
PSF of the system shown in figure 4. The expected re-
sponse of the system from the numerical convolution is
also calculated and the amplitude and phase of the out-
put magnetic field are shown by the green lines in figures
5b and 5c, respectively. When we compare the simu-
lated response with the numerical convolution result, we
can see that there is a very high degree of overlap. This
indicates that the multi-layered structure is indeed effec-
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FIG. 6. The amplitude and phase of the complex transfer
function is shown in (a) and (b), respectively, for theAl−SiO2

HMM. The circle in (a) corresponds to the cutoff transversal
wavevector component calculated from Eq. 11. We see that
the wave transmission sharply drops off in this region. Also,
the peaks in the transmission spectrum correspond to the
eigenmodes of the layered structure.

tively shift invariant under the assumed finite extents of
the HMM and input field. However, the convolving fea-
ture of the HMM starts to deteriorate if the transversal
extent of the HMM is decreased or that of the input field
is increased.
The amplitude and phase of the complex transfer func-

tion of the Al − SiO2 HMM are shown in figures 6a
and 6b, respectively. Four transmission peaks are clearly
visible in the spectrum. Note that only the portion of
the phase within the transmission band is shown. The
phase varies continuously within the transmission band.
The apparent discontinuities have a phase change of 2π
which indicates that it is actually continuous. The cut-
off wavevector component for the Al−SiO2 multilayered
structure can be calculated from Eq. 11 and is equal
to kcutoff = 1.8807k0. The corresponding point is cir-
cled in the amplitude plot of figure 6a. We see that in
this region, the transmission drops off rapidly which is
consistent with the prediction of the effective medium
approximation. Figure 6 clearly shows the spatial filter-
ing property of the HMM around ky = 2.2k0. In figure 7
we have used different dielectric materials. The material
parameters for these dielectrics [36–41] and their corre-
sponding low cut-off wavevector components are shown
in tables I and II. The cut-offs are indicated by circles in
the corresponding transmission plots in figure 7. We see
that the predictions of the effective medium approxima-
tion are still valid since the amplitude transmission drops
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off sharply below the low cut-offs. Additionally, figure 7
shows the tunable nature of the designed spatial filters
based on HMMs.
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FIG. 7. The tunable nature of the near-field spatial filter with
different dielectrics. The cut-off wavevector components cor-
responding to each ǫd are calculated from Eq. 11 and circled
in the respective transmission plots emphasizing the validity
of the effective medium for the system.

Note that even though Eq. 7 predicts an infinite num-
ber of transversal wavevector components allowed in the
system, there is however an upper limit. This limit is set
by the validity of the effective medium theory, which at-
tempts to homogenize the layered system, and the rapid
attenuation of high spatial frequencies [29, 42]. The ap-
proximation ceases to be valid whenever the wavelength
corresponding to the longitudinal wavevector component
kx approaches the periodicity of the the layered structure
which in our case is 45 nm.
The general guidelines for designing a near-field band-

pass spatial filter can be determined from Eq. 11. Also,
figure 8 shows the low cut-off wavevector component
kcutoff from Eq. 11 plotted as a function of the dielectric
relative permittivity ǫd for different plasmonic metals at
λ0 = 365 nm. η = 0.5 is kept in all the plots. The
permittivity of platinum is calculated from the Drude-
Lorentz model with the data given in [35] whereas the
relative permittivity of tantalum is taken from the reflec-
tion electron energy-loss spectroscopy data in [43]. The
relative permittivity data is summarized in table II. Fig-
ure 8 can be used to estimate the relative permittivity
of the required dielectric material for different plasmonic
metals. The slope of the plots is the measure of the sen-
sitivity of the tunable nature of the spatial filter. The
sensitivity depends on the selection of both plasmonic
metal and the ratio η. Note that although silver has the
highest sensitivity in figure 8, it has a limit beyond which
the filter cannot be tuned with dielectrics. This is due
to the loss of the hyperbolic nature of the layered struc-
ture above a certain value of the relative permittivity ǫd.
In contrast, other metals allow tunability for a broader
range of transversal wavevector components at the ex-
pense of higher loss and stringent dielectric permittivity
requirements. While loss can be mitigated by controlling
the filling fraction or the number of unit cells to some

extent, the requirement of large permittivity imposes a
limitation on the tunability especially at small optical
wavelengths. Note, however, that the spatial filters can
be scaled to different wavelengths as long as the layered
system exhibits hyperbolic dispersion. This is because
the normalized cutoff wavevector component in Eq. 11
is not explicitly dependent on the wavelength and varies
according to the material parameters and filling fraction.
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FIG. 8. Plots of the low cut-off transversal wavevector com-
ponents versus the dielectric relative permittivity ǫd for dif-
ferent plasmonic metals which give hyperbolic dispersion at
λ0 = 365 nm taking the filling fraction η = 0.5.
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FIG. 9. Plot of the passive transfer function of the lossy
metamaterial T (ky) and the active transfer function TA(ky)
of theAl−T iO2 HMM integrated with the lossy metamaterial.
Losses progressively degrade the transmission of transversal
wavevector components greater than k0. However, the trans-
mission spectrum of the active transfer function of the inte-
grated system shows an improvement within the pass-band
of the filter. The enhancement is on the order of S(ky) and
A0 = 1.2 × 106.

B. Implementation of the active Π loss

compensation scheme with the HMM

The HMM spatial filters can physically emulate all the
mathematical properties to generate the auxiliary source
in the Π scheme. When an arbitrary input field with
increased amplitude (i.e., by a factor of A0) is incident
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on an HMM, the auxiliary source will be produced on
the output plane of the HMM (see figure 3a) superim-
posed with the original arbitrary input field (see Eq. 2).
The next step involves implementing the Π scheme by
integrating the Al − T iO2 filter with the lossy metama-
terial (see figure 3b). This is verified by analyzing the
active transfer function description of the integrated sys-
tem (see Eq. 6) and comparing with the passive trans-
fer function of the lossy metamaterial structure (see fig-
ure 3c). The transfer function of the lossy metamaterial
T (ky), is shown by the black line in figure 9. We ob-
serve how the losses progressively degrade transmission
through the metamaterial with increasing ky. The per-
formance of the physical system will be further impacted
by noise from multiple sources which tends to distort the
field at the output plane. Such sources of noise can be
related to, for example, the roughness in the nanostruc-
tures of the metamaterial or the detector which samples
the intensity distribution from the output plane. This
makes it challenging to overcome losses in a metamate-
rial without amplifying noise. However, if the transfer
function of the lossy system T (ky) can be determined
to a sufficient degree of accuracy, then the amount of
compensation necessary for each attenuated transversal
wavevector component can be estimated and provided by
the active transfer function TA(ky) of the integrated sys-
tem as shown in figure 9. The peak in the active transfer
function corresponds to the pass-band of the Al − T iO2

filter which is shown in figure 7. As described by Eq.
6, the transmission within this pass-band is increased on
the order of S(ky). For example, figure 9 is obtained by
the filter with the selectivity of S(kc = 5.8k0) ∼ 103 and
b ∼ 10−6. Such improving of the transfer function using
the integrated system is important for two reasons. First,
the plot of the active transfer function provides evidence
that integrating the Al−T iO2 filter with the lossy meta-
material cascades the two systems such that the overall
behavior can be described by Eq. 6 (i.e., convolution dic-
tated by Eq. 6 is maintained between the output of the
HMM filter and the point spread function of the lossy
metamaterial). Second, recall that the factor A0 (see
Eq. 1) scales the amount of selective amplification pro-
vided by the auxiliary source. Figure 9 shows that this
is physically equivalent to integrating the lossy metama-
terial with a high selectivity spatial filter and increasing
the amplitude of illumination by a factor of A0.
In order to confirm the viability of the HMM spatial

filter in a loss compensation scenario, we compare the
response of the lossy metamaterial to an arbitrary in-
put field, with (see figure 3b) and without (see figure
3c) the integrated HMM spatial filter. The output is
distorted by noise from a combination of signal depen-
dent (SD) and signal independent (SI) sources using the
“signal-modulated noise” model in [44–46]. This study
uses 0.0045Ho(y) and 0.005 A/m for the standard devia-
tions of SD and SI noise, respectively, where Ho(y) is the
noise-free spatial field distribution on the output plane.
These standard deviations are larger than the ones used

in [26, 47], and in an experimental optical detector [48],
and are selected, because they illustrate the deleterious
effect of noise in a lossy metamaterial system and fur-
ther stress the improvement achieved by integrating the
spatial filter into the lossy system.
In the subsequent discussion, the lossy metamaterial

is first illuminated with a weak input field and the noisy
response is analyzed in the Fourier domain. Then, the
intensity of illumination is increased to see any improve-
ments in the output spectrum. Finally, the integrated
system is illuminated with the same increased input field
and the three results are compared. We refer to these
three cases as “weak illumination,” “strong illumina-

tion,” and “structured illumination,” respectively. Fig-
ure 10 compares the results for the three cases. The black
line shows the spectrum of the input field desired to be
transmitted faithfully (see figure 1) and the correspond-
ing noise-free output is shown by the red line. The noise
added output is shown by the green line and it contains
random distortions from SD and SI sources of noise. Ad-
ditionally, the Fourier spectra of the SD and SI noise
which contribute to this distortion are also shown in the
figure by yellow and blue lines, respectively. Note that
the choice of the input field is purely arbitrary and is
selected to complement the discussion to follow.
Let us first consider the weak illumination case (see

the upper section in figure 1a); that is the response of
the lossy metamaterial system to an input field when the
amplitude of illumination is 1A/m. The noise-free output
spectrum shown by the red line in figure 10a shows dete-
riorating transmission with increasing ky . Nevertheless,
the nodes of the input spectrum are still visible. How-
ever, the most of the nodes are completely obscured in
the noise added output spectrum especially for ky > 3k0
as shown by the green line in figure 10a, because with
increasing ky the amplitude of distortion introduced by
the combination of SI and SD noise becomes comparable
to and eventually dominates the output spectrum. In the
strong illumination regime shown in figure 10b, the field
amplitude is strengthened by a factor of 1.2 × 106. The
Fourier spectrum of the noise added output shows a slight
improvement compared to the weak illumination case in
figure 10a. This can be understood if we compare the in-
tersection point of the output spectrum with the SD noise
spectrum in figures 10a and 10b. When the intensity of
illumination is increased, only the Fourier components
until this intersection point are simply raised above the
SI noise. This intersection marks the point in the Fourier
domain where the amplitude of transmission in the out-
put spectrum becomes equal to the distortion introduced
by the SD noise. As the intensity of the illumination is
increased, the output spectrum and the SD noise increase
with the same proportion. Therefore, the Fourier com-
ponent where the two intersect does not change and the
Fourier components of the output spectrum beyond this
point are always buried under the SD noise. Additional
increments to illumination intensity will have no effect
on the noise added output spectrum. Consider the struc-
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FIG. 10. Fourier spectrum amplitudes of the input and output
fields with and without added noise under the configurations,
(a) weak illumination, (b) strong illumination, and (c) struc-
tured illumination. The SD and SI noise spectra show their
relative contributions in the noise added output fields. Note
that the most of the nodes in the input spectrum are com-
pletely obscured by noise at the output plane as shown by the
green line in (a). Increasing the amplitude of illumination by
a factor of 1.2 × 106 only slightly improves the noisy output
spectrum in (b), because the SD noise is proportionally ampli-
fied and is the dominant source of distortion. However, with
the HMM spatial filter integrated into the system in (c), the
improvement in the noisy output spectrum is significant even
under the same high intensity illumination as in (b). Nodes
belonging to the input field spectrum within 4k0 < ky < 7k0
which were previously obscured by noise in both (a) and (b)
are now visible in the noise added output spectrum in (c). Ad-
ditionally, the SD noise amplification in (c) is much smaller
when compared with (b). The level of SD noise is close to the
SI noise similar to (a) indicating little noise amplification.

tured illumination case in figure 10c. The lossy meta-
material is integrated with the Al − T iO2 HMM spatial
filter and illuminated by the same high field amplitude
of 1.2 × 106A/m (see figure 1b). The pass-band of the
Al − T iO2 HMM filter is shown in figure 7 and the ac-
tive transfer function of the integrated system is shown
in figure 9. We can immediately see that under the struc-
tured illumination, the level of SD noise in the Fourier
spectrum is comparable with the SI noise similar to the
low intensity case shown in figure 10a. Importantly, the
noise added output spectrum in figure 10c closely follows
the noise-free output spectrum until about 7k0. In accor-
dance with Eq. 6 and figure 9, below 4k0 the field spec-
trum remains intact as can be seen by the overlapping
output (see green solid line in figure 10c) and input (see
black solid line in figure 10c) spectra. Also, the three
nodes within 4k0 < ky < 7k0, which were previously
buried under the noise in figures 10a and 10b, are now
visible in figure 10c, consistent with the active transfer
function of the integrated system plotted in figure 9.
The above discussion clearly shows that a high selec-

tivity HMM spatial filter can be used to physically im-
plement the active Π loss compensation scheme by con-
structing the required auxiliary source that selectively
amplifies a narrow band of high spatial frequencies (see
Eq. 1). It is important to note that the concept shown in
the above discussion is a physical implementation of the
theory presented in [26] where the merits of selective am-
plification with auxiliary source were presented. Figure
10c and the accompanying discussion verify the concept
with a physically designed auxiliary source and extend
the idea of selective amplification to cascaded systems
with controlled amplitude of illumination for amplifica-
tion as described by Eq. 6.
In [49] the proposed implementation of the Π scheme

with high selectivity integrated spatial filters under high
intensity illumination, as described here, has been shown
to enhance the resolution of a silver superlens imaging
system, where the loss compensated output field is de-
convolved with the active point spread function to im-
prove the resolution. In Fourier domain, this is simply
the inverse filtering of the output spectrum (see green
solid line in figure 10c) with the active transfer function
expressed by Eq. 6 (see also yellow solid line in figure 9).

IV. CONCLUSION

In conclusion, we have proposed the use of a near-field
spatial filter for the active implementation [26] of the re-
cently introduced Π loss compensation scheme [18]. This
presents in detail the first possible physical implemen-
tation of the scheme with arbitrary optical fields which
has been only a mathematical abstraction before [18, 26].
The “tunability”,“selective amplification” characteristics
of the auxiliary source in the Π scheme can be realized
with the layered metal-dielectric systems with hyperbolic
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dispersion that act as near-field spatial filters. We have
verified that the convolution, which is vital for the con-
struction of the auxiliary source, can be achieved in the
layered system. This allows such layered systems to be
integrated with the near-field superlenses (e.g., silver [19]
and SiC [20] lenses), so that the complete imaging sys-
tem can be described with a modified transfer function.
The work here paves the way to a robust loss compen-
sation scheme for enhanced near-field superlensing with
ultra-high resolution [29, 30, 42, 49, 50]. A spatial fil-
ter of this form may also have potential applications in
edge-detection as proposed for acoustics in a recent work
[51], where an acoustic metamaterial is used to transmit

the high-spatial evanescent modes while suppressing the
propagating modes.
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[17] D. Ö. Güney, T. Koschny, and C. M. Soukoulis, Reduc-
ing ohmic losses in metamaterials by geometric tailoring,
Phys. Rev. B 80, 125129 (2009).

[18] M. Sadatgol, S. K. Ozdemir, L. Yang, and D. Ö. Güney,
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Enhancing the resolution of hyperlens by the compen-
sation of losses without gain media, Prog. Electromagn.
Res. C 70, 1 (2016).

[24] X, Zhang, W, Adams, and D. Ö. Güney, Analytical de-
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Active plasmon injection scheme for subdiffraction imag-
ing with imperfect negative index flat lens, J. Opt. Soc.
Am. B 34, 1478 (2017).



11

[27] D. Schurig and D. R. Smith, Spatial filtering using me-
dia with indefinite permittivity and permeability tensors,
Appl. Phys. Lett. 82, 2215 (2003).

[28] C. Rizza, A. Ciattoni, E. Spinozzi, and L. Columbo, Ter-
ahertz active spatial filtering through optically tunable
hyperbolic metamaterials, Opt. Lett. 37, 3345 (2012).

[29] L. Liu, P. Gao, K. Liu, W. Kong, Z. Zhao, M. Pu, C.
Wang, and X. Luo, Nanofocusing of circularly polarized
bessel-type plasmon polaritons with hyperbolic metama-
terials, Mater. Horizons 4, 290 (2017).

[30] G. Liang, X. Chen, Q. Zhao, and L. J. Guo, Achieving
pattern uniformity in plasmonic lithography by spatial
frequency selection, Nanophotonics 7, 277 (2018).

[31] M. Kieliszczyk, B. Janaszek, A. Tyszka-Zawadzka, and P.
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