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In this work, we experimentally demonstrate the phenomenon of nonlinearity-activated intermodal
tunneling in a periodic elastic metamaterial waveguide with internal resonators and we show how this
effect can be exploited to achieve conspicuous energy localization and trapping. The architecture of
the waveguide is deliberately designed to promote tunneling from flexurally-dominated to axially-
dominated modes, in order to accentuate the functional complementarity that can be harnessed
during tunneling. 3D laser vibrometry at different scales of spatial refinement is employed to capture
global and local in-plane features of the wavefield. The measured response naturally yields an
experimental reconstruction of the band diagram of the waveguide and reveals unequivocally the
spectral signature of the high-frequency modes that are activated by tunneling. Finally a detailed
scan of selected cells highlights a strong and persistent axial activation of the resonators which
displays subwavelength deformation features that are unattainable, for the axial mode, by exciting
at the same frequency in a linear regime. This result demonstrates the viability of tuning strategies
based on nonlinearity and paves the way for the design of metastructures with enhanced energy-
trapping and harvesting capabilities.

I. INTRODUCTION

In recent years, acoustic and elastic metamaterials
have been the object of considerable scientific interest
due to their unique spectral and spatial wave manip-
ulation capabilities. A special feature of the dynamic
response of metamaterials is the availability of locally-
resonant bandgaps with subwavelength characteristics
[1, 2]. The subwavelength attribute results in the pos-
sibility to achieve mechanical filtering at relatively low
frequencies, or to inject directivity in the long-wavelength
limit of the acoustic modes [3]. Recent efforts have been
directed towards designing metamaterials endowed with
the ability to tune their response to external inputs. Most
strategies for tunable and adaptive metamaterials re-
sort to electro-, magneto- or thermo-mechanical effects to
modulate their effective mechanical properties [4–7], or to
induce microstructural shape changes [8, 9], both effects
resulting in a modification of the global phononic char-
acteristics. Other popular tuning strategies for phononic
materials rely on instabilities triggered by external loads
to induce desired lattice reconfigurations [10–12].

Additional opportunities for wave manipulation are
available working with nonlinear metamaterials, such as
granular phononic crystals and soft lattice materials [13–
15]. Within the discourse on tunability, certain strate-
gies exploit directly the nonlinearity of the medium to
actively modify (or enrich) the metamaterial response.
For example, the amplitude-dependence of the nonlinear
response can be exploited to obtain tunable bandgaps
[16–18]. A recent body of work [19–21] has introduced
the idea of using nonlinearly-generated higher harmon-
ics and their hopping across modes as a way to enrich
the response by tunneling packets of energy from an ex-
cited low-frequency mode to a receiving (possibly opti-

cal) mode. This phenomenon can result in the activation
of high-frequency response features even while operat-
ing at relatively low frequencies of excitation. Depend-
ing on the dispersive characteristics of the medium and
the excitation conditions, we may have two different sce-
narios of second harmonic generation (SHG). The first
one can be referred to as intra-modal hopping: in this
case the fundamental and the second harmonic feature
compatible modal characteristics, characterized by a high
degree of overlap between their respective mode shapes
[22–24]. An example is a longitudinal second harmonic
generated by a fundamental longitudinal wave in a non-
linear bar. The second scenario is intermodal hopping:
here the fundamental harmonic and the second harmonic
have orthogonal (or complementary) modal characteris-
tics [19, 25, 26]; an example is a second harmonic in-
volving mostly transversal degrees of freedom generated
by a fundamental longitudinal wave in a 3D nonlinear
solid. From the perspective of modal enrichment, we
are especially interested in cases featuring highly com-
plementary harmonics. As a benchmark example of such
scenario, in our previous work [21] we have investigated
intermodal hopping between axial and flexural modes in
periodic waveguides, with emphasis on the conditions for
which phase-matching (resonant) conditions are estab-
lished between the harmonics. Under these conditions,
we have proven that, through SHG, it is possible to
transfer packets of energy from a long-wavelength flex-
ural mode, involving predominantly the primary lattice
waveguide, to a short-wavelength highly dispersive axial
mode that localizes energy in the resonating microstruc-
ture. This results in the activation of high-frequency in-
ternal cell mechanisms that, in the linear regime, are ger-
mane to high-frequency excitations: in other words, if we
were operating in the linear regime, an equal activation
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of these mechanisms would necessarily require exciting
the structure directly at 2ω.

The results mentioned above have so far been confined
to the theoretical realm with sporadic experimental veri-
fication [15, 27–31]. The objective of this work is to pro-
vide a definitive experimental demonstration of the tun-
neling effects achievable through SHG in elastic metas-
tructures. Our contribution is two-fold. Firstly, while
some preliminary evidence of mode hopping in metal-
lic lattices was already given in [31], we here target a
significantly stronger signature of energy tunneling by
deliberately working with a softer material with more
pronounced geometrically nonlinear response. Secondly,
by working with a lattice architecture that features a
microstructure of resonators, we realize a special class
of tunneling mechanisms that can trigger and maximize
strong subwavelength energy localization and trapping in
the microstructure.

II. EXPERIMENTAL SETUP AND
PRELIMINARY ANALYSIS OF LINEAR

RESPONSE

The waveguide specimen is manufactured via water-jet
cutting from a sheet of acrylonitrile butadiene styrene
(ABS) with the following material parameters: Young’s
modulus E = 2.1374 GPa, Poisson’s ratio ν = 0.35,
density ρ = 1040 kg/m3. Preliminary experiments car-
ried out on homogeneous strips of the same material
suggested that the material has relatively low damp-
ing whose manifestation is limited to amplitude atten-
uation during propagation without any appreciable spec-
tral distortion. For this reason, the viscoelastic ef-
fects can be safely ignored in the model used in sup-
port of our experiments. The waveguide has dimensions
102 cm×2 cm×0.3556 cm and consists of 56 1.75 cm×2 cm
unit cells with internal resonators, as shown in Fig. 1. In
order to lower the frequency spectrum of the resonators,
we increase their mass by cutting a cylinder core (with
radius 0.25 cm) out of the square domain at the center of
each unit cell, and inserting a steel disk.

Before we proceed to assess the waveguide’s nonlin-
ear response, it is useful to determine its linear disper-
sive characteristics. For a weakly nonlinear system, the
homogeneous component of the nonlinear response has
been shown to conform to the dispersion relation of the
corresponding linear system [20]. As a result, we can
use the linear band diagram to predict certain features
of the nonlinear response and to design basic manipu-
lation strategies involving harmonic generation. Specifi-
cally, from the inspection of the dispersion branches, we
can predict the availability of tunneling mechanisms be-
tween the modes, i.e., the existence of ω − k(ω) points
on a dispersion branch (where ω is the frequency of the
excitation and k is the wavenumber) such that the corre-

FIG. 1. (a) Waveguide specimen with detail of a unit cell with
steel-core resonator. (b) Experiment setup. (c) Detail of the
scanned surface. (d) Shaker position for flexural excitation.

sponding 2ω− k(2ω) points fall on a different branch, or
on a higher-frequency zone of the same branch. We dis-
tinguish between intra-modal (axial-to-axial or flexural-
to-flexural) and intermodal (flexural-to-axial) tunneling
mechanisms. Our focus here is on intermodal tunneling.
We can also identify opportunities for the establishment
of phase-matching conditions between fundamental and
second harmonic, i.e., when k(2ω) = 2k(ω).

We construct a finite element (FE) model of the unit
cell using two-dimensional four-node isoparametric ele-
ments under plane-stress conditions and we perform a
1D Bloch analysis. In Fig. 2, we plot the band diagram
along with the mode shapes at three representative spec-
tral points (one on the flexural branch, two on the axial
one). As expected, the two axial mode shapes feature
purely axial (axis-symmetric) deformation profiles. Of
the two, the one located on the folding part of the branch
involves dramatic motion of the resonator. Let us now go
through the following three conceptual steps. 1) Let us
assume to prescribe a pure-bending excitation at a fre-
quency lying within the range of the flexural mode. We
expect the waveguide to experience a deformation that is
purely flexural. 2) Let us choose the excitation frequency



3

such that the nonlinearly-generated second harmonic can
hop from the flexural mode to the folding part of the ax-
ial mode (close to the frequency cut-off of the mode).
Some of the flexural energy externally pumped in the
system will be necessarily transferred to cell deformation
mechanisms that involve large degrees of axial motion of
the resonators relative to the cells. 3) Finally, let us se-
lect the frequency-wavenumber excitation pair such that
phase-matching conditions are established between the
fundamental and the second harmonic. As a result, the
magnitude of the observed energy tunneling (and asso-
ciated trapping events) will be enhanced. This is the
sequence of logically concatenated events that we intend
to establish, observe and measure in our experiment.

FIG. 2. Band diagram of the waveguide with mode shapes
shown for three representative spectral points. ξ is the non-
dimensional wavenumber (ξ = ka, where k is the wavenumber
and a is the length of the unit cell).

Details of the experimental setup are shown in Fig. 1.
A 3D Scanning Laser Doppler Vibrometer (SLDV, Poly-
tec PSV-400-3D) is used to measure the in-plane re-
sponse. The waveguide is hung vertically and clamped
at the top end, as shown in Fig. 1(b). The excitation is
imparted at the bottom end of the waveguide through an
electrodynamic shaker (Bruel & Kjaer Type 4809) pow-
ered by a Bruel & Kjaer Type 2718 amplifier. When we
intend to excite flexural waves at the fundamental har-
monic, the shaker stinger is kept perpendicular to the
waveguide and acts on an axial protrusion (visible in
Fig. 1a) to engage directly the neutral axis and mimic
pure-bending conditions. To excite axial modes, the
shaker is rotated to load the tip protrusion axially. It
is worth pointing out that, despite a very careful setup,
a certian amount of coupling between flexural and ax-
ial modes, as well as between in-plane and out-of-plane
modes, is inevitable in practice due to unavoidable eccen-
tricities in the stinger and warping of the soft waveguide.

As a next task, we reconstruct the band diagram from
the experimental data. We excite the waveguide with a
linear chirp with frequency range from 100 Hz to 8 kHz.
The in-plane velocity time histories are measured along
a straight line of scan points located directly on the res-
onators (Fig. 1c). These values are aggregated into a
matrix of spatio-temporal data and fed to a 2D Discrete
Fourier Transform (2D-DFT) to obtain spectral ampli-
tude maps. In Fig. 3a and Fig. 3b, we plot the spectral
amplitude of the lateral and axial components of the re-
sponse obtained through excitations prescribed laterally
and axially, respectively. To better resolve the steering
region of the axial mode, the chirp is locally replaced by
a tone-burst with carrier frequency falling inside the de-
sired interval (Fig. 3c). The dispersion relations obtained
from the FE model are superimposed as dashed lines
for comparison. Visual inspection suggests a very good
agreement between experiments and model (we note a
discrepancy of the cut-off frequency prediction for the ax-
ial mode, most likely due to an insufficiency of the finest
FE mesh that we could afford in our desktop model).

FIG. 3. Experimentally reconstructed spectral response and
comparison to FE data. (a) Lateral velocity field. (b) Non-
dispersive region and (c) steering region of the axial mode.

III. EXPERIMENTAL EVIDENCE OF
INTERMODAL TUNNELING

We can now rely on the band diagram of Fig. 2 to
find the excitation conditions necessary to trigger inter-
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FIG. 4. (a) Frequency spectrum of a tone-burst excitation. (b) Spectral representation of the response collected at a single
scan point. (c) Ratio between amplitude of axial second harmonic and amplitude of fundamental flexural harmonic for four
different amplitudes (scaled by the maximum value) of excitation. (d) and (e) Spectral representation (via 2D-DFT) of the
lateral and axial response, respectively, sampled along the waveguide axis.

modal flexural-to-axial tunneling while enabling phase-
matching conditions. To this end, we excite the waveg-
uide laterally with a tone-burst with carrier frequency
2 kHz, whose spectrum is plotted in Fig. 4a. The ampli-
tude of excitation is increased to ensure that sufficient
geometrically nonlinear deformations are induced. In
Fig. 4b, we plot the frequency spectrum of the total re-
sponse measured at a representative point located at the
mid point of the waveguide (the raw time histories are
reported in Supplemental Material [32]). In addition to
the dominant contributions at the prescribed excitation
frequency, we recognize a strong signature of second har-
monic for the axial degree of freedom, while the second
harmonic component for the lateral degree of freedom
is negligible, in accordance with our previous theoretical
findings [21]. In essence, the harmonic generation mani-
fests as a highly mode-selective process in which the axial
degrees of freedom dominate the second harmonic despite
being a secondary mechanism (only due to coupling) in
the fundamental harmonic.

In Fig. 4c we plot the ratio between the amplitude of
the axial second harmonic A2A and that of the flexu-
ral fundamental harmonic A1F as a function of the am-
plitude of the fundamental harmonic A1F , for four am-
plitudes of excitation. The non-constance of this ratio
confirms the amplitude-dependent characteristics of the
nonlinear response. More specifically, the precise linear

trend of the ratio tells us that the intensity of the sec-
ond harmonic ultimately depends on the square of the
amplitude of excitation, consistently with analytical so-
lutions previously obtained for nonlinear waveguides [21].
Through this metric, we can also quantify the strength
of the nonlinear effects observed in the response. As a
result of the relatively soft modulus of the material and,
more importantly, of the activation of phase-matching
conditions, the magnitude of the nonlinear features ap-
proaches 4% of the amplitude of the fundamental wave,
a full order of magnitude stronger than what reported in
our previous study [31]. We also note that components
of the second harmonic are also observed in the out-of-
plane response (green dotted line in Fig. 4b), as further
documented in Supplemental Material [32].

Next, we again resort to Fourier analysis to map the
dispersive characteristics of the nonlinear response and
identify the signature of the second harmonics. The nor-
malized spectral amplitude (in dB units) of the lateral
and axial responses is plotted in Fig. 4d and Fig. 4e, re-
spectively. The dispersion curves for the axial and flexu-
ral modes are superimposed for reference. In Fig. 4d, the
main contribution lies precisely on the flexural branch
at the prescribed frequency, while no noticeable flexu-
ral features are detected at the second harmonic. In our
experiment, the acquisition time is long enough to al-
low for the fundamental flexural wave to be reflected at
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the clamp. This is done to allow the spatial character-
istics of the wave to be fully established (Note that we
are still in a purely propagating regime, and no standing
wave conditions are established). The spatial feature at
ω recorded in the left quadrant (negative ξ-space) rep-
resents the reflected flexural wave. Due to the damp-
ing mechanisms that are present in the structure, the
reflected wave is significantly weaker, which can be no-
ticed from the color intensity despite the visual magnifi-
cation induced by the dB scale. In Fig. 4e, around the
excitation frequency, we observe the signature of several
modes including: 1) an axial mode induced by the eccen-
tricity in the excitation force; 2) the axial components
of the flexural mode, due to bending coupling; 3) two
other features associated with out-of-plane modes, also
due to coupling as discussed in Supplemental Material
[32]. At the second harmonic, we observe one dominant
signature located in the negative ξ-space and consisting
of two partially overlapping components, one conforming
to the folding slope of the axial branch, the other hav-
ing roughly the same slope of the fundamental flexural
branch. These features can be recognized as the homo-
geneous and forced components of the second harmonic,
respectively, which overlap here due to phase-matching
conditions. The left quadrant location of these features
can be explained invoking notions of aliasing, as graphi-
cally illustrated in Fig. 5. Since the wavenumber of the
nonlinearly-generated second harmonic ξN (here twice
the wavenumber of the fundamental wave, centered at
4.1, because of phase-matching conditions) falls outside
the irreducible Brillouin zone, it cannot be accurately re-
solved by the 2D-DFT with our coarse spatial sampling
frequency (here ξS = 6.2, dictated by the one-point per
cell limit of our scan). From basic signal processing, the
effective wavenumber of the reconstructed second har-
monic ξR is expected to be

ξR = ξN − ξS ≈ −2.1 (1)

which matches the spectral location of the data. Careful
inspection of the right quadrant (positive ξ-space) reveals
a second feature at 2ω (highlighted by the dashed white
circle in Fig. 4e), albeit significantly smaller in amplitude.
We recognize this as the left-going second harmonic due
to the reflected component of the fundamental flexural
wave. The negligible amplitude here can be attributed
to the fact that this is a second-order effect generated
by a reflected wave which, as stated above, is already
significantly weaker than its incident counterpart due to
damping.The right quadrant location of the reflected sec-
ond harmonic can be explained invoking the same alias-
ing argument discussed above.

It is important at this point to provide some guaran-
tees that the signatures of nonlinearity observed in the
response are predominantly due to the nonlinear mechan-
ics of the problem rather than to other possible sources of
nonlinearity, e.g., in the excitation/amplification system,

-3 -2 -1 0 1 2 3 4 5 6
0

1

2

3

4

5

6

Fr
eq

ue
nc

y 
[k

H
z]

Axial Mode
Flexural Mode

Intermodal
Tunneling

Aliasing

Second
Harmonics

Fundamental
Harmonic

FIG. 5. Schematic illustration of quadrant shift due to alias-
ing during intermodal tunneling.

or in the contact between the stinger and the structure.
The spectral plot of Fig. 4e provides a rationale to sup-
port this notion. Consider that, from the perspective
of the structure, a nonlinearity in the excitation would
essentially be seen as a multi-frequency external input
signal, which would therefore trivially activate all the
branches of the band diagram that exist at any of the ex-
cited frequencies. Accordingly, an externally generated
2ω excitation component would predominantly produce
an activation of the 2ω-portion of the axial branch that
appears in the right quadrant of the band diagram. This
is clearly not the case here where, instead, the positive-
ξ axial branch remains essentially de-energized (except
the very weak reflected second harmonic discussed above)
and the wavenumber of the harmonic is dictated by the
peculiar shape of the branches in the band diagram ac-
cording to the requirements of phase matching condi-
tions. The fact that the harmonic generation is subjected
to these modal constraints suggests that the process is in-
deed controlled by the intrinsic mechanics of the problem.
We conclude that, while undoubtedly there is a small
nonlinear signature in the external excitation (which is
indeed easily detected through an a-priori characteriza-
tion of the shaker), the bulk of the nonlinear response is
to be ascribed to the nonlinearity of the medium.

The multi-resolution capabilities of the 3D SLDV allow
us to acquire detailed local snapshots of the wavefield. To
this end, a dense grid of scan points spanning over 3 unit
cells is used to reconstruct the deflection shapes shown
in Fig. 6. The displacement of each point is magnified
for visualization purposes and each point is color-coded
proportionally to its axial displacement to highlight the
activation of the resonators through intermodal tunnel-
ing. In Fig. 6a, we plot the fundamental wavefield at four
time instants and we recognize the anti-symmetric lateral
deflection profile typical of a flexural wave. In Fig. 6b,
we use a band-pass filter to distill the contributions at
the second harmonic. Displacements and color contrast
confirm the activation of strong short-wavelegnth axial
mechanisms in the resonators. Compared to Fig. 6a, we
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(a)

(b)

FIG. 6. Experimentally reconstructed internal unit-cell re-
sponse: snapshots of local wavefield details (spanning 3 cells)
at four successive time instants (normalized as ti = ti/T ,
where T = 0.5 ms and i = 1, 2, 3, 4). (a) Fundamental flexu-
ral wavefield. (b) Filtered wavefield at the second harmonic
revealing nonlinear activation of axial resonant mechanisms
and energy trapping.

find that the activation of the resonators persists after
the flexural packets have traveled through the scanned
region, implying that some energy has been transferred
to the resonators and locally trapped. If we excited the
waveguide axially at the nominal frequency ω, the wave-
length would be much larger than the unit cell and there-
fore bypass the microstructure. To establish comparable
effects, it would be necessary to excite at significantly
higher frequencies lying on the folding portion of the ax-
ial branch. In this respect we can argue that, relatively to
purely axial linear phononics, the trapping mechanisms
of Fig. 6b display new subwavelength attributes that are
directly enabled by intermodal tunneling.

IV. CONCLUSIONS

In summary, we have experimentally studied the prop-
agation of nonlinear waves in a metamaterial waveguide
with internal resonators. We have demonstrated the ex-
istence of strong intermodal tunneling between flexural
and axial mode, thus providing evidence of modal mixing
in nonlinear metamaterials. We have acquired detailed
scans of the internal unit cell deformation features to
visually confirm the modal conversion occurring during
tunneling and the strong and persistent energy trapping

established in the resonators. We have demonstrated
that, by working in nonlinear conditions, strong axial
trapping can be achieved even with purely flexural loads
and, more importantly, even with low-frequency excita-
tions whose long wavelengths prevent localization in the
linear regime. In conclusion, nonlinearity provides an
avenue to activate subwavelength phenomena through a
simple control of the amplitude of excitation.
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