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Effective demagnetizing factors that connect the sample magnetic moment with the applied mag-
netic field are calculated numerically for perfectly diamagnetic samples of various non-ellipsoidal
shapes. The procedure is based on calculating total magnetic moment by integrating the magnetic
induction obtained from a full three dimensional solution of the Maxwell equations using adaptive
mesh. The results are relevant for superconductors (and conductors in AC fields) when the London
penetration depth (or the skin depth) is much smaller than the sample size. Simple but reasonably
accurate approximate formulas are given for practical shapes including rectangular cuboids, finite
cylinders in axial and transverse field as well as infinite rectangular and elliptical cross-section strips.

I. INTRODUCTION

Correcting results of magnetic measurements for the
distortion of the magnetic field inside and around a finite
sample of arbitrary shape is not trivial, but necessary
part of experimental studies in magnetism and super-
conductivity. The internal magnetic field is uniform only
in ellipsoids (see Fig. 2) for which demagnetizing factors
can be calculated analytically [1, 2]. In general, however,
magnetic field is highly non-uniform inside and outside
of finite samples of arbitrary (non-ellipsoidal) shapes and
various approaches were used to handle the problem [3–
9]. As discussed below, the major obstacle has been that
so far the total magnetic moment of arbitrary shaped
samples could not be calculated and approximations and
assumptions had to be made. As a result, various ap-
proximate demagnetizing factors were introduced. For
example, so-called “magnetometric” demagnetizing fac-
tor, Nm, is based on equating magnetostatic self-energy
to the energy of a fully magnetized ferromagnetic prism
or, more generally, considering volume-average magneti-
zation in magnetized [4, 5, 7] or perfectly diamagnetic
[6] media. Similarly, so-called “fluxmetric” or “ballistic”
demagnetizing factor, Nf , is based on the average mag-
netization in the sample mid-plane [4, 6]. In these for-
mulations, micromagnetic calculations are used to find
the distribution of surface magnetic dipoles density that
satisfies the boundary conditions and the assumptions
made. Then the average magnetization is calculated and
used to compute the N factors using formulas similar
to those used in this work. One common, but generally
incorrect, assumption is that the sum of demagnetizing
factors along three principal axes equals to one. This is
true only for ellipsoids. Notably, E. H. Brandt has used a
different approach by numerically calculating the slope,
dm/dH0, of the magnetic moment m vs. applied mag-
netic field H0 in a perfect superconductor in the Meissner
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state to compute the approximateN−factors for a 2D sit-
uation of infinitely long strips of rectangular cross-section
in perpendicular field and he extended these results to fi-
nite 3D cylinders (also of rectangular cross-section) in
the axial magnetic field. We find an excellent agreement
between our calculations and Brandt’s results for these
geometries. Also, in our earlier work, the 2D numerical
solutions of the Maxwell equations obtained using finite
element method were generalized to 3D cylinders and
brought similar results [10]).

Yet, despite multiple attempts, results published so
far do not describe three dimensional finite samples of
arbitrary non-ellipsoidal shapes to answer an important
practical question: What is the total magnetic mo-
ment of a three dimensional sample of a particular shape
in a fixed applied magnetic field, H0? We answer this
question by finding a way to calculate total magnetic mo-
ment from the first principles with no assumptions and
introducing the effective demagnetizing factors without
referring to the details of the spatial distribution of the
magnetic induction. We will first consider how these ef-
fective demagnetizing factors depend on finite magnetic
permeability, µr, which highlights the difference between
ellipsoidal and non-ellipsoidal shapes. Complete treat-
ment of finite µr requires separate papers in which we
will focus on (a) the London-Meissner state in supercon-
ductors of arbitrary shape with finite London penetration
depth and (b) demagnetizing corrections in local and lin-
ear magnetic media with arbitrary µr.

In this work we focus on perfectly diamagnetic sam-
ples, the magnetic induction B = 0 inside, which allows
studying pure effects of sample shape. The results can be
used for the interpretation of magnetic measurement of
superconductors when London penetration depth is much
smaller than the sample dimensions (a good approxima-
tion almost up to 0.95Tc) or in conducting samples sub-
ject to AC magnetic field when the skin depth is small.
Our goal is to find simple to use, but accurate enough,
approximate formulas suitable for the calculations of the
demagnetizing correction for many shapes that can ap-
proximate realistic samples, such as finite cylinders and
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cuboids (rectangular prisms).

II. DEFINITIONS

In local and magnetically linear media without demag-
netizing effects (infinite slab or cylinder in parallel mag-
netic field),

B = µH = µ0 (M +H) , (1)

M =
B

µ0
−H = χH (2)

where µ0 = 4π×10−7 [N/A2 or H/m] is magnetic perme-
ability of free space; µ and χ are linear magnetic perme-
ability and susceptibility (in general these quantities are
second rank tensors, but here we consider the isotropic
case.)

It follows then that,

χ =
µ

µ0
− 1 = µr − 1 (3)

where µr = µ/µ0 is relative magnetic permeability; µr =
1 for non-magnetic media and µr = 0 and χ = −1 for a
perfect diamagnet.

For finite samples of ellipsoidal shape, constant demag-
netizing factors N connect the applied magnetic field H0

along certain principle direction with the internal field,
H,

H = H0 −N M (4)

and in terms of an applied field the magnetization is:

M =
χ

1 + χN
H0 (5)

In arbitrary shaped samples this simple description
breaks down and we have to introduce similarly struc-
tured effective equations, albeit applicable only for inte-
gral quantities. Namely, upon application of an exter-
nal field H0, a finite sample of a given shape develops a
measurable total magnetic moment m. We now define
“effective” (or “integral”, or “apparent”) magnetic sus-
ceptibility, χ0, and corresponding demagnetizing factor,
N , by writing relations structurally similar to Eq. (5)

m = χ0H0V =
χH0V

1 + χN
(6)

which reduces to conventional equations in the case of
a linear magnetic material of ellipsoidal shape. Impor-
tantly, Eq. (6) contains only one property to be deter-
mined - intrinsic susceptibility, χ provided the demag-
netizing factor N can be calculated for given geome-
try. This can be done for model materials with known
(assumed) χ and numerically evaluated χ0 by inverting
Eq. (6) to obtain:

N =
1

χ0
− 1

χ
. (7)

where −1 ≤ χ ≤ ∞ and −∞ ≤ χ0 ≤ χ. To eliminate the
influence of the material, for calculations of N we will
consider a perfect diamagnet with χ = −1, so that when
χ0 = χ = −1, N = 0 as it should be in case of no de-
magnetizing effects (infinite slab or a cylinder in parallel
field) and N → 1 for infinite plate in perpendicular field
where χ0 → −∞, while χ is still equals -1.

The main issue in using Eq. (7) to calculate demagne-
tizing factors is to calculate the total magnetic moment of
a sample of a given (arbitrary) shape. There are two ways
of approaching this. In non-magnetic (super)conductors,
one first solves Maxwell equations with the help of one of
existing numerical software packages (such as COMSOL,
[13]), to find the transport current density j(r). Then,
the total magnetic moment is given by [1],

m =
1

2

∫
[r × j(r)] dV (8)

The integral here can be evaluated over the entire space,
but the integrand is non-zero only inside the sample
where the currents flow.

The second way to calculate the total magnetic mo-
ment, m, is given by,

m = α

∫ [
B(r)

µ0
−H0

]
d3r, (9)

where B(r) is the actual field and H0 is the uniform
applied field. Here the integral must be evaluated in a
region that includes the sample (can be the entire space).
We show in the next section that this integral is not
unique, but depends on the way chosen for the integra-
tion. This is accounted for by a constant α in Eq. (9),
α = 3/2 for integration over the large spherical domain
that includes the whole sample, whereas α = 1 for inte-
gration domain as a large cylinder with the axis parallel
to H0. It turns out that for numerical reasons, the cylin-
drical domain is preferable and we used it for our numer-
ical work. Equation (9) is central to the present work,
because it allows calculations without using the current
distribution. This equation (with α = 3/2) can be found
in Jackson’s textbook, Ref. [11], Eq. (5.62). A related
discussion about the multipole representation of the field
outside the region where the field sources are localized is
given in Ref. [12].

For evaluation ofB(r), one can use approximation of a
fully diamagnetic sample imposing “magnetic shielding”
boundary conditions available in the COMSOL software.
Employing Eq. (9) with B(r) simplifies numerical pro-
cedure and improves accuracy considerably. However,
proving Eq. (9) is not at all trivial and we derive it ana-
lytically in the next section. We also verified the results
by calculating total magnetic moment m utilizing both
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approaches evaluating current distribution in supercon-
ducting samples using London equations and employing
Eq. (8), and using COMSOL generated field distribution
B(r) and Eq. (9).

III. TOTAL MAGNETIC MOMENT m

According to Jackson’s book [11], the magnetic mo-
ment m of current distribution induced by an applied
uniform field H0 in a finite sample, is related to the dis-
tribution of the magnetic induction B(r) by

I =

∫
R

[
B(r)

µ0
−H0

]
d3r =

2

3
m . (10)

whereR is a radius of a large sphere containing the whole
sample. In particular, R can be infinite, e.g. the integral
can be extended to the whole space. This relation is
central for our calculations, so that we provide a more
general derivation than that given in [11]. We show that
depending on the way chosen to evaluate the integral I
over the whole space, Eq. (9) can have different forms,
parameterized by a factor α.

The field B consists of the applied field H0 and the
field h due to currents j in the sample of a finite volume
V :

B

µ0
= H0 + h , (11)

i.e., I =
∫
h d3r, where according to Biot-Savart law,

h(r) =
1

4π

∫
V

d3ρ
j(ρ)×R

R3
, R = r − ρ . (12)

Hence, we have

4πI =

∫
R

d3r

∫
V

d3ρ
j(ρ)×R

R3

=

∫
V

d3ρ j(ρ)×
∫
R

d3r
R

R3

=

∫
V

d3ρ j(ρ)× E(ρ) . (13)

where we introduce “pseudo-electric field”, E(ρ) =∫
d3rR/R3, which is analogous to the electrostatic field

of a uniform charge distribution with a constant density
of −1 in the whole space. For ρ = 0, we must have
E =

∫
d3r(r/r3) = 0 by symmetry. For such a distribu-

tion, the field E is not defined uniquely, it depends on the
way one divides the space in charged elements.

If one uses elements as spherical shells, and applies the
Gauss theorem to a sphere of a radius ρ one obtains:

E = −4π

3
ρ . (14)

Hence, we have

I = −1

3

∫
V

d3ρ j(ρ)× ρ =
2

3
m , (15)

where m is the total magnetic moment. It is worth not-
ing that this formula holds for any current distribution
within the finite sample of arbitrary shape.

If one uses integration elements as cylindrical shells
parallel to H0, i.e. choose the volume element as
2πρ1 dρ1dz (ρ1 is the cylindrical radius vector), and ap-
plies the Gauss theorem to a cylinder of a radius ρ one
obtains:

E = −2πρ1 . (16)

Substituting this in Eq. (13), one expresses the z compo-
nent of the integral I:

Iz = mz . (17)

It is easy to show that the region where the integral I
is evaluated can be taken as a sphere (or a cylinder) of
a radius R1 that contains the entire sample of interest
within this region. Then, if one takes a larger radius R2,
the layer between spheres (cylinders)R1 andR2 does not
contribute to the effective field E because the “electric
field” of such a uniformly charged spherical (cylindrical)
shell E(r) = 0 for r < R1.

In Appendix A, for demonstration purposes, we eval-
uate the integral I both analytically and numerically for
spherical and cylindrical integration volumes for the case
of a current ring for which the distribution of B(r) is
known.

It is worth mentioning that a similar argument can be
applied for evaluation of the dipole moment of a metallic
sample of arbitrary shape placed in a uniform electric
field E0, d =

∫
d3ρn(ρ)ρ, (n(ρ) is the charge density,

for point charges d =
∑
ν eνρν). It is straightforward to

see that

d ∝
∫
d3ρ [E(ρ)−E0] . (18)

Here, E(ρ) is the electric field distribution which can
be found numerically with the help of a software similar
to COMSOL [13]. As in the magnetic case, the integra-
tion here can be done over a spherical (or cylindrical)
region which contains the whole sample. The coefficient
of proportionality here is 2α/ε0, where α is given above
and ε0 is the vacuum dielectric constant. This result
might be useful in problems like those considered in [14].

In Appendix B we provide a derivation of Eq. (9) in
Gaussian units for readers who prefer CGS in general
electromagnetic problems.
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IV. NUMERICAL CALCULATIONS

Numerical calculations of three dimensional distribu-
tion of vector B(r), were performed with COMSOL soft-
ware [13] using adaptive finite element solution of the
Maxwell equations in the form applicable to many differ-
ent situations, including external currents jext and elec-
trical conductivity σ in case of conducting materials.

∇×H = j,

B = ∇×A,
j = σE + jext,

B = µ0µrH,

(19)

We used finite µr below to illustrate µr-dependent ef-
fective demagnetizing factor. Otherwise, throughout the
manuscript, µr = 0, σ = 0 and jext = 0. For details the
reader is referred to extensive documentation available on
COMSOL web site [13]. “AC/DC magnetic field” COM-
SOL module in a stationary DC study was used to model
perfect diamagnetic material. Frequency-dependent AC
study was used to formulate London equations with com-
plex frequency-dependent conductivity. In the limit of
perfect diamagnetic material both approaches gave iden-
tical results.

The main numerical difficulty is to construct the
proper adaptive mesh, which should be fine enough to
resolve surface currents, but still give solutions in reason-
able time. Various strategies were emploied to optimize
the process, utilizing symmetries, periodic boundary con-
ditions, perfect magnetic shielding, and various adaptive
sweeps and batch modes. Each geometry was solved for
by using several different approaches and different meshes
to make sure final results are model-independent. Ge-
ometries for which analytical solutions are known (el-
lipsoids and cylinders) were used to verify numerical
schemes and gave nearly perfect agreement. All calcu-
lations were done in SI, so that factor µ0 was properly
taken into account where required.

To illustrate the method, top panel of Fig.1 shows
three-dimensional meshed sphere (right) and cube (left).
The meshes used in actual calculations were much finer
and contained various adaptive refinements and layers.
(they would be irresolvably dark if shown here). Bot-
tom panel of Fig.1 shows two surfaces of constant mag-
netic induction around these samples. With the applied
field of 1 Oe ≈ 79.58 A/m, one surface with 0.45 G
= 0.045 mT corresponds to diamagnetic shielding out-
side the sample, while 1.47 G = 0.147 mT corresponds
to enhancement due to demagnetization. Clearly, cube
provides more shielding, χ0 = χcube = −1.64, compared
to the sphere, χ0 = χsphere = −1.5, and this is re-
flected in a larger demagnetizing factor, Ncube = 0.39
compared to Nsphere = 1/3. Already here, it is ob-
vious that, due to symmetry, the sum of demagnetiz-
ing factors in three principal directions for a cube is∑
Ni = 3× 0.39 = 1.17 > 1.

FIG. 1. (top panel) sphere and cube in a full three dimen-
sional meshed model. (bottom panel) corresponding 3D solu-
tions showing surfaces of constant amplitude magnetic induc-
tion of 0.45 G and 1.47 G. Applied external field is 1 Oe.

V. FINITE MAGNETIC PERMEABILITY

Unfortunately, complications arise in non-ellipsoidal
samples with finite magnetic permeability. While de-
magnetizing factors are constants independent of µr in
ellipsoidal samples, they become µr-dependent other-
wise. Hence, effective demagnetizing factors are no longer
purely geometric parameters. It is still possible to pro-
vide some practical approximation of this behavior, but
it will require a separate paper.

Here we outline all the steps of calculating effective de-
magnetizing factors. First we use COMSOL to calculate
three dimensional distribution of the vector B(r) inside
and outside the sample. Here we do it for two values
of magnetic permeability corresponding to diamagnetic
and paramagnetic materials. Figure 2 shows Bz com-
ponent of the magnetic induction across the sample in
the x direction, Bz (x, z = 0), (left panels) and in the
z direction Bz (x = 0, z) (right panels) for two values of
relative magnetic permeability, µr = 0.6 (diamagnetic,
dashed lines) and µr = 1.4 (paramagnetic, solid lines).
Top panels are for an oblate spheroid and bottom panels
are for a cylinder of the same aspect ratio (see insets).
Note constant magnetic induction inside a spheroid and
a very non-uniform induction inside a cylinder.

The next step is to use Eq.(9) with spherical or cylin-
drical integration volumes to compute total magnetic mo-
ment in a fixed applied field of 1 Oe. Finally, we use
Eq.(7) to evaluate the effective demagnetizing factor.

Figure 3 shows µr dependence of the effective demag-
netizing factor N(µr) of a finite cylinder in longitudinal
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FIG. 2. Bz component of the magnetic induction across the
sample in the x− direction (left panels) and in the z− direc-
tion (right panels) for two values of relative magnetic perme-
ability, µr = 0.6 (diamagnetic, dashed lines) and µr = 1.4
(paramagnetic, solid lines). Top panels are for an oblate
spheroid and bottom panels are for a cylinder of the same
aspect ratio (see insets). Note constant field inside a spheroid
and strongly non-uniform magnetic induction inside a cylin-
der.

FIG. 3. Effective demagnetizing factor N for a finite cylinder
in an axial magnetic field for three different aspect ratios as
a function of relative magnetic permeability µr. Inset shows
the difference N (µr)−N (0).

magnetic field for three different values of the thickness
to radius aspect ratio. The inset shows the variation of
the difference N (µr) − N (0). Expectedly, (see Eq.(7)),
for a strongly paramagnetic material with µr > 5−10 the
variation in N is not too substantial. However, for ma-
terials of practical interest, 0 ≤ µr ≤ 10 the dependence
of N on µr is quite strong. We will attempt to provide a
simplified description ofN (µr) for various non-ellipsoidal
shapes elsewhere.

VI. PERFECT DIAMAGNETS

For now we will focus on a perfect diamagnetic material
with constant B = 0 inside.

A. General ellipsoid

Throughout this paper we adapt uniform designation
of sample dimensions 2a × 2b × 2c along Cartesian x, y
and z axes with external magnetic field applied along the
z− axis, parallel to the side c of the sample. Also, we will
always use the dimensionless ratios, b/a and c/a.

For completeness, it is useful to show here the analyt-
ical solution for the ellipsoid with semi-axes, a, b and c
given in Ref. 1, Eqs.(4.5) and (4.25). Osborn also gives
analytical solutions of this case expressed via the differ-
ences of incomplete elliptic integrals and written for a
restricting case of a ≥ b ≥ c [2] (Eqs.(2.1-2.6)). It turns
out formulas given in Landau’s book are much easier to
compute numerically and they work for any ratio of the
dimensions [1]. The demagnetizing factor along the c axis
is:

Nellipsoid =
1

2

b

a

c

a

∞∫
0

ds(
s+ c2

a2

)
R (s)

(20)

where,

R (s) =

√
(s+ 1)

(
s+

b2

a2

)(
s+

c2

a2

)
(21)

Demagnetizing factors along other two directions have
similar form with

(
s+ (c/a)2

)
in the denominator of

Eq.(20) replaced by (s+ 1) or
(
s+ (b/a)2

)
, along a axis

or b axis, respectively. We verified our numeric approach
by calculating N for ellipsoids and found a perfect agree-
ment with Eq.(20).

B. Rectangular cuboid

Brick-shaped sample most commonly encountered in
research laboratories, because many single crystals tend
to grow in this shape, cutting and polishing procedure
also favors this type of samples.

Three-dimensional surface of the effective demagnetiz-
ing factor, N , of a rectangular cuboid as function of two
aspect ratios, c/a and b/a, is shown in Fig.4. Analysis of
the numerical data led us to suggest the simple formula,

Ncuboid ≈
4ab

4ab+ 3c (a+ b)
(22)

This is an important result of this work, because it de-
scribes most frequently used sample shape. Note that
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FIG. 4. Effective demagnetizing factor of a rectangular cuboid
as function of its two aspect ratios. Inset shows schematic
geometric arrangement.

Eq.(22) is an interpolation between limiting cases of in-
finitely thin sample ( c → 0, N → 1) and N → 0 in the
opposite case.

Top panel of Fig. 5 shows the difference between nu-
merically calculated N for a rectangular cuboid (Fig. 4)
and approximation given by Eq.(22). For comparison,
bottom panel of Fig.5 shows the difference between nu-
merically computed N for cuboid and analytical solution
for an ellipsoid, Eq.(20). While the latter shows devi-
ation upward of 0.08 (considering that N can only vary
between 0 and 1), the former remains a much closer func-
tion approximating numerical results.

The relative error in determining magnetic moment
(therefore apparent susceptibility) of a finite sample due
to non-exact demagnetizing factor is readily derived from
Eqs. 5) and (7),

m(N)−m(Napprox)

m(N)
=

Napprox −N
Napprox + χ−1

(23)

where N is the exact and Napprox is the approximate de-
magnetizing factors, respectively and χ is intrinsic mag-
netic susceptibility. Estimates using Eq.(23) show that
most of the diagram (except for very thin samples) in
Fig. 5(a) results in errors within 10%. The error be-
comes larger for b/a & 1 and c/a . 0.1 (lower right)
corner of Fig. 5(a). Indeed, if better precision is needed,
full calculations are required.

By matching magnetostatic self-energy to total mag-
netic energy of a saturated ferromagnetic prism, Aharoni
has provided formulas for so-called “magnetometric” de-
magnetizing factor, Nm of the rectangular prism [5]. Sim-
ilarly, Pardo et al. calculated both “magnetometric” fac-
tor using volume average magnetic field and “fluxmetric”
factors using mid-plane average magnetic fields [6]. Both
postulated that the sum of three demagnetizing factor

FIG. 5. Top panel: the difference between numerically calcu-
lated N and approximation given by Eq.(22). Bottom panel:
the difference between numerically computed N for cuboid
and that of an ellipsoid, Eq.(20).

must be 1 which is not justified. However, when Pardo
et al. relaxed this constraint calculating their “magne-
tometric” N -factors, their results agreed perfectly with
our numerics for c ≤ a [6]. Sato and Ishii provided very
simple approximate formulas for square cuboids and cir-
cular cylinders of finite thickness in axial magnetic field
[7] that they obtained by the analysis of the solutions by
Aharoni and co-workers. They, therefore, agree well with
Aharoni [5], but disagree with our unconstrained numer-
ical results. This is shown graphically in Fig. 6 where
various effective demagnetizing N - factors are shown for
a square base cuboid as function of thickness to side ratio,
c/a.
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FIG. 6. Comparison of the effective demagnetizing factors
for a square base cuboid: this work (solid red line), “magne-
tometric”, Nm, from Aharoni [5] (dashed black line), “mag-
netometric”, Nm (solid squares) and “fluxmetric”, Nf , (dash
double dotted line) from Pardo et al. [6], and magnetometric
N - factors, - approximate (dotted grey), exact (circles) from
Sato and Ishii [7]. Inset zooms at thinner samples. Of all
calculations, magnetometric N factors calculated by Pardo et
al. [6] are in a very good agreement with out results for c ≤ a.

C. Finite cylinder in axial and transverse magnetic
fields

1. Finite circular cylinder in an axial magnetic field

This is another typical shape of practical importance
and interest. Often it is a piece of a round wire, part of
superconducting magnet winding or various cables and
transmission lines. They may be subject to either axial
or transverse field (or a combination of the two). For the
axial case (magnetic field along the cylinder axes) and
circular cross-section, the inverse demagnetizing factor is
shown in Fig. 7 and compared to square base cuboid and
a spheroid of similar aspect ratio. For comparison, Fig. 7
also shows rectangular cuboid and a spheroid as a func-
tion of c/a ratio. Clearly, for a cylinder, Eq.(24) works
quite well. Also shown is a comparison with formulas
given by Sato and Ishii [7]. They approach our results in
the thin limit, but the general trend is quite different.

As shown in Fig. 7, analysis of the numerical results
shows that the simplest curves are obtained for the in-
verse of the effective demagnetizing factor N−1 as a func-
tion of the aspect ratio. Indeed, this was also noted in
many previous works, for example M. Sato and Y. Ishii
[7] and E. H. Brandt [9]. In case of a finite cylinder in
axial magnetic field, we obtain a simple approximate for-
mula for the effective inverse demagnetizing factor:

N−1axial ≈ 1 + 1.6
c

a
(24)

FIG. 7. Inverse of the effective demagnetizing factor, N−1, as
a function of thickness to diameter aspect ratio for a cylinder.
Open symbols are our numerical results and solid line is our
approximations, Eq. (24). For comparison, E. H. Brandt’s
theory is shown by the dotted line and simplified approxima-
tions of M. Sato and Y. Ischii by the dashed line. For com-
pleteness, comparative results for a cuboid are also shown by
solid line (this work) and dashed line Ref. [7]. Inset zooms on
to smaller aspect ratio region showing excellent agreement of
our numerical results and Brandt’s formula [9].

We note that our very early work suggested similar ap-
proximation with a crude estimate of a numerical factor
of 2 in place of 1.6 in Eq. 24 [10]. Our results can be
compared with the numerical simulations of finite super-
conducting samples by E. H. Brandt [9]. He extended his
calculations of infinite rectangular strips in perpendicular
magnetic field to finite disks of rectangular cross-section.
According to Brandt, for a disk of height 2c and diameter
2a [9],

N−1disk = 1 +
1

q

c

a
(25)

where

q =
4

3π
+

2

3π
tanh

[
1.27

c

a
ln
(

1 +
a

c

)]
(26)

Figure 7 shows excellent agreement between our nu-
merical results and Brandt’s equations lending further
support to our calculations. On the other hand, simpli-
fied approximations of M. Sato and Y. Ishii [7] for these
geometries do not agree at all with our and Brandt’s re-
sults.

2. Finite circular cylinder in a transverse magnetic field

We now consider a finite cylinder of circular cross-
section (a = c) in a magnetic field applied perpendicular
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FIG. 8. Finite cylinder in transverse magnetic field as a func-
tion of ratio of diameter to length. Inset shows small a/b
values.

to its axis. (Please, note that we change the designations
of the dimensions compared to the previous subsection to
follow the uniform naming scheme of this paper). Figure
8 shows inverse demagnetizing factor N−1 as function
of the a/b ratio. Notice that this ratio is reciprocal to
that of Eq.(24). For small enough ratio of a diameter to
length, a/b a good approximation for the demagnetizing
factor in this case is:

N−1transv ≈ 2 +
1√
2

a

b
(27)

Notice that Eq.(27) gives correct value of N = 1/2
for an infinite cylinder in transverse field, a/b → 0, and
correct N = 0 when a/b→ inf.

3. Infinite rectangular and elliptical cross-section strips in
a transverse field

Another important case, which is a partial case of the
general cuboid is an infinite strip of a rectangular cross-
section in a perpendicular field. This geometry is quite
relevant for the superconducting tapes as parts of cables
or magnet winding. Demagnetizing correction here is an
important ingredient of design optimization. It has been
considered before by using similar finite element numeri-
cal approach as used here, but in two dimensions [10] and
also in a different way using highly nonlinear E(j) char-
acteristics applicable for superconductors by H. Brandt
[9].

Figure 9 shows an inverse demagnetizing factor, N−1,
of an infinite strip of a rectangular cross-section as func-
tion of thickness to width ratio, c/a. Inset shows smaller

FIG. 9. Inverse demagnetizing factor, N−1, of an infinite strip
of a rectangular cross-section as function of thickness to width
ratio, c/a. Two simple approximate formulas are shown. Also
show more elaborate formula by H. Brandt [9], which agrees
with the numerical results quite well up to c/a = 10. Inset
shows smaller range of c/a.

range of c/a.Two simple approximate formulas are,

N−1inf−rect−strip =

 1 + 2
3
c
a , large c

a & 5

1 + 3
4
c
a , small c

a . 5
(28)

Using numerical simulations of finite superconducting
samples, E. H. Brandt gives [9],

N−1inf−rect−strip = 1 +
1

q

c

a
(29)

where

q =
π

4
+ 0.64 tanh

[
0.64

c

a
ln
(

1.7 + 1.2
a

c

)]
(30)

Notably, for a square cross-section (a = c) infinite
along b−direction strip, Brand obtained Na = Nc =
0.538, also noting that the sum of demagnetizing factors
is greater than 1 for non ellipsoidal shapes (the third,
Nb = 0 for infinite strip).

Next we consider an infinite strip of elliptical cross-
section, compared to a rectangular strip in Fig.10. It
turns out, the elliptical cross-section has the simplest ap-
proximate equation for the effective demagnetizing factor
of all considered cases. Here,

N−1inf−ell−strip ≈ 1 +
c

a
(31)

D. Exotic geometries

Described numerical method allows for the calculation
of the effective demagnetizing correction for samples of
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FIG. 10. Inverse demagnetizing factor of an infinite strip
of elliptical cross-section compared to a strip of rectangular
cross-section. Both are infinite in b−direction.

any shape. For an illustration, let us consider a pyramid
in shape of the Great Pyramid of Giza, a cone inscribed
in this pyramid and a slab enclosing it, all three shown
in Fig.11. In all these cases, the ratio of its height to the
side is c/a = 2/π ≈ 0.64. Most likely a pure coincidence,
but demagnetizing factor of the Great Pyramid (and of
the inscribed cone), N = 0.64, is the same as the ratio
of height to side. For a cuboid of the same c and a, N =
0.49 is smaller owing this to a larger volume compared
to the cross-sectional area responsible for the magnetic
field distortion around the sample. This adds yet another
puzzle for Egyptologists.

VII. CONCLUSIONS

We introduced a direct, assumptions free, efficient way
to estimate the effective (or “integral”) demagnetizing
factors of arbitrarily shaped diamagnetic samples. The
key equation, Eq.(9), was generalized and re-derived in
form of Eq.(8) where vector E(ρ) =

∫
d3rR/R3 can

be interpreted as a pseudo-electric field E produced by

a charge density -1 uniformly distributed in the entire
space, and particular form of E(r) depends on the shape
of the integration domain. This answers the question
posed in the introduction. Namely, it allows calculat-
ing total magnetic moment of arbitrarily shaped sample
if the volume distribution of the magnetic induction is
known. In this work, the latter is obtained from the
adaptive finite element full 3D numerical calculations us-
ing COMSOL 5.3 software. We provide simple approxi-
mate, yet accurate (e.g., for cuboid within ∆N < 0.05,
see Fig. fig5(a)) analytical expressions to estimate effec-
tive demagnetizing factors of samples of commonly used
non-ellipsoidal shapes, which are summarized in Table I.

FIG. 11. ”Exotic” sample shapes: The Great Pyramid of
Giza, inscribed cone of the same height and a cuboid enclosing
the pyramid. Effective demagnetizing factor of the pyramid
(and the same for the inscribed cone), N = 0.64, is the same
as the ratio of height to side, c/a = 2/π = 0.64.. For a cuboid
with the same height and side, N = 0.49.
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Appendix A: Current ring

To demonstrate how calculations of the total magnetic
moment work, it is instructive to consider an example
of a ring of a radius a = 1 m in plane z = 0 with
current J/4π = 1 A. The total magnetic moment is
mz = Jπa2 = 4π2 Am2. The field Bz around the ring
according to Landau is [1]

Bz =
2√

(1 + r)2 + z2

[
K +

1− r2 − z2

(1− r)2 + z2
E

]
, (A1)

where r, z are cylindrical coordinates, the complete ellip-
tic integrals K,E are functions of k2 = 4r/[(1+r)2+z2].
The Jackson theorem for this case with no applied field
reads:

2

3
m =

∫
BzdV, (A2)

where the integration is over the whole space. Hence, one
has to check the equality∫

Bzd
3r =

8π2

3
. (A3)

One can perform the volume integration in spherical
coordinates R, θ: r = R sin θ, z = R cos θ, dV =
2πR2 sin θdR dθ:

Bz =
2√

1 + 2R sin θ +R2

[
K +

1−R2

1− 2R sin θ +R2
E
]
,

k2 =
4R sin θ

1 + 2R sin θ +R2
. (A4)

The integral is readily calculated numerically:∫
Bz d

3r ≈ 26.32 coincides with the analytic value
8π2/3 and gives m = 3Iz/2 = 4π2 ≈ 39.48.

Another way of evaluating the integral I in the whole
space is to choose cylindrical integration elements
with axis along the applied field H0 = H0ẑ. To this
end we use Eq. (A1) where Bz is given in cylindrical
coordinates. The numerical integration yields Iz = 39.48
which coincides with the result for spherical integration
multiplied by 3/2. Eq.(B8) gives mz = Iz = 4π2 ≈ 39.48.
Thus, although the results of numerical evaluation of the
integral over the whole space differs from the spherical
method, the magnetic moment value for two methods
comes out the same.

To illustrate how our numerical calculations repro-
duce non-trivial analytical results presented here, Fig.12
shows evaluation of the z−component of the integral I,
Eq. (B1), using spherical and cylindrical shells. The inset
in Fig.12 shows three dimensional pie-cut picture of the
absolute value of the magnetic induction around the ring.
The ring radius, = 1/

√
π m, is chosen to have ring area

to give total magnetic moment of 1 Am2 with 1 A current
in the ring. With such choice, the value of the integral I
will be equal to 1/α of the Eq. (9). Note that numerical
calculations here and everywhere in this paper are car-
ried out in SI units. We obtain that the spherical shell
integration tends to the value of α−1 = 2/3 and cylin-
drical shell integration to α−1 = 1, exactly as shown
analytically. Moreover, both integrals stop changing as
soon as the sample current is fully enclosed in the in-
tegration volume, again as expected from the analytical
calculations. Therefore, integration of space outside the
sample does not contribute to the integral I. It does not
mean, however, that the outer space can by truncated

for numerical calculations. It should still be much larger
compared to the sample size in order to solve for (very
long - range) magnetic fields distribution correctly.

FIG. 12. Integral Iz, of Eq. (B1), calculated numerically using
spherical shells and cylindrical shells, respectively. The calcu-
lations are done in SI units and ring radius (= 1/

√
(π) m) is

chosen to give total magnetic moment of 1 Am2 for current of
1 A. This way the integral value is just 1/α of Eq. (9). Inset
shows three dimensional pie-cut picture of the absolute value
of the magnetic induction around the ring.

Appendix B: Identity Eq. (9) in Gaussian units

The derivation of this identity is given in the main text
in the “recommended” SI system, which was also used
in COMSOL to solve the Maxwell equations for the field
distribution in SI. This, however, makes the derivation
unnecessary cumbersome. Many researchers working in
the fields of superconductivity and magnetism prefer
CGS and it is also used in magnetometers such as
Quantum Design MPMS. We therefore provide here
the same derivation in Gaussian system, which, in our
opinion, makes the derivation more transparent.

The total magnetic moment m of a finite-size sample
is proportional to the volume integral of the total field
distribution B(r) over the sphere of large enough radius
R1 such that the whole sample is situated inside the
sphere. This statement is proven in Jackson’s book [11]
which gives:

I =

∫
r<R

[B(r)−H0] d3r =
8π

3
m . (B1)

Here, H0 is the applied field. In particular, one can take
R→∞, i.e. the integral can cover the whole space. This
identity is proven in Ref. 11 by expanding the field out-
side a sphere R which contains the sample (the currents)
in spherical harmonics. From the point of view of a finite-
element numerical method it is is more convenient to deal
with cylindrical integration domains. We thus provide a
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proof not related to a particular shape of the integration
region.
The field B consists of the applied field and the field b
due to currents J in the sample of a finite volume V :

B = H0 + b , (B2)
i.e., I =

∫
b d3r, where according to Biot-Savart

b(r) =
1

c

∫
V

d3ρ
J(ρ)×R

R3
, R = r − ρ . (B3)

Hence, we have

cI =

∫
d3r

∫
V

d3ρ
J(ρ)×R

R3

=

∫
V

d3ρJ(ρ)×
∫
d3r

R

R3
, (B4)

where the integration over r is extended to the whole
space.

The vector E(ρ) =
∫
d3rR/R3 is analogous to the

electrostatic field of a charge distribution with density
of −1 in the whole space. For such a distribution, the
field E is not defined uniquely, it depends on the way
one divides the space in charged elements.

For ρ = 0, we must have E =
∫
d3r(r/r3) = 0 by symme-

try. If one uses elements as spherical shells, and applies
the Gauss theorem to a sphere of a radius ρ one obtains:

E = −4π

3
ρ . (B5)

Hence, we have

I = −4π

3c

∫
V

d3ρJ(ρ)× ρ =
8π

3
m , (B6)

where m is the total magnetic moment. It is worth not-
ing that this formula holds for any current distribution
within the finite sample of arbitrary shape.

If one uses elements as cylindrical shells parallel to H0,
i.e. choose the volume element as 2πρ1 dρ1dz (ρ1 is the
cylindrical radius vector), and applies the Gauss theorem
to a cylinder of a radius ρ one obtains:

E = −2πρ1 . (B7)
where ρ1 is now the cylindrical radius vector. Substitut-
ing this in Eq. (B4), one expresses the z component of
the integral I:

Iz = 4πmz . (B8)
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TABLE I. Approximate effective (“integral”) demagnetizing factor along applied magnetic field.

Shape Geometry Demagnetizing factor along applied field

Ellipsoid (exact) N = 1
2

b
a

c
a

∞∫
0

ds

(s+ c2

a2 )

√
(s+ 1)

(
s+ b2

a2

)(
s+ c2

a2

)

Rectangular cuboid N−1 = 1 + 3
4
c
a

(
1 + a

b

)
Strip, rectangular N−1 = 1 + 2

3
c
a

for (c/a & 5), = 1 + 3
4
c
a

for (c/a . 5)

Strip, elliptical N−1 = 1 + c
a

Cylinder, axial N−1 = 1 + 1.6 c
a

Cylinder, transverse N−1 = 2 + 1√
2
a
b

Great pyramid

(cone, cuboid) N = 0.64 (0.64, 0.49)

Appendix: Summary of approximate formulas for the effective demagnetizing factor N


