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Models based on non-Hermitian Hamiltonians can exhibit a range of surprising and potentially
useful phenomena. Physical realizations typically involve couplings to sources of incoherent gain and
loss; this is problematic in quantum settings, because of the unavoidable fluctuations associated with
this dissipation. Here, we present several routes for obtaining unconditional non-Hermitian dynamics
in non-dissipative quantum systems. We exploit the fact that quadratic bosonic Hamiltonians that
do not conserve particle number give rise to non-Hermitian dynamical matrices. We discuss the
nature of these mappings from non-Hermitian to Hermitian Hamiltonians, and explore applications
to quantum sensing, entanglement dynamics and topological band theory. The systems we discuss
could be realized in a variety of photonic and phononic platforms using the ubiquitous resource of
parametric driving.

I. INTRODUCTION

Systems whose dynamics are governed by a non-
Hermitian Hamiltonian exhibit a wealth of unique phe-
nomena, and have been the subject of considerable recent
theoretical and experimental interest [1]. Non-Hermitian
dynamics is typically realized by the structured introduc-
tion of both loss and gain, and is usually studied in the
context of coupled-mode systems or tight-binding lattices
with linear dynamics. Such systems can exhibit the spon-
taneous breaking of parity-time (PT ) symmetry, as well
as exceptional points in parameter space, where Hamil-
tonian eigenvalues coalesce. A variety of phenomena in
such non-Hermitian systems have been studied, includ-
ing quasi-adiabatic evolution and chiral mode switching
[2–13], directional invisibility [14], the possibility of en-
hanced parameter sensing [15–19], and even applications
to robust wireless power transfer [20].

While the majority of work on non-Hermitian PT -
symmetric systems has been in classical settings, it is nat-
ural to ask whether their rich properties can also be ex-
ploited in quantum systems. A natural stumbling block is
that in the quantum context, the gain and loss typically
used to implement non-Hermitian dynamics invariably
introduces noise into the system; as explored in several
studies [11, 18, 19], this limits the utility of many non-
Hermitian effects in quantum systems. While in principle
such bath-induced noise effects could be avoided using
measurement and postselection [21, 22], this is difficult if
not infeasible in many setups.

In this paper, we present and analyze an alternative
method for realizing effective non-Hermitian dynamics
in a quantum setting that requires no couplings to ex-
ternal dissipative baths, and requires no measurement-
induced conditioning. The basic idea is to exploit
the unitary physics of squeezing (and anti-squeezing) in
parametrically-driven quantum bosonic systems. As is
well known, this coherent form of driving can lead to
dynamics that exhibits exponential growth and/or de-
cay in time. We show that in a wide range of contexts,

FIG. 1: Schematics depicting non-Hermitian two mode sys-
tems and equivalent Hermitian driven bosonic setups. (a)
Standard two-mode PT dimer with balanced gain and loss.
This system is unitarily equivalent to the system in (b): a
single-mode bosonic degenerate parametric amplifier(DPA)
with drive amplitude ν = γ. (c) Detuned gain-loss dimer,
where an energy detuning between modes breaks PT sym-
metry; this is equivalent to the system in (d), a four-mode
non-degenerate parametric amplifier setup. As discussed in
the text, these mappings can be extended to multi-mode and
lattice systems.

this can be made to parallel the exponential growth and
decay associated with incoherent gain/loss processes, al-
lowing a route for the noiseless implementation of non-
Hermitian dynamics. At a formal level, we utilize the uni-
tary correspondence between the non-Hermitian dynam-
ical coupled mode equations of interest, and the Heisen-
berg equations of motion in our Hermitian bosonic sys-
tem. We provide a detailed analysis of how this idea can
be implemented both in simple two-mode systems (with
and without PT symmetry), as well as in more compli-
cated multi-mode lattice systems. We also use this gen-
eral mapping to explore a variety of non-Hermitian phe-
nomena (e.g. chiral mode switching, exceptional-point
sensing) in a dissipation-free quantum setting. We close
by showing how these mappings can also be useful when
considering topological band structure in non-Hermitian
systems.

We stress that the non-Hermitian nature of dynamical
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Mapping scheme DPA NDPA QMFS

Section Sec. II B Sec. III A-III B Sec. II D, Sec. III C

Target non-Hermitian
system

PT dimer multimode PT system generic non-Hermitian
system

Hamiltonians HPT → ĤDPA Htb → ĤNDPA HN → ĤQMFS,multi.

Number of modes in
non-Hermitian setup /

in corresponding
paramp system

2 / 1 2N / 2N N / 2N

Advantages only requires a single
bosonic mode

do not need doubling of
the number of modes

mapping exists for
generic non-Hermitian

Hamiltonians

Constraints mapping requires a
constraint on the form

of the initial state

mapping exists for only
a subset of

PT -symmetric Htb

always realizes two
copies of the target

non-Hermitian
dynamics (HN and H†N )

TABLE 1: Summary of three different strategies for mapping non-Hermitian Hamiltonians to Hermitian quantum parametric
amplifier setups. See corresponding sections in the main text for details.

matrices in quadratic bosonic systems has long been real-
ized. Recent work has utilized this to establish mappings
between specific 1D models [23, 24], as well as a means
for applying non-Hermitian symmetry classes to bosonic
problems [24, 25]. Recent work has also pointed out that
a simple model of two coupled non-dissipative modes can
exhibit an exceptional point [26–28]. Our focus is quite
different: we discuss general methods that enable one
to realize a given non-Hermitian Hamiltonian of interest
without dissipation using a parametrically-driven (but
Hermitian) bosonic system, paying special attention to
PT -symmetric systems and multi-mode lattice models.
A brief summary of the three different approaches we de-
velop to construct the mapped system is given in Table 1
for convenience.

II. DISSIPATIONLESS NON-HERMITIAN
TWO-MODE DYNAMICS

We start by reviewing the basic dynamics of a non-
Hermitian two-mode PT -symmetric dimer, and show
how this can be directly mapped to the unitary squeez-
ing dynamics generated by a dissipation-free paramet-
ric amplifier model. We then extend this discussion to
two-mode non-Hermitian systems where PT symmetry
is broken, and show that a similar mapping to a quan-
tum system is still possible.

A. Review: PT Dimer

A standard two-mode PT dimer consists of two tunnel-
coupled modes (amplitudes α1(t), α2(t)) where mode 1
(2) is subject to gain (loss), with the gain and loss rates
set equal to γ (see Fig. 1). The equations of motion are

i
d

dt

(
α1(t)
α2(t)

)
= HPT

(
α1(t)
α2(t)

)
, (1)

where the 2× 2 effective non-Hermitian Hamiltonian is

HPT =

(
+iγ2 g
g −iγ2

)
= i

γ

2
σz + gσx. (2)

g is the tunneling amplitude (which we take without loss
of generality to be real and positive), and σz, σx are stan-
dard Pauli matrices. We will use the calligraphic sym-
bol H throughout to denote non-Hermitian Hamiltoni-
ans. Defining the time-reversal operation T as complex
conjugation, and defining parity P as the interchange of
the two modes, we see that HPT is invariant under PT .

The eigenvalues of HPT are given by

λ± = ±
√
g2 −

(γ
2

)2

. (3)

At the critical point g = γ/2 ≡ gc, the PT -symmetric
Hamiltonian HPT is defective, corresponding to a (sec-
ond order) exceptional point in parameter space. For
g < gc, the mode eigenvalues become complex, imply-
ing exponential growth and decay in the time domain;
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this transition is often referred to as the “spontaneous
breaking of PT symmetry”.

Consider next a more general non-Hermitian 2 mode
problem, where the dynamics are again given by Eq. (1)
with HPT replaced by a more general effective Hamilto-
nian:

H =
(
~c+ i~d

)
· ~σ. (4)

Here ~c, ~d are real vectors, and we have ignored any
constant-matrix part of H (as this has a trivial effect
on dynamics). This general non-Hermitian Hamiltonian
is unitarily equivalent to HPT (and has eigenvalues of
the form in Eq. (3)) whenever its Hermitian and anti-
Hermitian parts are orthogonal, i.e.

~c · ~d = 0. (5)

While the preceding discussion is all classical, one
might think that the extension to a quantum setting
is trivial: just replace mode amplitudes α1(t), α2(t) in
Eq. (1) by canonical bosonic Heisenberg-picture annihi-
lation operators â1(t), â2(t), and interpret the result as a
set of coupled Heisenberg equations of motion. This in
general is not a valid evolution, as the dynamics will not
preserve canonical commutation relations, i.e. at all times

[âj(t), â
†
j′(t)] = δjj′ . This is perhaps most evident in the

simple case where g = 0, and one has simple exponential
growth (decay) of mode 1 (2).

At a physical level, this inconsistency arises because
the gain/loss terms that give rise to the non-Hermitian
part of H arise from couplings to dissipative environ-
ments. In addition to providing gain/loss, these baths
will also drive the system with noise, and this noise can-
not be neglected in the quantum case. By adding appro-
priate inhomogeneous quantum noise terms to the RHS
of Eq. (1), one can then obtain an allowed quantum evo-
lution (i.e. commutation relations are preserved in time).
A systematic procedure for constructing quantum noise
terms consistent with a given non-Hermitian Hamilto-
nian was presented recently in Ref. [18].

B. Mapping to a degenerate parametric amplifier

Our goal is to realize the effective non-Hermitian dy-
namics of Eq. (1) in a quantum system without having
dissipation and the corresponding driving noise. To that
end, we consider the quantum Hamiltonian of a single
bosonic mode â that is parametrically driven (i.e. sub-
ject to two-photon driving). In an appropriate rotating
frame, the Hamiltonian is:

ĤDPA = δâ†â+
ν

2

(
iâ†2 + h.c.

)
, (6)

where δ represents a detuning term, and ν is the magni-
tude of the parametric drive. This is the standard Hamil-
tonian of a degenerate parametric amplifier, a system

that is extremely well-studied in quantum optics (see,
e.g., [29, 30]), and that can be realized in a wide range of
settings. It generates a unitary time evolution, which for
δ = 0 reduces to a single-mode squeezing transformation.
Without loss of generality, we work in a gauge where ν

is real and positive in what follows.
Despite having only a single mode, the dynamics has a

2 component structure, as the parametric drive couples
â and â†. Defining a vector of operators

|â〉 = (â, â†)T , (7)

the Heisenberg equations of motions can be written as

i∂t |â〉 =MDPA |â〉 , (8)

where the dynamical matrix MDPA is

MDPA =

(
δ iν
iν −δ

)
= δσz + iνσx. (9)

We see immediately that the structure of the Heisen-
berg EOM for this Hermitian problem mirrors that of the
effective non-Hermitian dimer system in Eq. (1), with the
dynamical matrix MDPA playing the role of an effective
non-Hermitian Hamiltonian H. Further, MDPA satis-
fies the condition in Eq. (4), implying that it is unitarily
equivalent to HPT in Eq. (2) (with δ = g and ν = γ/2).
This effective PT symmetry cannot be broken in our sin-
gle mode problem (as Eq. (6) is the most general single-
mode, quadratic, Hermitian and bosonic Hamiltonian).

Not surprisingly, the eigenvalues ofMDPA have exactly
the same structure as the PT dimer:

λDPA,± = ±
√
δ2 − ν2. (10)

It follows that the parametric drive ν plays the role of
the incoherent gain/loss in HPT , whereas the detuning
δ plays the role of the tunnel coupling. As we show in
the next subsection, this allows us to directly map the
physics of the threshold transition in our DPA system to
the “spontaneous” breaking of PT -symmetry that occurs
in HPT when γ/2 is made larger than g. In particular,
the DPA dynamical matrix exhibits an exceptional point
when ν = δ, i.e. at the parametric oscillation threshold.

Before exploring this connection, we return to the
problem of commutation relations: why doesn’t the non-
Hermitian nature of the dynamical matrix (and the possi-
bility of exponential growth / decay) in time cause issues
in our DPA system? The easiest way of seeing this is
to explicitly make the unitary transformation that maps
the dynamical matrix MDPA in Eq. (9) to the gain-loss
form of HPT in Eq. (2). With this transformation, the
Heisenberg equations of motion in Eq. (8) now take the
form:

i∂t

(
q̂
ip̂

)
=

(
iν δ
δ −iν

)(
q̂
ip̂

)
(11)

where q̂ ≡ (â + â†)/
√

2, p̂ ≡ i(â† − â)/
√

2 are canonical
(Hermitian) quadrature operators. With this transfor-
mation, we see that the dynamical matrix for the DPA
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in the quadrature basis has explicitly the same form as
the non-Hermitian Hamiltonian HPT in Eq. (2) describ-
ing the gain-loss PT dimer. We can also see why there
is no longer any issue with commutation relations: the
exponential growth that occurs when |δ| < ν causes q̂ to
grow exponentially in time, and p̂ to decay exponential
in time, at the same rate. This is just standard, unitary
squeezing dynamics. This exponential growth preserves
the canonical [q̂, p̂] = i commutation relation at all times.

We thus see that by exploiting the squeezing / anti-
squeezing, we can replicate the dynamics of the non-
Hermitian PT dimer in Eq. (1). Of course, in this map-
ping we have just a single mode, and hence only a single
complex degree of freedom (whereas in Eq. (1), there are
two complex degrees of freedom). In Eq. (11), this mani-
fests itself in the fact that the relative phase between the
two amplitudes must be i. By using a two-mode, non-
degenerate parametric amplifier system, this phase con-
straint can be lifted; this will be discussed in Sec. III A.
Sec. II D presents yet another approach allowing even
more flexibility.

Before proceeding, we briefly pause to note another
connection between the PT dimer HamiltonianHPT and
the DPA dynamical matrix MDPA: they are are both
pseudo-Hermitian matrices. By definition, a pseudo-
Hermitian matrix is isospectral with its Hermitian con-
jugate, so that

H† = ηHη−1, (12)

where η is Hermitian and invertible [31]. It is easy
to see that the dynamical matrix of a generic multi-
mode bosonic parametric amplifier system is pseudo-
Hermitian; this was recently explicitly pointed out by
Lieu [24] (see also Appendix A). This connection is how-
ever of limited use for our problem: while a given PT -
symmetric Hamiltonian is always pseudo-Hermitian, it
is not necessarily unitarily equivalent to the dynamical
matrix of some quantum bosonic system having the same
number of modes (see Appendix E).

C. “Phase transitions”, exceptional points and
conserved quantities

A consequence of the above mapping is that the so-
called PT symmetry breaking phase transition in HPT
is equivalent to the threshold transition in a parametric
amplifier. Recall that HPT exhibits a transition in the
eigenvectors and eigenvalues as a function of g; this is re-
ferred to as the “spontaneous breaking of PT symmetry”
[32]. The transition occurs at g = γ/2 ≡ gc, i.e. the point
at which HPT has an exceptional point. When g > gc,
one is in the PT -unbroken phase. HPT has purely real
eigenvalues, and its right eigenvectors ~r± are delocalized
(i.e. their amplitudes in each mode are equal) as

~r± =
1√
2

(
1,−ie±iα

)T
, (13)

with α = arccos (γ/2g). In contrast, when g is reduced
below gc, one is in the PT -broken phase. HPT has purely
imaginary eigenvalues, and the eigenvectors now exhibit
localization.

The above behaviour is equivalent to the threshold be-
haviour of a detuned DPA. For |δ| > ν, the parametric
drive is too non-resonant to cause any instability, and
the system has purely oscillatory dynamics (as it would
if ν = 0). In contrast, when |δ| is reduced below ν, one
crosses the threshold for parametric instability. One now
has exponential decay and growth, which (as discussed)
corresponds to the squeezing / anti-squeezing of canon-
ically conjugate quadratures. The effective localization
of the eigenvectors in this regime corresponds to the fact
that the amplified quadrature is predominantly q̂, while
the squeezed quadrature is predominantly p̂.

Finally, consider the case where one tunes δ = ν and
is thus exactly at the EP. The DPA Hamiltonian in this
case is:

ĤDPA =
ν

2

(
e−iπ/4â+ eiπ/4â†

)2

≡ νQ̂2. (14)

The Hermitian quadrature operator Q̂ is a conserved
quantity, and thus ĤDPA is said to possess a quantum
non-demolition (QND) structure. This structure is di-
rectly responsible for the lack of any oscillatory dynam-
ics. The co-existence of exceptional points and conserved
QND quadrature operators is not just limited to this
simple example: it is a generic feature in particle non-
conserving bosonic Hamiltonians. For example, in Ap-
pendix F, we discuss a 3-mode system that can be tuned
to a third-order EP; this coincides with it having two
conserved QND quadrature operators.

D. Mapping for more general two mode
non-Hermitian Hamiltonian

We now discuss a more general approach for realiz-
ing non-Hermitian two-mode dynamics in dissipation-
free quantum systems. Unlike the mapping to a DPA
discussed in Sec. II B, this alternate method does not
require a PT -symmetric non-Hermitian Hamiltonian H,
and does not place restrictions on the phases of mode am-
plitudes. Our approach adapts the concept of quantum-
mechanics free subsystems (QMFS) introduced by Tsang
and Caves [33]: by introducing extra bosonic modes, one
can have a commuting set of operators with arbitrary
(possibly non-Hermitian) dynamics. As all relevant op-
erators commute, there is no need to add noise terms.
While QMFS are conventionally discussed and utilized
for quantum back-action evasion [33–37], we show here
that they are also a powerful tool for realizing effective
non-Hermitian quantum dynamics in a dissipationless
setting.

Consider a two-mode non-Hermitian system where PT
is explicitly broken by the addition of a detuning term ω:

Hω =
(
ω + i

γ

2

)
σz + gσx. (15)
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This Hamiltonian is not unitarily equivalent to a PT
system (c.f. Eq. (5)), and thus its dynamics cannot be
realized by a DPA using the mapping of Sec. II B.

As usual, the goal is to have a quantum system whose
Heisenberg equations of motion are governed byHω with-
out any extra added quantum noise terms, i.e.

i
d

dt

(
ẑ1(t)
ẑ2(t)

)
= Hω

(
ẑ1(t)
ẑ2(t)

)
. (16)

The operators ẑj should play the analogous role of the
mode amplitudes in the classical coupled-mode equations
Eq. (2), and hence should encode two complex degrees
of freedom. As discussed, the obvious choice where ẑj
represent canonical annihilation operators of two bosonic
modes does not work: the resulting dynamics would not
in general preserve canonical commutation relations.

Clearly, a simple solution would be to use operators ẑj
where for all j, j′

[ẑj , ẑ
†
j′ ] = [ẑj , ẑj′ ] = 0. (17)

As all operators commute, there would be no additional
quantum constraints on Eq. (16). Throughout this pa-
per, we will use the term pseudo-modes to denote a set of

fully commuting operators ẑj , ẑ
†
j that obey some desired

non-Hermitian dynamics. While these pseudo-mode op-
erators are not canonical bosonic annihilation / creation
operators, they can play the role of mode amplitudes in
the classical coupled mode theory.

For our two-mode problem, we can construct appro-
priate pseudo-modes by considering a system of four
canonical bosonic modes, with annihilation operators

â1, â2, b̂1, b̂2. Each mode can be written in terms of Her-
mitian quadrature operators (j = 1, 2):

âj = 1√
2

(x̂a,j + ip̂a,j) , (18)

b̂j = 1√
2

(x̂b,j + ip̂b,j) . (19)

One could now also define collective quadrature operators
in the standard manner:

x̂±,j =
1√
2

(x̂a,j ± x̂b,j) , (20a)

p̂±,j =
1√
2

(p̂a,j ± p̂b,j) . (20b)

These satisfy standard canonical commutation relations,
namely [x̂±,j , p̂±,j′ ] = iδjj′ , [x̂±,j , x̂∓,j′ ] = [p̂±,j , p̂∓,j′ ] =
[x̂±,j , p̂∓,j′ ] = 0. Note that all + collective quadrature
operators commute with all − operators.

We can now construct non-Hermitian pseudo-mode op-
erators ẑj with the desired properties by building them
out of a fully commuting set of four collective quadrature
operators. While there are many possible choices, we will
use:

ẑj = x̂+,j + ip̂−,j = âj + b̂†j . (21)

Eq. (17) is thus satisfied: we have two complex degrees
of freedom where there are no constraints from commu-
tation relations.

All that remains is to construct a physical (Hermitian)
Hamiltonian where the four collective quadratures of in-
terest are dynamically coupled as per Eq. (16). This can
be accomplished using

ĤωPA = ω
(
â†1â1 − â†2â2 + b̂†2b̂2 − b̂

†
1b̂1

)
+
[
g
(
â†1â2 − b̂†1b̂2

)
+ i

γ

2

(
â†1b̂
†
1 − â

†
2b̂
†
2

)
+ h.c.

]
. (22)

This represents a system of two tunnel-coupled non-
degenerate parametric amplifiers. One can verify that
the Heisenberg equations of motion for collective quadra-
tures generated by the Hermitian Hamiltonian ĤωPA cor-
respond to Eq. (16), with the pseudo-modes defined in
Eq. (21). We thus have our desired mapping.

Note that with this choice, the collective quadratures
that do not appear in the definition of ẑj can be used to
construct another pair of pseudo-modes:

ˆ̃zj = x̂−,j + ip̂+,j . (23)

The dynamics does not couple ẑ and ˆ̃z operators; using
Eq. (22), the latter satisfy:

i
d

dt

(
ˆ̃z1(t)
ˆ̃z2(t)

)
= H†ω

(
ˆ̃z1(t)
ˆ̃z2(t)

)
. (24)

Thus, in doubling the degrees of freedom, we have con-
structed two sets of commuting “pseudo-mode” opera-
tors; the first set evolves according to Hω, the second to
H†ω.

It is instructive to also consider the structure of
the Heisenberg equations of motion when written in
terms of the true canonical mode annihilation operators;
the desired non-Hermitian structure is present there as
well. Letting |v̂2〉 denote the four-vector of operators

(â1, â2, b̂
†
1, b̂
†
2)T , the Heisenberg equations of motion gen-

erated by ĤωPA have the general form

i
d

dt
|v̂2〉 =MωPA |v̂2〉 . (25)

Here MωPA is the system’s mode-basis dynamical ma-
trix; it is unitarily equivalent to a PT -symmetric matrix:

HωPT =

(
Hω 0
0 H∗ω

)
= U4MωPAU†4 , (26)

U4 = 1√
2

(
I2 −I2
I2 I2

)
. (27)

This provides another way to interpret our mapping: by
doubling the degrees of freedom and introducing a mirror
system of the detuned PT dimer Hω in Eq. (15) which
evolves under H∗ω = H†ω, we effectively restore PT sym-
metry for the entire, composite system, allowing a map-
ping to a parametrically-driven bosonic Hamiltonian.
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We end this section by stressing that our construction
using four modes is not limited to the particular non-
Hermitian HamiltonianHω, but can be used to realize the
dynamics of any non-Hermitian two-mode Hamiltonian
H. One again represents the quasi-mode operators ẑ1

and ẑ2 using Eqs. (21). One obtains the desired dynamics
in Eq. (16) (with Hω replaced by H) if the Hermitian
Hamiltonian describing the four mode system is taken to
be:

ĤQMFS =
1

2

2∑
j,j′=1

[(
H+H†

)
jj′

(
â†j âj′ − b̂j b̂

†
j′

)
+
(
H−H†

)
jj′

(
â†j b̂
†
j′ − âj′ b̂j

)]
. (28)

We see that the particle-number conserving terms are
associated with the Hermitian part of H, whereas the
non-Hermitian parts of H are associated with particle-
nonconserving two-photon driving terms.

III. DISSIPATIONLESS NON-HERMITIAN
LATTICE DYNAMICS

We now show that the approaches in the previous sec-
tion for realizing effective non-Hermitian dynamics in
driven, dissipation-free quantum bosonic systems can be
generalized to a multi-mode lattice setting. We will focus
on approach where the number of modes in the original
non-Hermtian system and the bosonic system are iden-
tical; this will be accomplished by using non-degenerate
parametric driving (where pairs of photons are added to
distinct modes).

A. Standard non-Hermitian PT -symmetric
tight-binding chain

We start with a simple, but paradigmatic case: a
one-dimensional, nearest-neighbour tight-binding chain
with on-site gain/loss terms that respects PT sym-
metry. We refer to this as a “standard” PT tight-
binding chain. Non-Hermitian lattice models of this form
have been the subject of many recent studies (see, e.g.,
[14, 15, 17, 24, 38–40]). We show that it is possible to
realize identical dynamics in a Hermitian driven bosonic
system, without any need to introduce dissipation or dou-
ble the number of degrees of freedom. We also show that
this approach can be generalized to a wider class of mod-
els.

We consider a 1D lattice of coupled modes having 2N
sites, labelled (from left to right) by j ∈ {−N,−N +
1, ...,−1, 1, ..., N − 1, N}. We will also (as is common)
describe our non-Hermitian Hamiltonian using second-
quantized notation, with ĉj being the mode annihilation
operator on site j. The non-Hermitian lattice Hamilto-

FIG. 2: Illustration of a 2N -mode nearest-neighbor tight-
binding PT -symmetric system, whose Hamiltonian Ĥtb is
given in Eq. (32). Insisting on PT symmetry, and relabelling

âj → ĉ−j and b̂j → ĉj , the figure also represents the tight-

binding Hamiltonian Ĥtb in Eq. (29). There always exists
unitary correspondence between a system of this form and
a Hermitian parametrically-driven bosonic system having an
identical number of modes (see discussion in main text).

nian then has the form:

Ĥtb =

−1∑
j=−N+1

(
tj ĉ
†
j ĉj−1 + h.c.

)
+
(
t0ĉ
†
1ĉ−1 + h.c.

)

+

N−1∑
j=1

(
tj ĉ
†
j+1ĉj + h.c.

)
+ i
∑
j

γj
2
ĉ†j ĉj . (29)

The first three terms represents Hermitian hopping on
the lattice, with hopping strength tj on each bond (which
we take to be real without loss of generality). The last,
non-Hermitian term describes on-site gain/loss on each
site, with a corresponding rate γj/2.

We now constrain this model by insisting that it be
PT -symmetric. P is defined as the real-space operation
which maps ĉj to ĉ−j , and T is defined as before as sim-
ple complex conjugation of the Hamiltonian matrix. PT
symmetry thus requires:

tj =t−j , (30a)

−γj =γ−j . (30b)

Note that the class of models of this form includes
the widely-studied non-Hermitian PT -symmetric Su-
Schrieffer-Heeger (SSH) model [38, 39, 41, 42]. This
would correspond to a dimerized structure for the hop-

pings and loss: tj = t+ (−)
j
t′ and γj = (−)

j
γ0.

It will be useful to re-write the Hamiltonian in a more
structured form by relabelling the mode operators via

ĉ−j → âj , ĉj → b̂j (j = 1, 2, · · · , N). (31)

As depicted in Fig. 2, the Hamiltonian becomes

Ĥtb =

N∑
j,j′=1

[
Ωjj′

(
â†j âj′ + b̂†j b̂j′

)
+iΓjj′

(
â†j âj′ − b̂

†
j b̂j′
)

+ Jjj′ â
†
j b̂j′ + J̃jj′ b̂

†
j âj′

]
, (32)
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where Ω,Γ, J and J̃ are all N × N coefficient matrices
with entries given by

Ωll′ = tlδl′,l+1 + tl′δl′,l−1, (33a)

Γll′ = γlδl,l′/2, (33b)

Jll′ = t0δl,1δl′,1 = J̃ll′ . (33c)

In this new basis, P is simply the operation which inter-
changes aj and bj (j = 1, 2, · · · , N).

We now proceed in analogy to our treatment of the
PT dimer in Sec. II B. We first obtain the equations of
motion for the aj and bj modes amplitudes αj and βj ,

generated by Ĥtb as

i∂t

(
~α
~β

)
= Htb

(
~α
~β

)
, (34)

with the resulting non-Hermitian dynamical matrix given
by

Htb =

(
Ω + iΓ J

J̃ Ω− iΓ

)
, (35)

with J̃ = J .
The block structure of the matrix Htb (corresponding

to aj/bj modes) allows us to make a simple rotation Utb

which moves the non-Hermitian gain/loss terms to the
off-diagonal blocks:

Mtb = UtbHtbU†tb =

(
Ω + J iΓ
iΓ Ω− J

)
, (36)

Utb = 1√
2

(
IN IN
IN −IN

)
. (37)

In analogy to the two-mode problem in Sec. II B, the
rotated matrix Mtb now has the form of a dynamical
matrix of a parametrically driven bosonic system with
2N sites. However, unlike the mapping in Sec. II B, the
relevant system here involves non-degenerate parametric
drives (i.e. two-photon driving terms that involve distinct
modes). The dynamical matrix Mtb above corresponds
to the Hermitian bosonic Hamiltonian

ĤNDPA =

N∑
j,j′

[
Ωjj′

(
â†j âj′ − b̂

†
j b̂j′
)

+Jjj′
(
â†j âj′ + b̂†j b̂j′

)
+ iΓjj′

(
â†j b̂
†
j′ − b̂j âj′

)]
.

(38)

To be explicit, the Heisenberg equations of motion cor-
responding to this Hermitian Hamiltonian can be com-
pactly written as

i∂t |v̂N 〉 =Mtb |v̂N 〉 , (39a)

where |v̂N 〉 = (â1, â2, · · · , âN , b̂†1, b̂
†
2, · · · , b̂

†
N )T . Thus, we

see that the dynamics of the general PT -symmetric non-
Hermitian gain-loss lattice model in Eq. (32) can be real-
ized by the non-dissipative, Hermitian quantum Hamil-
tonian in Eq. (38). As before, the exponential growth

and decay that could result from the gain and loss terms
are mapped onto a unitary squeezing operations in the
driven quantum model (in this case two-mode squeezing
operations).

With this explicit non-degenerate parametric-amplifier
(NDPA) Hamiltonian ĤNDPA in hand, it is interesting to
return to the simple PT dimer discussed in Sec. II B.
This corresponds to the case N = 1 of the 1D PT chain
considered in this section. In this case, the matrix Ω
becomes an overall constant in the non-Hermtian Hamil-
tonian Ĥtb and can be ignored, and our mapping shows
that the dynamics is equivalent to a simple two-mode
NDPA in Eq. (38). We stress that this is a distinct map-
ping from that in Sec. II B, which involves a single-mode
DPA. By having two modes here, there is no constraint
on the phases of mode amplitudes, as the number of com-
plex degrees of freedom is the same as the original non-
Hermitian coupled-mode problem. As we will show in the
next section, this lack of constraints remains the same in
the general multi-mode version of the problem as well.

B. Generalized non-Hermitian PT -symmetric
tight-binding chain

We now consider more general PT -symmetric non-
Hermitian lattice models, which could be in higher di-
mensions, have long range hopping terms, and have non-
local non-Hermitian terms. The unitary mapping Utb de-
rived above is also valid for a wide class of these general-
ized models. Note first that a generic PT -symmetric non-
Hermitian Hamiltonian (in arbitrary dimensions, with
2N sites) can always be written in the form given in
Eq. (32), where PT symmetry requires that the coeffi-

cient matrices Ω,Γ are real, as well as J̃ = J∗. Our
mapping to a Hermitian parametric amplifier problem
(as per Eq. (38)) remains valid as long as the coefficient
matrices Ω, Γ and J are all real, symmetric matrices.
This encompasses a much broader class of models than
the 1D nearest neighbour, imaginary potential model de-
scribed by Eqs. (33).

Among the extra kinds of terms that can be accommo-
dated in the starting non-Hermitian PT lattice model
are:

• real detunings of aj and bj modes, given by real,
diagonal matrix elements of Ω;

• real, coherent (i.e. Hermitian) coupling between
any two aj and aj′ (or bj and bj′) modes with a
completely real coupling strength, represented by
off-diagonal matrix elements of Ω;

• real, coherent coupling between any two aj and bj′
modes with a completely real coupling strength,
represented by corresponding matrix elements of
J ;
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• imaginary, dissipative (i.e. non-Hermitian) cou-
plings between any two different modes, repre-
sented by off-diagonal matrix elements of Γ.

As an example, our mapping to a NDPA system re-
mains valid for a 2D tight-binding PT lattice, as long as
the coherent couplings are purely real, and the dissipa-
tive couplings are purely imaginary. Conversely, for non-
Hermitian tight-binding models where hopping phases
encode non-trivial fluxes, we may construct an example
where the mapping does not work. Necessary conditions
for such a mapping to exist are presented in Appendix C,
while simple four mode systems where the correspon-
dence fails are discussed in Appendix E.

C. Mapping for arbitrary multi-mode
non-Hermitian Hamiltonians

In Sec. III A and III B, we described a general mapping
between a wide class of non-Hermitian, PT symmetric
lattice models and the dynamical matrix of a Hermi-
tian, parametrically driven bosonic system. Crucially,
this mapping preserved the number of modes. As dis-
cussed, it cannot be applied to all possible PT lattice
models, nor can it be used for systems with broken PT .

In this section, we show how the general QMFS strat-
egy introduced in Sec. II D can be generalized to map an
arbitrary non-Hermitian lattice model to a Hermitian,
parametrically-driven bosonic problem. While more gen-
eral, this strategy comes with a price: the driven bosonic
system will have twice the number of modes as in the
original non-Hermitian Hamiltonian.

The approach is to generalize the construction pre-
sented in Eq. (28) of Sec. II D to a general N -mode
non-Hermitian Hamiltonian HN . We will use a 2N -
mode bosonic system, with canonical quadrature opera-
tors x̂±,j and p̂±,j for j = 1, 2, . . . , N . The only nonzero
commutators between the quadratures are

[x̂±,j , p̂±,j′ ] = iδjj′ , (40)

for j, j′ = 1, 2, . . . , N .
To implement the general QMFS strategy, we wish to

construct a Hamiltonian where a set of fully commuting
collective quadratures has a linear dynamics correspond-
ing to HN . Following the convention for the two-mode
case in Eqs. (21,23), we first introduce two sets of pseudo-
modes ẑ±,j (j = 1, 2, . . . , N) as

ẑ±,j = x̂±,j + ip̂∓,j . (41)

Mirroring the strategy of Sec. II D, we want a Her-
mitian bosonic Hamiltonian that yields the equations of
motion:

i∂t~̂z+ = HN ~̂z+, (42a)

i∂t~̂z− = H†N ~̂z−, (42b)

where we define N -vectors ~̂z± consisting of the pseudo-
mode operators ẑ±,j , respectively, for notational conve-
nience. As before, the desired dynamics will only couple
mutually commuting quadratures. It is straightforward
to prove that the two equations above generate a dynam-
ics that preserve all canonical commutation relations, i.e.
they generate a symplectic transformation of the bosonic
system (see Appendix G 2 for details). Further, one can
show that this dynamics is generated by the Hermitian
2N -mode Hamiltonian

ĤQMFS,multi. =
1

2

N∑
j,j′=1

[(
HN +H†N

)
jj′

(
â†j âj′ − b̂j b̂

†
j′

)
+
(
HN −H†N

)
jj′

(
â†j b̂
†
j′ − âj′ b̂j

)]
, (43)

where we define the bosonic mode operators in parallel
to Eq. (21) as

âj ± b̂†j = x̂±,j + ip̂∓,j = ẑ±,j . (44)

The approach here is of course directly applicable to
the case where the non-Hermitian HN describes a lattice
model in real space. Our mapping doubles the number of
modes: for every lattice site in the original model, there

are now two bosonic modes âj , b̂j . Note however from
Eq. (43) that our mapping is fully local. For every band

En(~k) of HN , the closed-form dynamics of the âj and b̂†j
operators will correspondingly contribute two indepen-

dent bands En(~k) and E∗n(~k) in the bosonic problem; this
follows directly from Eqs. (42a)-(42b). We stress that
this doubled band structure only solves half of the entire
BdG problem of the bosonic Hamiltonian; the full band
structure will also include contributions from dynamics

of the b̂j and â†j operators, which can also be obtained

from Eqs. (42a)-(42b) as the −En(~k) and −E∗n(~k) bands.

IV. APPLICATIONS OF DISSIPATION-FREE
NON-HERMITIAN QUANTUM DYNAMICS

In this section, we discuss how the mappings intro-
duced in the previous sections can be used to realize var-
ious well-known non-Hermitian effects in dissipation-free,
quantum settings.

A. Exceptional point sensing

We first consider sensing methods that exploit the
strong sensitivity of mode eigenvalues of a PT -symmetric
non-Hermitian system that is tuned to the vicinity of an
exceptional point (EP) [15, 17]. The most common ver-
sion of this scheme involves a simple gain-loss PT dimer
(c.f. Sec. II A) with an effective non-Hermitian Hamilto-
nian

H [ε] = HPT = i
γ

2
σz + (g0 + ε)σx. (45)
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The goal is to estimate the small parameter ε. If the
unperturbed Hamiltonian H [0] is tuned to the EP by
choosing g0 = γ/2 = gc, then the perturbation ε induces
an eigenvalue splitting that scales as

√
ε, i.e. from Eq. (3),

we have:

|λ+ − λ−| ' 2
√

2g0ε. (46)

For small ε � g0, this is parametrically larger than a
conventional mode splitting in a Hermitian system, which
would be proportional to ε.

To exploit this eigenvalue sensitivity for measurement,
it was suggested in Refs. [15, 17] to look at the reflec-
tion of a probe tone applied to the system at frequency
ωp. The frequency-dependent reflection coefficient R[ωp]
would then reflect the parametric mode-splitting of the
eigenvalues. While the advantage of this approach seems
obvious, recent studies have shown that the unavoid-
able noise associated with incoherent gain and loss in the
quantum regime can limit any enhancement of signal-to-
noise ratio [18, 19].

Here, we show an analogous EP sensing scheme can
be implemented in a parametric amplifier setup, without
having to introduce any incoherent gain and loss, and cor-
responding noise. While there are many ways to proceed,
the simplest is to use the unitary mapping introduced in
Sec. II B that maps the PT dimer in Eq. (45) to a single-
mode, degenerate parametric amplifier (DPA). Letting
δ = g0 and ν = γ/2, the Hermitian DPA Hamiltonian
corresponding to H[ε] is then given by:

ĤDPA [ε] = (δ + ε) â†â+
ν

2

(
iâ†2 + h.c.

)
. (47)

As usual, the tunneling in H[ε] becomes a detuning term,
and the gain/loss terms in H[ε] become a two-photon
drive. We stress that the dynamical matrix of this Her-
mitian Hamiltonian is unitarily equivalent to H[ε], and
has the same eigenvalues. Note that the perturbation
ε is now a standard dispersive coupling, something that
arises in many measurement contexts. In the case where
ε corresponds to the state of a qubit, this exact setup
was realized in a recent superconducting quantum cir-
cuit experiment (though operated in a different regime)
[43].

We now mimic the EP sensing protocol, by first tuning
δ = ν so that the unperturbed system is at the EP. To
probe the ε-induced mode splitting, we will again look
at the reflection of a probe tone applied at frequency ωp.
We couple the cavity â to an input-output waveguide (or
transmission line), with a coupling rate κext. The total
decay rate of the cavity is given by

κ = κext + κi, (48)

where κi denotes intrinsic damping rate of the cavity.
Here we assume the cavity is in the over-coupled regime,
and the cavity linewdith is just given by the external
coupling rate κ = κext. As we will show later, the sens-
ing signal is robust to unwanted loss (namely intrinsic
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FIG. 3: Exceptional-point sensing with a degenerate para-
metric amplifier (DPA). A detuned DPA is tuned to an EP
by matching the pump detuning and parametric drive ampli-
tudes. Probe light of frequency ωp (in the rotating frame)
is sent into the cavity via waveguide (coupling rate κext).
Plotted is the frequency-dependent reflected flux of the probe
tone. Unless stated differently below, we consider the over-
coupled cavity regime so that the cavity linewidth, given by
κ = κext + κi, can be taken as κ = κext . Dark cyan solid
line: reflected flux for the unperturbed system, showing a
single peak. Orange dashed line: reflected flux where the sys-
tem is perturbed by shifting the cavity frequency an amount
ε = 0.7κ (c.f. Eq. (47)). One now has two distinct peaks, with
a splitting that scales as

√
ε. Green dotted line: same condi-

tions as the orange dashed curve except for nonzero intrinsic
cavity loss κi = κext, so that the cavity operates in the crit-
ical coupling regime κext = κ/2. Note that peak splitting is
robust in the presence of unwanted cavity loss. Parameters
correspond to a parametric drive amplitude ν/κ = 12.5, and
pump detuning δ = ν originally set to the EP.

damping of the cavity) for practical parameters. Using
standard input-output theory [44], the Heisenberg equa-
tion of motion of â is

d

dt
â =− iδâ+ νâ† − κ

2
â−
√
κ
(
αine

−iωpt + ζ̂in(t)
)
,

(49a)

where αin is the amplitude of the probe tone, and ζ̂in(t)
describes vacuum noise entering through the waveguide.
Note that we are working in a rotating frame determined
by the frequency of the pump field used to realize the
parametric interaction.

The introduction of the waveguide shifts the eigen-
values of the dynamical matrix by a constant, but the
system still possesses an EP. We pick the pump de-
tuning δ = ν ≡ δc so that the unperturbed system is
tuned to this EP. We then calculate the total output flux
Pout (ωp) (including both the reflected signal and idler
beams), as a function of the probe frequency ωp, to see
how the ε-induced mode splitting impacts the light leav-
ing the cavity. Using the standard input-output relation



10

âout = âin +
√
κâ [44], the output flux is

Pout (ωp)

|αin|2
= 1 +

2κ2ν2

(f [ωp])
2

+ κ2 (δ2 − ν2)
, (50)

where f [ωp] = ω2
p+(κ/2)

2−δ2 +ν2. Note that we do not
include the contribution from amplified vacuum fluctua-
tions here, as this yields a background that is indepen-
dent of both ωp and αin. In the limit of a weak coupling
to the waveguide, we will observe narrow peak(s) in Pout

that correspond to the dynamical matrix eigenvalues λ±,
see Fig. 3. For ε = 0, there is just a single peak, whereas
for non-zero ε there are two peaks, with the expected
splitting |λ+ − λ−| ' 2

√
2εδc � ε (see also Eq. (46)). In

the presence of intrinsic cavity loss, as shown in Fig. 3
the peak structure still survives, although the reflected
power becomes weaker.

We thus see that the EP sensing scheme of Refs. [15, 17]
can be directly implemented in a parametric-amplifier
setup, without any need for incoherent gain and loss.
We leave a full analysis of the noise properties and ul-
timate sensitivity of this scheme (both in the linear and
nonlinear response regimes) to a future work. Note that
the general analysis in Ref. [18] of linear-response EP
sensing assumed a Hamiltonian that conserves particle
number, and thus does not apply directly to the DPA
setup described here. Also note that higher-order ex-
ceptional points have been discussed in the context of
sensing; these too can be realized without dissipation us-
ing parametrically-driven bosonic modes (see Appendix
F).

B. Quasi-adiabatic evolution and chiral mode
switching

Another striking effect associated with exceptional
points involves the chirality of non-adiabatic effects in
non-Hermitian systems whose parameters are cyclically
varied [2–10]. The paradigmatic system is the detuned
gain-loss dimer Hω in Eq. (15), where now the tunneling
g and detuning ω are made time-dependent:

Hω(t) =
(
ω(t) + i

γ

2

)
σz + g(t)σx. (51)

Consider a cyclic time-variation of parameters, where
(g (t) , ω (t)) follow a closed path in parameter space that
encloses one of the two EPs at (gc = ±γ/2, ω = 0) (see
inset in Fig.4a). Non-adiabatic effects in such a setup de-
pend crucially on the direction one traverses the path in
parameter space: for one direction, there is no switching
between adiabatic eigenmodes, whereas for the other di-
rection, there is appreciable switching. Appendix H gives
a basic introduction to this phenomena; see Ref. [8] for a
more comprehensive discussion.

Recent experiments have probed this EP encircling
physics in classical settings [9, 10], and it has been sug-
gested that such effects could be useful in quantum set-
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FIG. 4: Chiral nature of quasi-adiabatic dynamics in a four-
mode Hermitian bosonic system (c.f. Eq. (22)) whose dynam-
ics mimics the gain-loss dimer in Eq. (51). In each plot, g(t)
and ω(t) are varied along a circle in parameter space (see in-
sets). (a) Evolution of instantaneous eigenmode amplitudes
|〈ĉ± (t)〉| (c.f. Eq. (55)), for a counter-clockwise (CCW) pa-
rameter variation. (b) Same, but now for a clockwise (CW)
variation. In both cases, the initial state is a coherent state
with 〈ĉ+(0)〉 = 1, 〈ĉ−(0)〉 = 0. For the CCW evolution, one
sees an adiabatic evolution (the + mode remains dominant),
whereas for CW evolution, there is a non-adiabatic switching,
and the − mode is dominant at the end of the protocol. For
both plots γT = 20 and ε/γ = 0.1.

tings [4]. As usual though, the unavoidable noise as-
sociated with incoherent gain and loss in quantum sys-
tems would be problematic. We show here how the map-
ping introduced in Sec. II D to a dissipation-free driven
bosonic system allows one to realize this chiral switching
behaviour without any dissipation or noise. As a con-
crete quantum application of our mapping, we show how
the chiral switching behaviour impacts the evolution of
entanglement in our system.

As discussed in Sec. II D, we can realize the dynam-
ics of Hω(t) in Eq. (51) without dissipation using a
four-mode, parametrically-driven bosonic system with a
Hamiltonian ĤωPA(t) given by Eq. (22). First, consider
the non-Hermitian system described byHω(t). The time-
evolution matrix Uω(t) corresponding to this Hamilto-
nian relates final and initial mode amplitudes, and is de-
termined by

i∂tUω (t) = Hω (t)Uω (t) , Uω (t = 0) = 1. (52)

Our Hermitian, bosonic four mode system has been
constructed so that the quasi-mode operators ẑ1, ẑ2 de-
fined in Eq. (21) evolve exactly like amplitudes in the
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non-Hermitian system. This implies that(
ẑ1(t)
ẑ2(t)

)
= Uω (t) ·

(
ẑ1(0)
ẑ2(0)

)
, (53)

where we stress that these are operator equations. Thus,
the chiral switching behaviour encoded in Uω(t) will di-
rectly manifest itself in the quantum bosonic system,
without any need to inject noise to preserve commuta-
tion relations.

The chiral switching behaviour is best understood by
analyzing the dynamics in terms of the instantaneous
eigemodes ~r±(t) of Hω(t). These are defined via

Hω (t)~r± (t) = λ± (t)~r± (t), (54)

where explicit forms for the eigenmodes and eigenvalues
λ±(t) are given Eq. (H2) of Appendix H. Classically, we
could describe the instantaneous state of our system in
terms of the amplitudes c±(t) of the two eigenmodes. In
our quantum parametric amplifier analogue, these ampli-
tudes become operators:

ĉ±(t) = ~rT±(t) · ~̂z(t), (55)

Not surprisingly, the average values of these operators
behave exactly as the corresponding amplitudes in the
classical setup. Preparing a particular initial condition
would involve displacing the four bosonic modes appro-
priately. In Fig. 4, we show the evolution of the average
instantaneous mode amplitudes |〈ĉ± (t)〉|, for evolution
along a circular path in the (g, ω) parameter space that
encircles an EP. In both cases, the initial state is cho-
sen so that only the + eigenmode is initially excited,

i.e. 〈 ~̂z(t = 0) 〉 = ~r+(t = 0). As can be seen from the fig-
ure, for evolution corresponding to a counter-clockwise
(CCW) encircling, the amplitudes of the pseudo-modes
correspond to predominantly exciting the instantaneous
+ eigenmode. In contrast, for a clockwise encircling, one
sees that there is a switching: at the final time T , the
pseudo-mode amplitudes correspond to predominantly
exciting the − instantaneous eigenmode. Note that be-
cause of the EP structure in our system, the instanta-
neous eigenmodes at the final time t = T are flipped
versions of those at t = 0, i.e. ~r±(t = T ) = ~r∓(t = 0) [8].

A more interesting situation is to consider the evo-
lution of a general quantum state for either a CW or
CCW parameter evolution. In Appendix I, we derive the
quantum unitary transformations describing both these
cases, and discuss them using the Bloch-Messiah decom-
position [45]. This allows us to view each transforma-
tion as the product of two beam-splitter operations, in-
terspersed with a squeezing operation. Interestingly, we
find that both the CW and CCW complete encirclings
are described by the same squeezing operation; the chi-
rality only appears in the initial and final beam-splitter
operations.

To see a direct consequence of this, imagine a quan-
tum state with non-zero photon number, but where
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FIG. 5: Entanglement evolution during EP encircling. We
consider bipartite entanglement in a Hermitian four-mode
bosonic system whose dynamics corresponds to the detuned
gain-loss dimer described by Hω(t) (c.f. Eq. (51)). The pa-
rameters (g, ω) follow a complete circle in parameter space.
Entanglement (as quantified by the logarithmic negativity
EN ) between the a1, b1 modes and a2, b2 modes is plotted
as a function of time; the two curves in each panel are for
a clockwise (CW) versus counterclockwise (CCW) parameter
variation. The center of the circular trajectory (g = g0, ω) is
different for each panel (as indicated). The top panel corre-
sponds to a trajectory centered on the exceptional point at
g0 = gc ≡ γ/2, whereas in the subsequent panels, the tra-
jectory is displaced to the right. One sees that entanglement
generation at t = T after a full cycle is manifestly chiral
when the trajectory encircles the EP, while this is lost when
the trajectory is far from the EP. The initial state is chosen
to asymmetrically populate the + eigenmode (see main text),
and γT = 20, ε/γ = 0.1.

〈ẑ1〉 = 〈ẑ2〉 = 0. Classically, we could imagine at t = 0
stochastically preparing the system in the + eigenmode
with a random phase; the simplest choice would be to
take c+(0) to be a Gaussian random variable (while c−(0)
is set to zero). Using our equivalent quantum parametric

amplifier setup ĤωPA(t), we could consider an analogous
initial condition. In particular, we start the quantum
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four-mode system in a zero-mean Gaussian pure state
whose covariance matrix at t = 0 predominantly pop-
ulates the + eigenmode. By this, we mean an initial

state where 〈ĉ†+ĉ+〉 � 〈ĉ
†
−ĉ−〉. This state will necessarily

have entanglement correlations between the 1 subsystem
(formed by modes a1, b1) and the 2 subsystem (formed
by modes a2, b2). We can now ask how this entanglement
evolves in time as we cyclically vary g and ω as before.
We stress that we are always comparing the final values
of the entanglement (i.e. at t = T ) for the CW versus
CCW encirclings. This parallels what is done in the clas-
sical case, when one compares the mode occupancies at
the end of the two protocols.

In Fig. 5, we show the evolution of the 1-2 subsystem
entanglement (as quantified by the logarithmic negativity
[46, 47]), for various circular parameter variations. In
each case, we start with zero-mean Gaussian states of
our four bosonic modes with the same amount of initial
entanglement. This initial state is chosen to have an
average total photon number of approximately 8, and an
asymmetry quantified by

〈ĉ†+ĉ+〉
〈ĉ†−ĉ−〉

' 102

|~r+ (t = 0)|2 · |~r− (t = 0)|2
� 1. (56)

Further details and motivation for this choice are given
in App. I 4; our chosen state corresponds to e2λ0 = 10
in Eq. (I19). The two curves in each panel correspond
to CW and CCW traversal of the same circular path in
the (g, ω) parameter space. The first panel corresponds
to the same path as in Fig. 4; in the remaining panels,
we displace the path so that it eventually no longer en-
closes the EP. For paths enclosing the EP, we see that
the entanglement by the end of time evolution exhibits
a marked chiral behaviour: the amount of entanglement
at t = T depends crucially on the direction that the path
is traversed. This asymmetry gradually becomes negligi-
ble as we displace the circular path away from the EP.
The results here show that the chirality associated with
EP encircling can indeed have impliciations for quantum
dynamics (e.g. in determining the generation of entan-
glement).

C. Connecting topology in non-Hermitian systems
to Hermitian driven bosonic systems

As a final application, we discuss how our mappings
can be applied to non-Hermitian lattice models with
topologically non-trivial bands. There has been con-
siderable recent interest in studying such models, see
e.g. [24, 25, 38–40, 48–51]. Our mappings provide a route
for realizing these topological bands in fully Hermitian
bosonic systems, without any need to couple to exter-
nal dissipation. More specifically, in Ref. [52], a non-
Hermitian Chern number was introduced to characterize
bands in 2D non-Hermitian systems. Using our mapping,
it is straightforward to show that these Chern numbers

are equivalent to topological invariants that were intro-
duced earlier to characterize bands in Hermitian bosonic
systems with pairing terms [53, 54]; this is demonstrated
in Appendix J. Our discussion here complements recent
studies showing that the symmetry-based classification
of non-Hermitian Hamiltonians can also be applied to
anomalous bosonic systems [24, 50].

Despite the immense interest in non-Hermitian topol-
ogy, most work has focused on models that are topologi-
cal even if the non-Hermitian terms are set to zero (i.e. in
the absence of gain and loss). As discussed below, our
approach allows us to construct a model where this is no
longer true: non-trivial band topology only emerges in
the presence of non-zero gain and loss. We accomplish
this by constructing the non-Hermitian equivalent of a
recently-studied bosonic model where parametric driving
induces topology [54].

We consider a 2D Kagome lattice, where on each lat-
tice site we have a two-cavity PT -symmetric gain-loss
dimer (see Fig. 6). The system Hamiltonian will consist
of a purely Hermitian hopping terms coupling nearest
neighbour lattices, and purely local term which includes
non-Hermitian effects:

ĤKagome = Ĥhopping + Ĥlocal. (57)

We will use the composite index j = (j, s) = (j1, j2, s)
to label both the unit cell (j1, j2) and basis element
s = A,B,C of each lattice site. Further, we will use a
pseudospin ↑, ↓ to index each element of the cavity dimer
located at a given lattice site.

Letting ψ̂j =
(
âj,↑ âj,↓

)T
the onsite terms are

Ĥlocal =
∑
j

ψ̂†j (iνσz + ω0σx) ψ̂j. (58)

These local terms describe a PT dimer at each lattice
site, with tunneling amplitude ω0 and gain/loss rate ν.

The tunneling terms between cavities on nearest neigh-
bour lattice sites is described by the Hermitian Hamilto-
nian

Ĥhopping =
∑
〈j,j′〉

ψ†jJ [ss′]ψj′ (59)

where the hopping matrix elements depend on both sub-
lattice index and pseudo-spin:

J [ss′] =
J

2

(
eiϕss′

√
3σ0 + σx

)
(60)

ϕss′ =

{
+π

2 , ss′ = AB,BC,CA,
−π2 , ss′ = BA,CB,AC,

(61)

J is the overall hopping amplitude. We see that there are
hopping terms that both preserve and flip the pseudo spin
(i.e. a gain cavity on a given site can tunnel to either a
gain or loss cavity on a neighbouring site). Further, the
spin-conserving tunneling is complex, and thus encodes a
synthetic gauge field. The tunneling here can be viewed
as a generalized kind of synthetic spin-orbit coupling.



13

Consider first the properties of our system in the case
where there are no gain/loss terms (i.e. ν = 0), and the
Hamiltonian is Hermitian. In this case, the system has
no topologically non-trivial bands, as it is possible to
completely gauge away the hopping phases. To see this,
note that in this case σx on each lattice site commutes
with the Hamiltonian. It thus useful to use a local basis
of σx eigenstates:

âj,± =
1√
2

(âj,↑ ± âj,↓) , (62)

In this basis, the Hamiltonian decouples into two inde-
pendent tight-binding models

HKagome,± = ±

∑
j

ω0â
†
j,±âj,± +

∑
〈j,j′〉

Je±i
2ϕ
ss′
3 â†j,±âj′,±

 ,

(63)
with uniform onsite energies ±ω0 and nearest-neighbor
couplings ±J exp (∓i2ϕss′/3). We thus have two decou-
pled Kagome lattices, with the + (−) lattice have a syn-
thetic Aharonov-Bohm flux π (−π) in each triangular
plaquette. These fluxes do not break time-reversal sym-
metry, and can be eliminated by a local gauge transfor-
mation:

âj,B,± → â′j,B,± = e∓i
2π
3 âj,B,±, (64a)

âj,C,± → â′j,C,± = e∓i
4π
3 âj,C,±. (64b)

This results in a decoupled pair of time-reversal invariant,
topologically trivial Kagome models

Ĥ ′Kagome,± = ±

∑
j

ω0â
†
j,±âj,± −

∑
〈jj′〉

Jâ†j,±âj′,±

 .

(65)
If we now turn on the gain/loss parts of the Hamilto-

nian (i.e. make ν non-zero in Eq. (58)), it is no longer
possible to gauge away the hopping phases. At an in-
tuitive level, the non-Hermitian terms are off-diagonal
in the +/− basis used to write Eq. (65), and hence can
enable hopping processes that pick up non-trivial fluxes.

The topological properties of the resulting model can
be completely understood by mapping the system to
a Hermitian, parametrically-driven bosonic model hav-
ing a single bosonic mode on each lattice site (see Ap-
pendix K 1). As usual, the non-Hermitian gain/loss
terms are mapped to parametric driving terms, and the
dimer structure is mapped to the particle-hole structure
of the bosonic theory. The resulting bosonic theory is
equivalent to the parametrically driven Kagome lattice
mode studied by Peano et al in Ref. [54]. The model ex-
hibits topological bands and protected edge states when-
ever ν is non-zero. Since the mapping is fully local
in real space (two bosonic modes, with balanced gain
and loss, per lattice site), it thus follows that our non-
Hermitian PT model exhibits topological bands (with
non-zero Chern number) and edge states if and only if
there is non-zero gain loss. We thus have, as desired, a
model where topology is induced by gain/loss.

(a)

C

gain
loss

B

A

(b)

FIG. 6: Schematic of the PT Kagome model (c.f. Eq. (57)),
where the system is topologically non-trivial only with the
introduction of non-zero gain and loss. (a) Kagome lattice,
where each site (grey circle) is a gain-loss dimer. (b) Unit
cell.

V. CONCLUSIONS

In this paper we have given a thorough discussion of
how one can realize non-Hermitian dynamics without the
need to couple to external dissipation. We make use
of a simple but surprising fact: a Hermitian, quadratic
bosonic Hamiltonian that breaks particle number con-
servation necessarily gives rise to a non-Hermitian dy-
namical matrix. We have discussed three generic strate-
gies for using this correspondence to realize a given non-
Hermitian (linear) Hamiltonian using a quadratic bosonic
system. Given an initial N mode non-Hermitian prob-
lem, one can always accomplish this mapping using a 2N
mode bosonic system and the quantum-mechanics free
subsystem (QMFS) approach discussed in Sec. II D and
Sec. III C. In other more constrained cases, it is possible
to mimic the desired dynamics using N modes (Sec. III)
or even N/2 modes (Sec. II B). We summarize advan-
tages and constraints of these three strategies in Table 1
for reference.

Our work has considered just a few possible applica-
tions and implications of this mapping. In future work, it
will be interesting to use this mapping to explore a wider
class of non-Hermitian dynamical phenomena (such as
the recently observed non-Hermitian analogue of Fermi
arcs [55]), and to develop new kinds of quantum control
protocols in parametrically driven systems. It will also be
extremely interesting to extend our approach to describe
systems with true nonlinearities.
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Appendix A: Comment on pseudo-Hermiticity

In general, the 2N × 2N dynamical matrix Heff,N of a
N -mode bosonic parametrically-driven system is related
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to a Hermitian Bogoliubov de Gennes Hamiltonian HBdG

by

Heff,N = σN,zHBdG, (A1)

where σN,z = diag (IN ,−IN ) is the diagonal matrix
incorporating bosonic commutation relations, so that
Heff,N is always σN,z-pseudo-Hermitian as [24, 31]

H†eff,N = σN,zHeff,NσN,z. (A2)

Previous works have shown that PT -symmetric Hamil-
tonians are always η-pseudo-Hermitian, where η is an
invertible Hermitian operator [31, 56, 57]. However, two
pseudo-Hermitian matrices need not be unitarily equiv-
alent, even though they may be isospectral. Hence,
the fact that PT -symmetric Hamiltonians are pseudo-
Hermitian does not guarantee that they are unitarily
equivalent to the dynamical matrix of some Hermitian,
bosonic problem.

Appendix B: Canonical form for a general class of
PT -symmetric non-Hermitian Hamiltonian

Consider the most general 2N -mode PT -symmetric
non-Hermitian Hamiltonian. Using the same conventions
as Sec. III A, the Hamiltonian has the form

HPT =

(
E F
F∗ E∗

)
, (B1)

where E and F are arbitrary N×N matrices. As always,
we define time reversal operation as complex conjuga-
tion, and the parity operation is an exchange of modes
described by

σN,x =

(
0 IN
IN 0

)
. (B2)

We will show that as long as the anti-Hermitian part
of HPT is full rank, it is always possible to unitarily
transform HPT to a form H2 where the non-Hermitian
part of H is diagonal, namely:

H2 =

(
Σ̃ + iΓN J̃

J̃∗ Σ̃∗ − iΓN

)
. (B3)

Here Σ̃ is a Hermitian N ×N matrix, ΓN is a real, diag-
onal, non-negative N ×N matrix, and the N ×N matrix
J̃ is symmetric. Note that H2 still explicitly retains PT
symmetry as defined before, as H∗2 = σN,xH2σN,x.

We can always write HPT in terms of its Hermitian
and anti-Hermitian parts as HPT = HPT + iΓPT . The
PT symmetry of HPT then implies

H∗PT = σN,xHPT σN,x, (B4a)

Γ∗PT = −σN,xΓPT σN,x. (B4b)

Eq. (B4b) implies that the eigenvalues of ΓPT are real
and come in pairs of opposite signs. It can thus be diag-
onalized as

UΓΓPT U†Γ = ΓD, (B5)

where ΓD = diag (ΓN ,−ΓN ), and ΓN is a diagonal N×N
matrix with non-negative entries.

Using UΓ to transform HPT , i.e. H1 = UΓHPT U†Γ, we
obtain

H1 = H1 + iΓD =

(
Σ1 + iΓN J

J† Σ2 − iΓN

)
, (B6)

PT symmetry implies that the Hermitian matrix H1 and
the non-negative matrix ΓD must satisfy

H1 = ŨΓH
∗
1 Ũ
†
Γ, (B7a)

ΓD = −ŨΓΓDŨ†Γ, (B7b)

where we have introduced the symmetric unitary matrix
ŨΓ = UΓσN,xUTΓ .

Eq. (B7b) can be written explicitly as(
+ΓN 0

0 −ΓN

)
ŨΓ + ŨΓ

(
+ΓN 0

0 −ΓN

)
= 0, (B8)

In what follows, we assume that ΓPT is full rank; phys-
ically, this implies that all modes in the system are cou-
pled to the dissipation. As a consequence, ΓN has no
zeros on the diagonal. The above equation then provides
a constraint on the form of ŨΓ: its diagonal blocks must
be identically zero. We can thus write it as

ŨΓ =

(
0 ũ12

ũT12 0

)
, (B9)

with [ũ12,ΓN ] = 0.
The remaining PT condition on H1 in Eq. (B7a) now

reads(
Σ1 J
J† Σ2

)(
0 ũ12

ũT12 0

)
=

(
0 ũ12

ũT12 0

)(
Σ∗1 J∗

JT Σ∗2

)
,

(B10)
or equivalently

J†ũ12 = ũT12J
∗ ⇔ JũT12 = ũ12J

T , (B11a)

Σ1ũ12 = ũ12Σ∗2 ⇔ Σ2ũ
T
12 = ũT12Σ∗1. (B11b)

It follows that there exists a unitary matrix ũ12 that com-
mutes with ΓN and satisfy the equalities

Σ∗1 = ũ∗12Σ2ũ
T
12, (B12a)

JũT12 = ũ12J
T =

(
JũT12

)T
=
(
ũ∗12J

†)∗. (B12b)

We can now finally use this unitary matrix to trans-
form our non-Hermitian PT Hamiltonian into a simpler,
final form H2:

H2 ≡
(

IN 0
0 ũ∗12

)(
Σ1 + iΓN J

J† Σ2 − iΓN

)(
IN 0
0 ũT12

)
=

(
Σ1 + iΓN JũT12(
JũT12

)∗
Σ∗1 − iΓN

)
, (B13)
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Defining Σ̃ = Σ1 and J̃ = Jũ†12 and J̃ = JũT12, this is
exactly the form given in Eq. (B3).

Appendix C: Constraints on representing PT
non-Hermitian Hamiltonians with Hermitian

bosonic Hamiltonians

In this appendix we will derive necessary and suffi-
cient conditions for determining whether a given 2N -
mode PT -symmetric non-Hermitian Hamiltonian is uni-
tarily equivalent to the dynamical matrix of a Hermi-
tian, 2N mode parametric amplifier system. The most
general 2N mode PT -symmetric non-Hermitian Hamil-
tonian HPT was given in Eq. (B1). As shown above,
as long as its non-Hermitian part is full rank, it can be
transformed to the canonical form H2 in Eq. (B3), where
the anti-Hermitian terms are diagonal. We will work with
this form in what follows.

The question now is whether it is possible to find a
unitary matrix U that transforms the generic PT Hamil-
tonian H2 in Eq. (B3) to a physical bosonic dynamical
matrix MN , i.e.

UH2U† =MN . (C1)

We will consider the least constrained mapping, where
MN is a 2N×2N matrix describing non-degenerate para-
metric driving. This is the same situation as in Sec. III:
the bosonic theory has N “a” modes and N “b” modes,
and the parametric driving conserves the total number
of a minus b bosons. As discussed in the main text
(c.f. Eq. (J4)), in this case the dynamical matrix will
take the form

MN =

(
µa ν
−ν† −µTb

)
, (C2)

where µa,b are arbitrary Hermitian N ×N matrices, and
ν can be any N ×N matrix.

For a given PT Hamiltonian H2, it is not always pos-
sible to find a U and MN satisfying Eq. (C1). This is
because the bosonic dynamical matrix MN is pseudo-
Hermitian in a constrained fashion. Recall (see Ap-
pendix A) that any physical MN must satisfy:

M†N = σN,zMN σN,z, (C3)

where as always, σN,z is a z Pauli matrix in particle-hole
space.

It thus follows that any PT Hamiltonian that is unitar-
ily equivalent to a bosonic dynamical matrix MN must
satisfy

H†2 =WH2W†, (C4)

for some 2N × 2N matrix W satisfying

W = W† =W−1, (C5a)

TrW = 0, (C5b)

(i.e. a Hermitian unitary matrix with N eigenvalues +1
and N eigenvalues −1). If a unitary equivalence ex-
isted as per Eq. (C1), we could explicitly construct W
as W = UσN,zU†. Eqs. (C4) and (C5) thus represent a
necessary condition for the existence of aMN that is uni-
tarily equivalent to a given H2. Note this is a tighter con-
straint than simply requiring H2 to be pseudo-Hermitian
(something that is always true).

To show that this is also a sufficient condition, suppose
one can find a W satisfying Eqs. (C4) and (C5). W
could be then diagonalized as W = UWσN,zU†W for some

unitary UW . It then easily follows that the matrix M̃ ≡
U†WH2UW satisfies the pseudo-Hermiticity condition in
Eq. (C3), and thus represents a valid bosonic dynamical
matrix.

We can derive more explicit conditions in the case
where the anti-Hermitian part of H2 is full-rank (i.e. ΓN
is positive). In this case, Eq. (C4) can only be satisfied
if W has the form

W =

(
0 w12

w†12 0

)
, (C6)

where the unitary matrix w12 commutes with ΓN . This
form of W is explicitly Hermitian, unitary and traceless,
so it fulfills all the conditions in Eq. (C5).

From Eq. (C5), we can now derive:(
0 w12

w†12 0

)(
Σ̃ J̃

J̃∗ Σ̃∗

)
=

(
Σ̃ J̃

J̃∗ Σ̃∗

)(
0 w12

w†12 0

)
.

(C7)
Hence, a necesary condition for H2 to be unitarily equiv-
alent to a bosonic dynamical matrix is the existence of
an N ×N unitary matrix w12 that satisfies the equations

w12J̃
∗ = J̃w†12, (C8a)

w12Σ̃∗ = Σ̃w12. (C8b)

Appendix D: Constraints on representing Hermitian
bosonic Hamiltonians with PT non-Hermitian

Hamiltonians

We now ask the converse of the question discussed in
the previous appendix. Given a generic 2N -mode non-
degenerate parametric amplifier (NDPA) with Hermitian

Hamiltonian ĤNDPA,multi., whose non-Hermitian dynam-
ical matrix MN takes the form (see Eq. (C2))

MN =

(
µa ν
−ν† −µTb

)
, (D1)

we would like to know if there exists unitary matrix

U†M that transforms MN to an effective non-Hermitian
Hamiltonian matrix HPT with explicit PT symmetry

UMMNU†M = σN,x

(
UMMNU†M

)∗
σN,x, (D2)
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or equivalently

MN = U†MσN,xU
∗
MM∗NUTMσN,xUM, (D3)

⇒MN =WMM∗NW
†
M, (D4)

where WM = U†MσN,xU∗M. Thus to determine the exis-
tence of a unitarily equivalent HPT for dynamical matrix
MN , we can equivalently ask if there exists a symmetric,
unitary matrix WM that can be written in the form

WM = U†MσN,xU
∗
M, (D5)

such that Eq. (D4) is satisfied. Physically, being uni-
tarily equivalent to any PT -symmetric Hamiltonian can
thus be viewed as a generalized WM-anti-unitary sym-
metry for the dynamical matrix considered, with specific
constraints imposed on the unitary matrix WM.

In analogy to the derivation of canonical form for PT -
symmetric Hamiltonians HPT , we now transform MN

to a more tractable form. Noting that the N × N off-
diagonal block matrix ν can be written as singular value
decomposition ν = V†aDνVb, or equivalently

VaνV†b = Dν = Vbν†V†a, (D6)

we can transform the off-diagonal blocks into non-
negative diagonal matrix Dν

H1 =

(
Va 0
0 Vb

)(
µa ν
−ν† −µTb

)(
V†a 0

0 V†b

)
=

(
VaµaV†a Dν

−Dν −VbµTb V
†
b

)
, (D7)

which can be rewritten in terms of N × N Hermitian
matrices Σ,∆ as

H1 =

(
Σ + ∆ Dν

−Dν ∆− Σ

)
. (D8)

The next step is to rotate the anti-Hermitian part to
diagonal blocks via a unitary transformation, where we
obtain

H2 =

(
∆ + iDν Σ

Σ ∆− iDν

)
= H1 + iΓν , (D9)

so that the equality in Eq. (D4) can be equivalently writ-
ten as the conditions on the 2N × 2N Hermitian matrix
H1 and the 2N × 2N non-negative diagonal matrix Γν

H1 = W̃MH∗1W̃
†
M, (D10a)

Γν = −W̃MΓ∗νW̃
†
M, (D10b)

where W̃M = Ũ†MσN,xŨ∗M should again be symmetric
and unitary for the unitary equivalence betweenMN and
any PT -symmetric Hamiltonian matrixHPT to exist. To
proceed and obtain necessary and sufficient conditions for
the existence of such unitary equivalence, we now assume

that Dν is positive definite, so that Eq. (D10b) requires

that W̃M must take the form

W̃M =

(
0 w12

wT12 0

)
, (D11)

where the off-diagonal blocks must be unitary and com-
mute with the diagonal matrix [w12, Dν ] = 0. We note

that the criterion W̃M = Ũ†MσN,xŨ∗M is automatically
satisfied as

W̃M =

(
IN 0
0 wT12

)(
0 IN
IN 0

)(
IN 0
0 w12

)
. (D12)

Substituting the form of W̃M into Eq. (D10a), we obtain(
∆ Σ
Σ ∆

)(
0 w12

wT12 0

)
=

(
0 w12

wT12 0

)(
∆∗ Σ∗

Σ∗ ∆∗

)
.

(D13)
We thus obtain a set of sufficient conditions for a given
dynamical matrix MN to be unitarily equivalent to a
PT -symmetric Hamiltonian HPT , which is the existence
of a unitary matrix w12 such that

w12Σ = Σ∗wT12, (D14a)

w12∆ = ∆∗w12, (D14b)

which also commutes with the diagonal matrix
[w12, Dν ] = 0. For a positive definite diagonal matrix
Dν corresponding to the parametric drivings, the condi-
tions above will also be necessary conditions.

Appendix E: Examples of four-mode PT and PA
models where the correspondence fails

In this section, we will present a four-mode PT -
symmetric non-Hermitian Hamiltonian ĤPT ,4, for which
there does not exist any unitarily equivalent Hermitian
parametric Hamiltonian of four (or less) modes. Accord-
ing to results in Appendix B, it suffices to only consider
PT -symmetric Hamiltonians in the canonical form of H2

in Eq. (B3). We start with a tight-binding four-mode
Hamiltonian in the canonical form

Ĥtb,4 = i
γ

2

(
â†1â1 + â†2â2 − b̂†1b̂1 − b̂

†
2b̂2

)
+ g

(
â†1â2 + b̂†1b̂2 + â†1b̂1 + â†2b̂2 + h.c.

)
, (E1)

where the coefficients γ and g are both real, so that it
takes the form of Ĥtb in Eq. (29) the main text. Now we

add a Hermitian perturbation V̂1 as

V̂1 = δ
(
iâ†2b̂2 + h.c.

)
, (E2)

so that the total Hamiltonian is now given by Ĥ′tb,4 =

Ĥtb,4 + V̂1 . We note that the perturbation (δ > 0)
breaks time reversal symmetry of the coherent part in
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the Hamiltonian Ĥ′tb,4, which still takes the canonical

form in Eq. (B3) with component coefficient 2× 2 matri-
ces now given by

Σ̃ = gσx, (E3a)

J̃ =

(
t+

iδ

2

)
σ0 −

iδ

2
σz, (E3b)

ΓN =
γ

2
σ0, (E3c)

for which we can check the conditions in Eqs. (C8) alge-
braically. It is straightforward but tedious to check these
conditins for all possible 2× 2 unitary matrices w12. We
find that it is impossible to construct a unitary w12 such
that all the conditions are satisfied. Thus, we have con-
structed a four-mode PT -symmetric to which there does
not exist any unitarily equivalent PA system having four
or less modes.

Conversely, there also exists parametric model whose
dynamical matrix is not unitarily equivalent to any PT -
symmetric system with equal number of modes. If we
have a parametric model that (up to a local gauge trans-
formation) fits the form in Eq. (38)

Ĥp.a.,4 = g
(
â†1â2 − b̂†1b̂2

)
+ ν1â

†
1b̂
†
1 + ν2â

†
2b̂
†
2 +h.c., (E4)

where g and ν1 6= ν2 are real positive parameters, then
the correspondence can be broken by adding a Hermi-
tian perturbation as beam-splitter interactions with com-

pletely imaginary phase V̂2 = δ
(
iâ†1â2 − ib̂†1b̂2 + h.c.

)
,

where we assume δ > 0 without lack of generality. We
note that the perturbation introduces a nontrivial phase
into the parametric Hamiltonian, and the dynamics of the
system can still be described by a 4 × 4 non-Hermitian
dynamical matrix, which is automatically in the form in
Eq. (D8). The corresponding canonical form in Eq. (D8)
now has coefficient 2× 2 matrices as

∆ = gσx, (E5a)

Σ = −δσy, (E5b)

Dν =
ν1 + ν2

2
σ0 +

ν1 − ν2

2
σz, (E5c)

but now the dynamics is not unitarily equivalent to any
four-mode PT -symmetric Hamiltonian.

Appendix F: Higher-order exceptional point in PA
systems

In Sec. IV A of the main text, we have presented
EP enhanced mode splitting based on the

√
ε scaling

of the splitting of eigenvalues in a PT -symmetric non-
Hermitian system. With some minor twists on the multi-
mode mapping in Sec. III B, unitary mappings from PT -
symmetric system with odd number of modes to non-
degenerate parametric amplifiers with equal number of
modes could also be constructed. The idea is to leave the

single PT -symmetric mode unchanged, perform mapping
for the rest of the modes as before, and assign coherent,
particle-number conserving interaction terms to realize
dynamics of the remaining bosonic mode. As proposed
in Refs. [58–60], such NDPA could exhibit higher order
exceptional point, with mode splitting scaling as ε1/3.

We first describe the basics ingredients of higher or-
der exceptional point and the corresponding enhanced
mode splitting in a PT -symmetric three-mode system.
Although the higher order exceptional points can also be
found in systems with more number of modes, we focus
on the PT trimer setup for demonstrating purpose. The
sensing scheme now consists of an unperturbed three-
mode system with the Hamiltonian given by

HHOEP [0] =

 +iγ2 g 0
g 0 g
0 g −iγ2

 , (F1)

and we intend to estimate the small parameter ε by prob-
ing the output power spectrum of the perturbed Hamil-
tonian

H [ε] =

 +iγ2 g 0
g ε g
0 g −iγ2

 . (F2)

If the unperturbed Hamiltonian H [0] is set to the third-

order EP (gc =
√

2γ/4), then the power spectrum has a
single resonance peak. In this case, the small perturba-
tion ε in the mode detuning will induce mode splitting
in the output spectrum, which scales as ε1/3 and may be
even more sensitive than the splitting scaled as

√
ε in PT

dimer settings. The ε1/3 scaling of mode splitting with
respect to small ε perturbations close to the third-order
exceptional point has recently been verified in optical ex-
periments [61].

Again we aim to achieve the same ε1/3 scaling of mode
splitting in a PA setup, without having to introduce any
external bath (i.e., noise source). Applying the uni-
tary mapping in Sec. II B to the two-mode subsystem
with gain and loss, the corresponding ε-dependent NDPA
Hamiltonian can be obtained as

ĤNDPA,3 [ε] = εb̂†b̂+
(√

2gâ†2b̂+ i
ν

2
â†1â
†
2 + h.c.

)
, (F3)

where the detuning term ε becomes the detuning term of
the third bosonic mode b, and the gain and loss at rate γ
are transformed into the parametric drive with strength
ν = γ. Note that this bosonic Hamiltonian has the gen-
eral structure of a driven three-mode optomechanical sys-
tem, where a mechanical resonator â2 interacts with two

electromagnetic modes b̂, â1 via radiation-pressure inter-
actions. This setup has been previously studied for en-
tanglement generation [62–65].

It is also interesting to consider the form of the Hamil-
tonian when ε = 0, g =

√
2γ/4 and we are exactly tuned

to the EP. As discussed in Sec. II C, EP’s in bosonic
Hamiltonians coincide with conserved Hermitian quadra-
ture variables. The same is true in our system. Making
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the gauge change b̂ → b̂′ = −ib̂, the Hamiltonian at the
exceptional point can be written

ĤNDPA,3 =
γ

2

(
X̂2(P̂1 − P̂b′) + P̂2(X̂1 + X̂b′)

)
, (F4)

where we have introduced standard quadrature operators
for each mode. It follows immediately that there are two
conserved quadratures Q̂± in this system:

Q̂− =
1√
2

(
P̂1 − P̂b′

)
, (F5)

Q̂+ =
1√
2

(
X̂1 + X̂b′

)
. (F6)

Appendix G: QMFS for multi-mode systems:
construction and corresponding symplectic

transformations

In Sec. III C, we discussed how the dynamics of an
arbitrary N mode non-Hermitian Hamiltonian could be
realized using a QMFS embedded in a 2N mode bosonic
system. We provide more details here as to how one con-
structs such multi-mode QMFS, and also discuss proper-
ties of the corresponding symplectic transformation gen-
erated by this dynamics.

1. Constraints on a general QMFS

Consider an N mode linear and Hermitian bosonic sys-
tem where the dynamics does not couple canonically con-
jugate quadratures. We can write the equations of mo-
tion as

∂t~̂q (t) = A (t) ~̂q (t) , (G1a)

∂t~̂π (t) = B (t) ~̂π (t) , (G1b)

where A (t) and B (t) are generic real dynamical matri-

ces, and ~̂q and ~̂π are both column vectors formed by N
quadrature operatures satisfying the canonical commu-
tation relations as

[q̂j , π̂j′ ] = iδjj′ , (G2)

with all other commutators between the quadratures van-
ishing [q̂j , q̂j′ ] = [π̂j , π̂j′ ] = 0.

We require the dynamics to preserve the canonical
commutation relations at all times. It is straightforward
to show that a necessary and sufficient condition to en-
sure this is that at all times:

B (t) = −AT (t) . (G3)

for all time t.
Similarly, if integration of the equations of motion

yields

~̂q (t) = UA (t) ~̂q (0) , (G4a)

~̂π (t) = UB (t) ~̂π (0) , (G4b)

then the preservation of canonical commutation relations
holds if and only if

UA (t)UTB (t) = IN . (G5)

2. QMFS for realizing arbitrary multi-mode
non-Hermtian dynamics

We can use the results above to verify the QMFS dy-
namics presented in Sec. III C does indeed correspond to
a Hermitian bosonic Hamiltonian. in Sec. III C, an arbi-
trary non-Hermitian Hamiltonian HN was encoded in a
QMFS via Eq. (42a), i.e.

i∂t~̂z+ = HN ~̂z+, (G6)

with pseudo-modes ~z± defined in Eq. (41).
In terms of the column vectors formed by quadrature

operators ~̂x+ and ~̂p−, we have

∂t

(
~̂x+

~̂p−

)
=

(
ImHN ReHN
−ReHN ImHN

)(
~̂x+

~̂p−

)
. (G7)

Now, using Eq. (G3) to ensure conjugate quadratures
evolve appropriately, we obtain

∂t

(
~̂p+

−~̂x−

)
=

(
−ImHTN ReHTN
−ReHTN −ImHTN

)(
~̂p+

−~̂x−

)
. (G8)

The above equation is equivalent to

i∂t~̂z− = H†N ~̂z−, (G9)

as given in Sec. III C. It thus follows that the QMFS dy-
namics given in Sec. III C does indeed preserve canonical
commutation relations.

The above approach is also valid for an arbitrary time-
dependent non-Hermitian dynamical matrix HN (t).
Note first that the classical amplitude evolution is con-
trolled by the N ×N complex matrix UN (t). It satisfies:

i∂tUN (t) = HN (t)UN (t) . (G10)

In terms of the quadratures x̂±,j and p̂±,j , we have(
~̂x+ (t)
~̂p− (t)

)
=

(
ReUN (t) − ImUN (t)
ImUN (t) ReUN (t)

)(
~̂x+ (0)
~̂p− (0)

)
,

(G11a)(
~̂p+ (t)

−~̂x− (t)

)
=

(
ReVN (t) ImVN (t)
− ImVN (t) ReVN (t)

)(
~̂p+ (0)

−~̂x− (0)

)
,

(G11b)

where the coefficient matrix VN (t) is defined as

VN (t) ≡
[
UTN (t)

]−1
. (G12)

It follows immediately that the constraint in Eq. (G5) is
obeyed.
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Finally, the above transformation can be equivalently
described in terms of the bosonic annihilation and cre-
ation operators as(

~̂a (t)
~̂
b (t)

)
= A (t) ·

(
~̂a (0)
~̂
b (0)

)
+B (t) ·

(
~̂a† (0)
~̂
b† (0)

)
, (G13)

where

A (t) =
1

2

 UN (t) +
[
U†N (t)

]−1

0

0 U∗N (t) +
[
UTN (t)

]−1

 ,

(G14a)

B (t) =
1

2

 0 UN (t)−
[
U†N (t)

]−1

U∗N (t)−
[
UTN (t)

]−1
0

 .

(G14b)

3. Bloch-Messiah representation of the multi-mode
QMFS evolution

As discussed above, the non-Hermitian Hamiltonian
HN (t) induces a symplectic (i.e. unitary) transformation
in the corresponding bosonic QMFS system. To under-
stand its nature better, it is helpful to use the Bloch-
Messiah (BM) decomposition [45]. This reduces an arbi-
trary Gaussian unitary to a sequence of three simple op-
erations: a beam-splitter operation, a product of single-
mode squeezing operations, then another beam-splitter
operation.

In terms of Eq. (G13), the Bloch-Messiah decomposi-
tion corresponds to

A = UBMDAV
†
BM, (G15a)

B = UBMDBV
T
BM, (G15b)

where UBM and VBM are unitary, and DA, DB are non-
negative diagonal matrices with the constraint D2

A =
D2
B + I2N .

The Bloch-Messiah matrices can be explicitly com-
puted. We first write a singular value decomposition for
the time evolution matrix UN (t) in Eq. (G10):

UN (t) = W1DUW
†
2 , (G16)

and then use this to define the diagonal unitary matrix
WU :

WU =

√(
DU −D−1

U
)
·
∣∣DU −D−1

U
∣∣−1

. (G17)

With these definitions, the unitary matrices in the BM
decomposition (describing initial and final beam-splitter

operations) are given by:

UBM =

(
W1 0
0 W ∗1

)
· 1√

2

(
1 −1
1 1

)
·
(
WU 0
0 W ∗U

)
,

(G18a)

V †BM =

(
W ∗U 0
0 WU

)
· 1√

2

(
1 1
−1 1

)
·
(
W †2 0
0 WT

2

)
.

(G18b)

Correspondingly, the diagonal matrices describing the
squeezing operations in the BM decomposition can be
computed as:

DA =

(
DU+D−1

U
2 0

0
DU+D−1

U
2

)
, (G19a)

DB =

( |D−1
U −DU |

2 0

0
|D−1
U −DU |

2

)
. (G19b)

Appendix H: Review of the EP encircling

In this section, we briefly review the quasi-adiabatic
dynamical phenomena by encircling an EP in two-mode
non-Hermitian systems. We use the convention in Ref. [8]
for clarity. We consider a system evolving according to
the time-dependent non-Hermitian Hamiltonian Hω (t)
given in Eq. (51) whose instantaneous eigenvalues are
given by

λ±(t) = ±
√

(ω(t) + iγ/2)
2

+ g(t)2. (H1)

We assume that the parameters are varied at a rate much
slower than the eigenvalue gap |λ+ − λ−|. We choose

the left (right) instantaneous eigenvectors ~l±(t) (~r±(t)) of

Hω(t) to be biorthonormal and satisfy ~l± = ~r±, implying:

~r± =
(
1 + ρ2

±
)− 1

2 ·
(
ρ±
1

)
, (H2a)

ρ± =
ω + iγ/2 + λ±

g
. (H2b)

We consider varying parameters g(t) and ω(t) along a
circle that encloses the EP:

g (t) = g0 + ε cosφ (t) , (H3a)

ω (t) = ε sinφ (t) , (H3b)

where the center of the circle is taken to be the excep-
tional point g0 = γ/2, and ε < γ/2 is a small positive
parameter characterizing the encircling radius. The cir-
cling phase is chosen such that EP is encircled once,
with φ (ti) = φ (tf ) during the time duration that we
consider, and the evolution time is chosen such that
tf − ti = T � 1/ |λ+ − λ−|.
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The system is prepared in one of the instantaneous
eigenmodes (e.g. the λ+ branch) ~z (ti) = ~r+ (ti) at the
beginning time ti, and we consider solution to the equa-
tion of motion i∂t~z = Hω~z. For the Hamiltonian matrix
Hω (t) at given time t, we expand the state vector ~z (t)
at time t in terms of instantaneous eigenvectors as

~z (t) = c+ (t)~r+ (t) + c− (t)~r− (t) . (H4)

If the dynamics were adiabatic, we would expect the
amplitude c− (t) to be negligible for the entire protocol.
Note that as the EP is encircled once during the time evo-
lution, the instantaneous eigenmodes undergo a switch
by the end of the evolution, i.e. λ± (tf ) = λ∓ (ti). Sur-
prisingly, for the path that encircles the EP once, the
adiabatic prediction holds for parametric encircling path
along only one direction, whereas a non-adiabatic tran-
sition will occur in the opposite direction, as depicted
in Fig. 4 in the main text. This chiral mode switching
phenomenon could be interpreted physically as a conse-
quence of stability loss delay [8].

Appendix I: Exceptional point encircling: details

We present here additional details for the quasi-
adiabatic exceptional point encircling dynamics pre-
sented in Sec. IV B; the focus is on how the dynamics
of the non-Hermitian gain-loss dimer Hamiltonian Hω(t)
(c.f. Eq. (51)) directly determines the quantum evolution
in our Hermitian, four-mode bosonic system (Hamilto-

nian ĤωPA(t), c.f. Eq. (22)). We will make explicit use
of the Bloch-Messiah (BM) reduction of the symplec-
tic transformation generated by Hω(t) (as introduced in
App. G 3).

1. Symmetry constraints

Note first that, by construction, Hω(t) is a symmet-
ric matrix, and satisfies the chiral symmetry condition
{Hω (t) , σy} = 0. As a result, the amplitude-evolution
matrix Uω (t) generated by Hω(t) (c.f. Eq. (52)) obeys
the constraint [

UTω (t)
]−1

= σyUω (t)σy. (I1)

It also follows that detUω (t) = 1.
These conditions can be used to constrain the form of

the unitary operator Ûω (t) which describes evolution in
the four-mode Hermitian bosonic system corresponding
to Hω(t) (constructed using the QMFS approach). One
finds that the diagonal matrices DA (t) and DB (t) in the

BM reduction of Ûω (t) (c.f. Eqs. (G13) and (G15)) are
both proportional to the unit matrix, i.e.

DA (t) = coshλs (t) · I4, (I2a)

DB (t) = sinhλs (t) · I4, (I2b)

with the squeezing parameter λs(t) given by

coshλs (t) =
1

2

√
tr
[
U†ω (t)Uω (t)

]
+ 2. (I3)

It follows that the squeezing part of the BM decomposi-
tion necessarily corresponds to four identical single-mode
squeezing operations.

2. Symplectic transformation for the four-mode
QMFS Hermitian bosonic system

We now derive the explicit form of the symplectic
transformation for the collective quadratures x̂±,j and
q̂±,j (j = 1, 2) under the time evolution generated by

the time-dependent parametric Hamiltonian ĤωPA (t)
(c.f. Eq. (22)). Using Eq. (G11), we immediately have

 x̂1,+ (t)
x̂2,+ (t)
p̂1,− (t)
p̂2,− (t)

 =

(
ReUω (t) − ImUω (t)
ImUω (t) ReUω (t)

) x̂1,+ (0)
x̂2,+ (0)
p̂1,− (0)
p̂2,− (0)

 ,

(I4a) p̂1,+ (t)
p̂2,+ (t)
−x̂1,− (t)
−x̂2,− (t)

 =

(
ReVω (t) ImVω (t)
− ImVω (t) ReVω (t)

) p̂1,+ (0)
p̂2,+ (0)
−x̂1,− (0)
−x̂2,− (0)

 ,

(I4b)

where Vω (t) ≡
[
UTω (t)

]−1
(see Eq. (G12)).

As derived in Eq. (I1), the chiral symmetry of Hω (t)
ensures the equality Vω (t) = σyUω (t)σy, so that the
equation of motion Eq. (I4b) can be equivalently rewrit-
ten in terms of the matrix Uω (t) as x̂2,− (t)
−x̂1,− (t)
p̂2,+ (t)
−p̂1,+ (t)

 =

(
ReUω (t) ImUω (t)
− ImUω (t) ReUω (t)

) x̂2,− (0)
−x̂1,− (0)
p̂2,+ (0)
−p̂1,+ (0)

 .

(I5)
Note that the symplectic transform presented here in

terms of the collective quadratures x̂±,j and p̂±,j is equiv-
alent to the one discussed in Eq. (53) in the main text,
which can be compactly written using the pseudo-modes
ẑj and ˆ̃zj (c.f. Eqs. (21) and (23)) as(

ẑ1(t)
ẑ2(t)

)
= Uω (t) ·

(
ẑ1(0)
ẑ2(0)

)
, (I6a)(

ˆ̃z1(t)
ˆ̃z2(t)

)
=
[
U†ω (t)

]−1 ·
(

ˆ̃z1(0)
ˆ̃z2(0)

)
. (I6b)

3. Comparing symplectic transformations for
clockwise and counterclockwise encirclings

Consider a general case of a multimode Hermitian
bosonic system which corresponds (via the QMFS map-
ping) to a time-dependent non-Hermitian Hamiltonian.



21

We take this latter Hamiltonian to be symmetric and
periodic (period T0), i.e.

HN (t) = HTN (t) = HN (t+ T0) . (I7)

As discussed in Appendix G, the corresponding sym-
plectic transformations in the QMFS setup are fully
characterized by the non-unitary time-evolution matri-
ces UN (T0) and ŨN (T0), which are t = T0 solutions to
the equations of motion

i∂tUN (t) = HN (t)UN (t) , (I8a)

i∂tŨN (t) = HN (−t) ŨN (t) . (I8b)

As (by assumption) HN (t) is a symmetric matrix, one
finds:

ŨN (t) =
[
UTN (−t)

]−1
. (I9)

Furthermore, periodicity of HN (t) leads to the relation

that UN (−T0) = [UN (T0)]
−1

, so that we have

ŨN (T0) =
[
UTN (−T0)

]−1
= UTN (T0). (I10)

We see that the classical amplitude-evolution matrices
associated with forward and backwards evolution are re-
lated by a simple transpose operation. We can use this
and the results of App. G 3 to then directly relate the uni-
tary evolutions in the corresponding four-mode bosonic
QMFS systems. It follows that the BM decompositions
for forward and backwards evolution are related via:

ŨBM (T0) = V ∗BM (T0), (I11a)

ṼBM (T0) = U∗BM (T0), (I11b)

D̃A (T0) = DA (T0) ⇔ D̃B (T0) = DB (T0) .(I11c)

Here, tildes indicate backwards evolution. Note that the
squeezing aspect of the evolution (as parameterized by
the D matrices) is the same irrespective of the direction.
Finally, note that these results apply directly to our two-
mode problem of interest (i.e. HN (t)→ Hω(t), UN (t)→
Uω(t)), as Hω(t) satisfies Eq. (I7).

4. Evolution of quantum states via EP encircling

a. Evolution of an initial vacuum state

Having built up the necessary machinery, we can now
study how the switching dynamics encoded in Uω(t) influ-
ences the evolution of quantum states in our four-mode

bosonic system (lowering operators â1, â2, b̂1, b̂2). The

unitary evolution operator Ûω(t) of our system is defined
by

i∂tÛω (t) = ĤωPA (t) Ûω (t) , Ûω (t = 0) = I, (I12)

where ĤωPA(t) is given by Eq. (22). Ûω(t) generates a
symplectic (i.e. commutation-relation preserving) linear

transformation of the system’s mode operators. As es-
tablished in Appendix I 2, the form of this transforma-
tion is completely determined by the amplitude-evolution
matrix Uω(t) of the original non-Hermitian problem.

As in the main text, we consider a cyclic evolution
where (g(t), ω(t)) evolve along a closed circle, starting
and ending at the same point in parameter space. The
non-Hermitian system’s evolution is different for these
two directions, corresponding to two distinct evolution
matrices U	(t) and U�(t). When transformed to the in-
stantaneous eigenmode basis of Hω (t), one of these en-
codes the switching behaviour seen in Fig. 4, the other
has no switching behaviour.

Using our mapping, we have two corresponding uni-
tary transformations Û	 (t) and Û� (t) for our quantum
four-mode system; we wish to understand their asym-
metry. This is best accomplished by using the Bloch-
Messiah decomposition (see Appendix I 3), which rep-
resents each transformation as a product of two beam-
splitter transformations, interspersed with a (diagonal)
squeezing transformation. We find that the squeezing
associated with both Û	 (T ) and Û� (T ) are identical,
with the asymmetry manifesting itself only in the beam-
splitter operations (c.f. Eqs.(I11))

To see the the physical consequences of this asymme-
try, consider first the case where all four modes start
in vacuum, and parameters are cyclically evolved on the
path shown in Fig. 4(a). CW or CCW traversal of this
path results in two different final states for our four
bosonic modes, |Ψ	 (t = T )〉 versus |Ψ� (t = T )〉. These
final states are necessarily Gaussian and have zero means,
and are thus fully characterized by their covariance ma-
trix. First, consider beam-splitter type correlations be-
tween a and b modes. Due to the block structure of the
symplectic transformation in Eqs. (G14), these vanish for
all times t, i.e.〈

â†j (t) b̂j′ (t)
〉

=
〈
b̂†j (t) âj′ (t)

〉
= 0. (I13)

Moreover, the photon numbers are identical for all four
modes:〈

â†j (t) âj′ (t)
〉

=
〈
b̂†j (t) b̂j′ (t)

〉
= δjj′sinh2λs

=
δjj′

4

(
tr
[
U†ω (t)Uω (t)

]
− 2
)
. (I14)

As the squeezing parameter λs is the same at the final
time T irrespective of encircling direction, the same is
necessarily true for these average photon numbers.

Finally, the only non-zero anomalous (squeezing) cor-
relators are given by〈

âj (t) b̂j′ (t)
〉

=
〈
b̂j′ (t) âj (t)

〉
= Djj′ (I15)

D =
1

4
Uω (t)U†ω (t)− 1

4

[
Uω (t)U†ω (t)

]−1
, (I16)

where D is a Hermitian matrix. These correlators (at
the final time t = T ) will depend on the direction of the
encircling.



22

Finally, we could look at bipartite entanglement be-
tween different subsystems. Consider for example the en-
tanglement between the a subsystem (formed by modes
a1, a2) and the b subsystem (formed by modes b1, b2).
Quantifying the entanglement via the logarithmic nega-
tivity EN [46, 47], one finds:

EN [ρab (t)] = (coshλs + 1) log (coshλs)

− (coshλs − 1) log (sinhλs) . (I17)

The entanglement only depends on the squeezing
paramter λs. As this is identical for both encircling di-
rections, the generated a − b entanglement is thus also
insensitive to direction. The net result is that if we start
with a vacuum state, the asymmetry between the states
|Ψ	 (t = T )〉 and |Ψ� (t = T )〉 is subtle: both have the
same average photon number and entanglement proper-
ties, and differ only in the phase of two-mode squeezing
correlators between a and b modes.

b. Construction of an asymmetric initial quantum state

We now finally turn to the case presented in Sec. IV B
of the main text, where we consider an initial, pure quan-
tum state that corresponds to selectively populating one
of the two eigenmodes of Hω(0). In the classical case,
the chiral mode switching behaviour depends crucially
on having such an asymmetric initial state. The same is
true in the quantum case.

To construct a suitable initial state, we first consider
the classical two-mode problem. Using our convention for
the instantaneous eigenvectors ~r+(t), ~r−(t) of Hω(t), one
finds that the vectors ~r+(t) and (~r−(t))

∗
are orthogonal.

They thus serve as a good basis, and we can write any
initial set of amplitudes in the classical problem as:

~z = ξ
~r+

|~r+|
+ ξ⊥

(~r−)
∗

|~r−|
, (I18)

where ξ and ξ⊥ are complex numbers. ξ⊥ is proportional
to the amplitude c− defined in Eq. (55), whereas ξ de-
scribes the amount of population in the mode ~r+ (when
we make this vector part of an orthonormal basis).

We could now imagine a random classical state which
selectively populates the + eigenmode with a random
phase. In particular, take ξ, ξ⊥ to be complex Gaussian
random variables with zero mean, and where the only
non-zero covariances are:

(Re ξ)
2

= (Im ξ)
2

=
1

2
e2λ0 , (I19a)

(Re ξ⊥)
2

= (Im ξ⊥)
2

=
1

2
e−2λ0 . (I19b)

The parameter λ0 > 0 determines the asymmetry of the
initial state.

Turning to our quantum system, the components of
ẑ become operators as per Eq. (16) and (21): they are

linear combinations of the QMFS collective quadrature
operators (x̂+,1, x̂+,2, p̂−,1, p̂−,2). It immediately follows
that the amplitudes ξ, ξ⊥ become commuting operators
that are linear combinations of these QMFS collective
quadrature operators; one can easily find the relevant
orthogonal transformation.

We can now construct a quantum Gaussian state where

the operators ξ̂, ξ̂⊥ have a covariance matrix that co-
incides with Eqs. (I19). This in turn defines the co-
variance matrix of the QMFS collective quadrature op-
erators. This of course does not specify the entire
state: we also need to specify covariances involving col-
lective quadratures conjugate to those in the QMFS,
i.e. (p̂+,1, p̂+,2,−x̂−,1,−x̂−,2). We do this by insisting
on two additional requirements:

• The covariance matrix of the entire system de-
scribes a physical state compatible with the uncer-
tainty principle [66].

• The covariance matrix of the entire system de-
scribes a pure state.

• There are no classical (i.e. symmetrized) correla-
tions between a collective quadrature from the main
QMFS, and the secondary QMFS

These conditions allow us to find a pure zero-mean Gaus-
sian state parameterized by λ0, where the amplitude-

operators ξ̂, ξ̂⊥ have covariances given by Eqs. (I19). This
is the kind of initial state used for the calculations of en-
tanglement dynamics in Sec. IV B.

Note that while our state clearly has a strong asym-
metry favouring the + instantaneous eigenmode, there is
still some population of the − eigenmode, as ξ⊥ is not ex-

actly zero. One cannot find a physical state where 〈ξ̂†⊥ξ̂⊥〉
is strictly zero as this would violate the uncertainty prin-
ciple (i.e. as this quantity becomes smaller and smaller,
the covariances of operators outside of the QMFS would
diverge).

Appendix J: Relating non-Hermitian and bosonic
topological invariants

In this appendix, we exploit the mappings established
earlier to show that non-Hermitian Chern numbers [52]
are equivalent to the Chern numbers for anomalous
bosonic problems.

1. Relating Bogoliubov transformations to
non-Hermitian eigenvectors

As a prerequisite, we will establish the connection be-
tween Bogoliubov transformations (in the bosonic prob-
lem) to the eigenvectors of the non-Hermitian problem.

Consider first a translationally-invariant Hermitian
bosonic 2D lattice model having a primitive unit cell



23

with N sites. The Hamiltonian can be written as Ĥ =
1
2

∑
k Ĥk, where the Bloch Hamiltonian for quasimomen-

tum k has the general form

Ĥk =

N∑
i,j=1

(
µk,ij â

†
k,iâk,j + µ−k,ij â

†
−k,iâ−k,j

)

+

N∑
i,j=1

(
νk,ij â

†
k,iâ
†
−k,j + h.c.

)
, (J1)

where âk,i is the annihilation operator corresponding to
quasi-momentum k and site i in the unit cell. Hermiticity

requires µk = µ†k; further, νk = νT−k as bosonic lowering
operators commute.

The Heisenberg equations of motion now take the com-
pact form

i∂t|âk〉 =

(
µk νk
−ν†k −µT−k

)
|âk〉, (J2)

where we define the column vector |âk〉 formed by the
2N coupled operators as

|âk〉 =
(
âk,1, âk,2, · · · , âk,N , â†−k,1, â

†
−k,2, · · · , â

†
−k,N

)T
.

(J3)
We can now interpret the dynamical matrix of our driven
bosonic system as an effective non-Hermitian Bloch
Hamiltonian Heff (k) of a lattice with 2N sites in the
unit cell,

Heff (k) =

(
µk νk
−ν†k −µT−k

)
. (J4)

This non-Hermitian Bloch Hamiltonian is related to the
Hermitian Bogoliubov-de Gennes (BdG) Bloch Hamilto-
nian HBdG (k) by Heff (k) = σN,zHBdG (k), where

HBdG (k) =

(
µk νk
ν†k µT−k

)
. (J5)

and σN,z is a z Pauli matrix in particle-hole space.
We next define the left and right eigenvectors of the

matrix Heff (k):

Heff (k) |k, j〉R = Ej (k) |k, j〉R, (J6)

L 〈k, j|Heff (k) = Ej (k) L 〈k, j| . (J7)

Here j = 1, 2, · · · , 2N , and we choose the eigenvectors to
satisfy the biorthonormal condition

L〈k, j | k, j′〉R = δj,j′ . (J8)

We will focus exclusively on the regime where the para-
metric driving is sufficiently weak that our system is sta-
ble, and the spectrum Ej (k) is purely real. Ĥk can then
be diagonalized via a Bogoliubov transformation. Not
surprisingly, the quasiparticle operators that diagaonlize
the Hamiltonian are directly related to the eigenvectors

of Heff (k). To see this explicitly, we use the fact that
all left eigenvectors either have a real, non-zero “expec-
tation” of σN,z that is either positive or negative (see e.g.
[67]). They can thus be chosen to obey the symplectic
normalization condition

L 〈k, n,±|σN,z |k, n′,±〉 L = ±δn,n′ , (J9)

All left eigenvectors are now labelled by a sign ±, and the
index n runs from 1 to N . We denote the correspond-
ing eigenvalues En,±(k). With this convention, it follows
from Eq. (J8) that the corresponding right eigenvectors
are given by

|k, n,±〉R = ±σN,z |k, n,±〉 L. (J10)

The eigenvectors now let us express the equations of mo-
tion in diagonal form; this can be accommplished by us-
ing the positive-norm eigenvectors only. We introduce
new bosonic quasiparticles via

β̂k,n = L 〈k, n,+ | â〉 .

They satisfy

i∂tβ̂k,n = En,+ (k) β̂k,n.

This represents a canonical Bogoliubov transformation,
and the Hamiltonian is diagonal when expressed in terms
of these operators. We thus see the (expected) relation
between the Bogoliubov transformation and the eigen-
vectors of our non-Hermitian Hamiltonian.

2. Equivalence of bosonic and non-Hermitian
Chern numbers

With the above relations in hand, we can now show
that the non-Hermitian Chern number introduced in
Ref. [52] coincides with the previously introduced Chern
number for anomalous bosonic problems [53].

We start with the bosonic system. The Berry con-
nection Ann (k) for the nth band was introduced in
Refs. [39, 53, 54] as

Ann (k) = i · L 〈k, n|σN,z∇k|k, n〉 L, (J11)

and the corresponding (quantized) Chern number is given
by:

Cn =
1

2π

∫
BZ

(∇×Ann) · ẑ d2k (J12)

This serves as a topological invariant to characterize
bands in an anomalous, stable bosonic system.

Now, using Eq. (J10), we can equivalently write this
Chern number in terms of left and right eigenvectors of
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the non-Hermitian Hamiltonian Heff(k)

Cn =
1

2π

∫
BZ

(∇×Ann) · ẑd2k

=
i

2π

∫
BZ

ε3ij∂i (L〈k, n,+| ∂j |k, n,+〉R) d2k

=
i

2π

∫
BZ

ε3ij (∂i 〈k, n,+|L) (∂j |k, n,+〉R) d2k. (J13)

We can now compare this expression against the gen-
eralized Chern numbers Nαβ

n introduced in Ref. [52] for
2D non-Hermitian Hamiltonians. These are defined as

Bαβn,ij (k) = i 〈∂iψαn (k)| ∂jψβn (k)
〉
, (J14)

Nαβ
n =

1

2π

∫
BZ

εijB
αβ
n,ij (k) d2k. (J15)

Here, the indices α, β = L,R, and
∣∣ψL
n (k)

〉
(
∣∣ψR
n (k)

〉
)

denotes the left (right) eigenvector of the given non-
Hermitian Bloch Hamiltonian H(k). Ref. [52] shows that
all four Chern numbers Nαβ

n for a given band n are iden-
tical.

We see now that the bosonic Chern number in
Eq. (J13) is identical to the generalized non-Hermitian
Chern number NLR

n . Thus, as long as the bosonic

Hamiltonian Ĥk has well-defined Chern numbers, we
can always find the corresponding non-Hermitian lattice
model Heff (k) whose topological invariants are exactly
the same.

While the correspondence found here here may not
seem that surprising, it provides an interesting recipe for
constructing non-trivial non-Hermitian topological mod-
els: start with a topological bosonic model, and then
construct its non-Hermitian analogue. We pursue this
approach in the next section.

Appendix K: Topological PT -symmetric model
inspired by the mapping between PT and PA

systems

1. Correspondence between the dimer Kagome
Hamiltonian and the bosonic parametric model

Due to the correspondence between the Chern num-
ber based on the bosonic symplectic normalization re-
lation and the generalized Chern number for the non-
Hermitian dynamical matrix, the analysis in Ref. [54]
on the topological phases of the system also applies to
the equivalent non-Hermitian problem. One interest-
ing and probably exotic feature for the bosonic model
is that the nontrivial topological phases are completely
due to the parametric drive, without which we would
only have a trivial Kagome lattice model with nearest
neighbor tunnel couplings. Thus for the non-Hermitian

model, nontrivial topological phases can only exist if the
effective Hamiltonian has nonzero non-Hermitian compo-
nents. This is in contrast to some previous work based on
a topologically nontrivial coherent Hamiltonian on non-
Hermitian topological systems, where the anti-Hermitian
part of dynamics is usually introduced as a perturbation
[38, 48]. Here we combine the correspondence of topo-
logical phases and the mapping between some parametric
models and PT -symmetric systems to construct a non-
Hermitian PT -symmetric lattice model, where nontrivial
topological phase emerges from an otherwise topologi-
cally trivial Hermitian model when one adds balanced
onsite gain and loss terms to the model properly.

In Ref. [54], non-trivial topological states can be cre-
ated by adding parametric coupling with proper arrange-
ment of phases to a topologically trivial Kagome lat-
tice model that only have identical coherent hopping.
We consider a parametric Hamiltonian Ĥp.a.,Kagome =

Ĥ0+ĤL consisting of a topologically trivial tight-binding
Kagome lattice model that conserves particle number

Ĥ0 = ω0

∑
j

â†j âj − J
∑
〈j,j′〉

â†j′ âj′ , (K1)

and a local parametric drive term HL

ĤL = −1

2
ν
∑
j

eiφs â†j â
†
j + h.c., (K2)

where the index j = (j, s) = (j1, j2, s) incorporates
both periodicity in real space and sub-lattices s =
A,B,C, and ν, φs denote the parametric drive strength
and phase, respectively. Transforming the mode oper-
ators to the reciprocal k space, the system dynamics
is closed with respect to the set of operators |âk〉 =(
âk,A, âk,B , âk,C , â

†
−k,A, â

†
−k,B , â

†
−k,C

)T
, so that as a

special case of Eq. (J2), the equations of motion can be
written in the compact form

i∂t |âk〉 = Heff,K. (k) |âk〉 , (K3)

where the dynamical matrix is given by

Heff,K. (k) =

(
ω0I3 − Jτ (k) h

−h† −ω0I3 + Jτ (k)

)
. (K4)

The matrix τ (k) is formed by geometrical factors of the
tight-binding Kagome lattice

τ (k) =

 0 1 + e−ik·a1 1 + eik·a3

1 + eik·a1 0 1 + e−ik·a2

1 + e−ik·a3 1 + eik·a2 0

 ,

(K5)

where a1 =
(
−1,−

√
3
)
,a2 = (2, 0) are the lattice vec-

tors, and a3 =
(
−1,
√

3
)
; the coefficient matrix h =

−ν exp (iΦ), I3 is the 3× 3 identity matrix, and Φ is the
diagonal matrix formed by the phases carried by local



parametric drives

Φ = diag (φA, φB , φC) = diag (0, φ, 2φ) , φ =
2π

3
.

(K6)
The off-diagonal tunnelings in h can be rotated to onsite
gain and loss via a unitary transformation

UK. =
1√
2

(
e2iΦ e2iΦ

ie−2iΦ −ie−2iΦ

)
. (K7)

so that HPT ,K. (k) = U†K.Heff,K. (k)UK. is

HPT ,K. (k) =

(
Σ (k)− iνI3 ∆ (k)

∆ (k) Σ (k) + iνI3

)
, (K8)

where Σ (k) and ∆ (k) are Hermitian matrices with ma-

trix elements given by

Σss′ (k) = iJτss′ (k) sin (2φs − 2φs′) , (K9a)

∆ss′ (k) = ω0δss′ − Jτss′ (k) cos (2φs − 2φs′) . (K9b)

The corresponding real space Hamiltonian ĤKagome for
the lattice model HPT ,K. (k) is presented in Sec. IV C in
the main text.

Before ending this section, we note that the unitary
mapping UK. in Eq. (K7) is local in real space, so that any
topological edge modes of the parametric Kagome lattice
model Ĥp.a.,Kagome will also be mapped to topological
edge modes of the PT -symmetric model.
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