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Interaction-free measurement (IFM) has been proposed as a means of high-resolution, low-damage
imaging of radiation-sensitive samples, such as biomolecules and proteins. The basic setup for IFM
is a Mach–Zehnder interferometer, and recent progress in nanofabricated electron diffraction grat-
ings has made it possible to incorporate a Mach–Zehnder interferometer in a transmission-electron
microscope (TEM). Therefore, the limits of performance of IFM with such an interferometer and
a shot-noise limited electron source (such as that in a TEM) are of interest. In this work, we
compared the error probability and sample damage for ideal IFM and classical imaging schemes,
through theoretical analysis and numerical simulation. We considered a sample that is either com-
pletely transparent or completely opaque at each pixel. In our analysis, we also evaluated the impact
of an additional detector for scattered electrons. Inclusion of the scattering detector resulted in re-
duction of error by up to an order of magnitude, for both IFM and classical schemes. We also
investigated a sample re-illumination scheme based on updating priors after each round of illumina-
tion and found that this scheme further reduced error by a factor of two. Implementation of these
methods is likely achievable with existing instrumentation and would result in improved resolution
in low-dose electron microscopy.

I. INTRODUCTION

Interaction-free measurement (IFM) was first proposed
by Elitzur and Vaidman [1] as a thought experiment for
detecting the presence of a single-photon-sensitive bomb
without triggering it. The proposed setup consisted of
the bomb placed in one of the arms of a Mach–Zehnder
interferometer. This setup reached a maximum probabil-
ity of successful interaction-free bomb detection of 50%.
Following this, Kwiat and co-workers utilized the Quan-
tum Zeno Effect to propose an alternative IFM scheme
that could reach a success probability arbitrarily close to
100% [2, 3]. More recently, IFM with electrons has also
been proposed for high-resolution, low-damage imaging
of radiation-sensitive samples such as biomolecules [4, 5].
These proposals have been restricted by the requirement
of high sample contrast and are limited to 1-bit black-
and-white images.

In parallel with these developments, theoretical work
also focused on analyzing the limits of IFM for imag-
ing semitransparent phase and amplitude objects [6–
10], objects with non-uniform transparency distribu-
tion [11, 12], and incorporating non-ideal detectors and
system losses [13, 14]. This body of work introduced the
idea of a finite acceptable rate of object misidentifica-
tion (i.e. error probability) as a trade-off for lowered
sample damage. These studies established that in some
cases, quantum imaging protocols can offer an advan-
tage in terms of reduced sample damage for the same
error probability [15–17], for example, when distinguish-
ing semitransparent objects from completely transparent

or opaque objects, measuring object phase in addition to
amplitude, detecting the presence of a single defect, or
working with Poisson sources. Experimental work over
this period focused on reducing the electron dose required
for imaging radiation-sensitive samples. This reduction
in dose was achieved by spreading the dose out over sev-
eral copies of the sample (as in cryo-electron microscopy)
and by increasing the signal-to-noise ratio in noisy im-
ages acquired at low doses through image processing and
electron counting [18–29]. However, this research used
conventional microscopic imaging methods and did not
exploit the reduction in dose enabled by quantum proto-
cols.

With recent progress in nanofabrication, it has be-
come possible to perform amplitude-division interferom-
etry with a Mach–Zehnder interferometer in a standard
transmission electron microscope (TEM) and scanning
transmission electron microscope (STEM). In previous
work, we demonstrated electron interference in a stan-
dard TEM using a monolithic grating consisting of two
40 nm thick single-crystal silicon membranes as beamp-
slitters, fabricated using focused ion-beam milling [30].
Tavabi and co-workers also reported electron interference
using a similar crystalline grating [31]. Following this
work, Yasin and co-workers demonstrated electron holog-
raphy in a STEM using a nanofabricated phase grating as
the beamsplitter [32]. Nanofabricated, free-free standing
amplitude gratings have also been previously used as elec-
tron beamsplitters in a custom-made setup [33]. TEMs
provide the advantage of a high-brightness electron beam
that is easy to manipulate. Despite the low efficiency of
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single-stage Mach–Zehnder-based IFM, a comparison of
its performance with that of classical imaging is impor-
tant since it can be implemented in a TEM with cur-
rent technology. In this work, we show through the-
oretical analysis and simulation that a Mach–Zehnder
interferometer-based IFM imaging scheme offers lower
sample damage for the same error probability, as com-
pared to a classical imaging scheme. Our calculations ac-
count for the Poisson nature of the TEM electron source
but are limited to opaque-and-transparent samples. We
also introduce a re-illumination scheme, where we use
Bayesian inference to take the counts at the imaging
detectors from each round of illumination into account,
to further reduce the sample damage for the same er-
ror probability [7, 13]. This conditional re-illumination
scheme ties in with previous research in imaging and
image processing schemes that take advantage of prior
information about the source, the object, the imaging
apparatus, as well as information gained during the ex-
periment, to adaptively illuminate the sample to improve
the signal-to-noise ratio in low-illumination intensity con-
ditions [17, 27, 28, 34, 35]. We note that while we used
electrons in our analysis, other quanta could also be used,
such as ions or photons.

In Section II, we will introduce the classical and IFM
imaging schemes considered in this paper as well as the
terminology used in the results we have derived. To moti-
vate the need for conditional re-illumination, we will dis-
cuss the simplest case of unconditional re-illumination,
where each pixel is illuminated by 2 electrons, with and
without IFM, in Section III. In Section IV we will dis-
cuss the most general case, where the number of elec-
trons illuminating each pixel is derived from a Poisson
distribution. Finally, in Section V we will combine ob-
servations from these two cases to discuss conditional re-
illumination.

II. APPARATUS AND TERMINOLOGY

In Fig. 1, we show the classical and IFM imaging
schemes considered in this paper. In each scheme, the
sample is placed in the path of the incident electron
beam. Detectors at the outputs count electrons emerging
from the imaging scheme. In our analysis, we denoted the
detector for electrons transmitted through the sample as
D1. This detector is analogous to the bright-field detec-
tor in conventional microscopes. We denoted the analo-
gous detector to the dark-field detector in conventional
microscopes, i.e. the detector for electrons scattered from
the sample, as D3. The electrons that damage the sam-
ple lose energy to and scatter off of it. Therefore, we
also used the counts at D3 as a measure of the damage
suffered by the sample. IFM imaging requires another
detector at the second output port of the beamsplitter;
we denoted this detector as D2. In our analysis, we con-
sidered these detectors to be 100% efficient, with no dark
counts. We also assumed that the imaging system had no

losses. Since a counting detector for scattered electrons is
not always available on typical TEMs/STEMs, we have
considered four imaging schemes in total in this paper.
Scheme A, depicted in Fig. 1(a), is classical imaging with-
out D3. Scheme B, depicted in Fig. 1(b), is classical
imaging with D3. Scheme C, depicted in Fig. 1(c), is IFM
imaging without D3. Scheme D, depicted in Fig. 1(d), is
IFM imaging with D3. The presence of D3 in the imaging
schemes eliminated errors due to the Poisson nature of
the electron beam, resulting in fewer electrons required
to achieve a desired error rate.

Before analyzing the classical and IFM imaging
schemes with conditional re-illumination, we introduce
the notation that is used in the rest of this paper.
As mentioned before, we considered only opaque-and-
transparent samples in our analysis. Pixels are imaged
independently, so we considered any one arbitrary pixel.
We use a random variable X to represent the opacity of
the sample: X = 1 denotes an opaque pixel, and X = 0
denotes a transparent pixel. We denote the prior proba-
bility of an opaque pixel with q. The number of electrons
in the incident beam is denoted by N . In calculations
that include the Poisson nature of the electron beam, N
becomes a Poisson random variable with mean λt, where
λ denotes the beam current and t the illumination time
per pixel. The number of electrons detected at D1 is
denoted by n1, at D2 by n2, and at D3 by n3. In our
calculations, we inferred whether the pixel being exam-
ined was opaque or transparent based on the values of n1,
n2, and n3 for that pixel. This inference, also 1 or 0, is
denoted by another binary-valued random variable, X̂.
Our analysis of the different imaging schemes involved
evaluation of two quantities for each scheme: the total
probability of misidentifying a pixel, Perr, and the av-
erage number of electrons scattered by an opaque pixel,
n̄damage. We split Perr into two components: PMD, the
probability of missed detections (opaque pixels inferred
as transparent), and PFA, the probability of false alarms
(transparent pixels inferred as opaque).

Fig. 1(e) shows the two central results of this paper.
First, we obtained lower n̄damage with Scheme D com-
pared to Schemes A, B and C (see Section IV). Sec-
ond, by spreading out the total illumination dose using
conditional re-illumination, we reduced Perr at constant
n̄damage for both Schemes B, C and D (see Section V).
Together, these results show that IFM imaging with D3

and conditional re-illumination has the potential to re-
duce the damage suffered by samples during electron mi-
croscopy.

III. ANALYSIS OF CLASSICAL AND IFM
APPROACHES WITH SINGLE-SHOT

ILLUMINATION AND N = 2 ELECTRONS

In this case, since N is exactly known, we make two
simplifying observations. First, the scattering detector
D3 does not provide any additional benefit, since any



3

FIG. 1. Classical and IFM imaging schemes. (a) Classical
imaging without an additional scattering detector D3. D1

registers a count when the object is transparent to electrons.
(b) Classical imaging with D3. D3 registers a count every
time an electron scatters off the object. (c) IFM without D3.
D1 registers a count every time when the object is transpar-
ent and with probability 1

4
when the object is opaque. D2

does not register a count when the object is transparent, and
registers a count 1

4
th of the times the object is opaque. (d)

IFM with D3: D3 registers a count with probability 1
2

when
the object is opaque, and does not register a count when the
object is transparent. (e) Error probability Perr vs. mean
damage n̄damage (refer to text for definitions of these quan-
tities) for the schemes in (a)–(d), for equal prior probability
of opaque and transparent pixels. For each scheme, we in-
creased the total number of illuminations from 1 to 100 while
keeping the dose per illumination constant at 0.2 electrons.
As the number of illuminations increased, we obtained lower
Perr and higher n̄damage for all imaging schemes. For classi-
cal imaging with D3, and IFM with and without D3, n̄damage

saturated for a high number of illuminations, with continuous
reduction in Perr.

electron that was not detected by D1 or D2 must have
been scattered. Hence, we expect the same results from
Schemes A and B, and from Schemes C and D. Second,
illuminating each pixel with one electron twice is equiva-
lent to illuminating it once with two electrons. Therefore,
we will work out the theory for simultaneous illumination
with two electrons.

1. Classical imaging

Fig. 1(a) and (b) show the classical imaging Schemes
A and B. If the pixel is opaque, neither of the 2 incident
electrons will be detected at D1. If it is transparent,
both the electrons will be detected. We summarize these
observations in Table 1.

X n1

0 2
1 0

TABLE 1. Possible outcomes at D1 of classical imaging with
2 incident electrons.

Therefore, it is straightforward to design a decision
rule for X̂. Two detections at D1 implies that the pixel
was transparent. No detections imply that the pixel was
opaque. This decision rule is summarized in Table 2.

n1 X̂
0 1
2 0

TABLE 2. Decision rule for classical imaging with 2 incident
electrons.

Here we will never make any errors, so Perr = 0. We
can also evaluate n̄damage = E[N | X = 1] = 2. Thus,
even though we get error-free detection, we also damage
the opaque pixels in our sample with both electrons.

2. Interaction-free imaging

Fig. 1(c) and (d) show the IFM imaging Schemes C
and D. When X = 0, constructive interference leads
to both incident electrons being detected at D1. When
X = 1, a given incident electron is detected at D1 or D2

with probability 1
4 each and scattered off the pixel with

probability 1
2 . Since the detection is probabilistic, we

cannot be sure of how many electrons will be detected at
either detector. Hence, we summarize the probabilities
of detection of each incident electron at D1 and D2 in
Table 3.

X D1 D2

0 1 0
1 1

4
1
4

TABLE 3. Probabilities at D1 and D2 for IFM imaging.

Any D2 counts tell us that the pixel was opaque, and
hence we set X̂ = 1. Similarly, if there were no counts at
both detectors, or only one count at either detector, one
or both of the electrons must have been scattered by the
pixel. Therefore, X̂ = 1 again. However, an ambiguity
arises when n1 = 2 and n2 = 0, since this outcome is
possible with both X = 0 and X = 1. We denote the
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probability that the pixel was transparent, given that
n1 = 2 and n2 = 0, by P (X = 0 | n1 = 2, n2 = 0), which
we can evaluate using Bayes’ rule, as follows:

P (X = 0 | n1 = 2, n2 = 0) (1)

=
P (n1 = 2, n2 = 0 | X = 0)P (X = 0)

P (n1 = 2, n2 = 0 | X = 0)P (X = 0)
+ P (n1 = 2, n2 = 0 | X = 1)P (X = 1)

=
1− q

(1− q) + (1/16)q
=

1

1 + q/(16(1− q))
. (2)

If P (X = 0 | n1 = 2, n2 = 0) > P (X = 1 | n1 =

2, n2 = 0), the decision X̂ = 0 has a higher chance of
being correct. Using the expression for P (X = 0 | n1 =
2, n2 = 0) in Equation (2), we get the final decision rule
given in Table 4.

n1 n2 X̂
0 0 1
0 1 1
0 2 1
1 0 1
1 1 1

2 0 0, q≤16/17
1, q>16/17

TABLE 4. Decision rule for IFM imaging with 2 incident
electrons.

The decision rule for n1 = 2 and n2 = 0 implies that
unless the prior probability of the pixel being opaque
is large (q > 16/17), the decision X̂ = 0 has a higher
probability of being correct with two detections at D1.
Physically, the reason that the decision X̂ = 0 produces
fewer errors is that the outcomes n1 = 2 and n2 = 0
occur with certainty for a transparent pixel, but with a
probability of 1/16 for an opaque pixel. This intuition
holds unless we were already very sure of the pixel being
opaque (q > 16/17) prior to the experiment. Although
the event n1 = 2 and n2 = 0 reduced our confidence
that the pixel was opaque, X̂ = 1 still had the greater
probability of being correct.

We can now evaluate PMD and PFA:

PMD = P (X̂ = 0 | X = 1)

=

{
P (n1 = 2, n2 = 0) = 1/16, for q ≤ 16/17;
0, otherwise,

PFA = P (X̂ = 1 | X = 0)

=

{
0, for q ≤ 16/17;
1, otherwise.

The total error probability is given by Perr = qPMD +
(1− q)PFA. Hence,

Perr =

{
q/16, for q ≤ 16/17;
1− q, otherwise.

This result implies that for most values of q, up to
q = 16/17, the error probability increases linearly but

remains small (Perr ≤ 1/17). The only kind of error we
can make in this regime is a missed detection, which hap-
pens when n1 = 2 and n2 = 0 for an opaque pixel. This
kind of error becomes more probable as q increases, since
the number of opaque pixels in the sample increases. Be-
yond q = 16/17, we can only have false alarms, since
now we switch to guessing that the pixel is opaque for
the case when n1 = 2 and n2 = 0. However, since most
of the pixels are opaque anyway, the total probability of
error reduces.

We can evaluate n̄damage = E[N | X = 1] = 1, since
the probability of scattering for each incident electron is
1
2 . Thus, the IFM imaging Schemes C and D provide
lower n̄damage than the classical imaging Schemes A and
B, at the cost of non-zero Perr.

This example illustrates the fundamental trade-off that
appears in all of our results: accepting a small error prob-
ability led to reduction in the expected damage on the
sample. Further, the introduction of a second electron
reduced the error probability, at the cost of increased
damage.

IV. ANALYSIS OF CLASSICAL AND IFM
SCHEMES WITH SINGLE-SHOT

ILLUMINATION AND N ∼ Poisson(λt)
ELECTRONS

We will now derive analogous results for the more gen-
eral case of Poisson illumination, where the number of
electrons in the beam (N) is not determinate. The prob-
ability of having exactly n electrons in the beam is given
by:

P (N = n) = e−λt
(λt)n

n!
.

Here, λt is the mean number of electrons in the beam.

Scheme A: Classical imaging without D3

In the absence of an object, each of the N incident
electrons will be detected at D1, while in the presence
of an object none of them will. These observations are
summarized in Table 5.

X n1

0 N
1 0

TABLE 5. Possible outcomes at D1 for Scheme A.

Since N is Poisson distributed, we do not know before-
hand exactly how many electrons were in the beam. For
any n1 ≥ 1, the inference X̂ = 0 (i.e. the pixel is trans-
parent) would always be correct. However, ambiguity
arises when n1 = 0. The lack of detections at D1 could
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be because of an opaque pixel (X = 1), or it could be
because the beam did not contain any electrons (N = 0).

We expect our final decision rule for n1 = 0 to de-
pend on both the prior q and mean number of electrons
in the beam λt. For example, if λt was high, the prob-
ability of there being no electrons in the beam would
be low. Therefore, the lack of detections at D1 is more
likely to have been caused by an opaque pixel, and we
would expect X̂ = 1 to be the inference that leads to
fewer errors. The opposite would be true for small λt.
Similarly, increasing q would indicate greater confidence
that X = 1, and we would make that inference for more
of the ambiguous cases where n1 = 0. We refer to the
conditional probability that X = 0, given the value of
n1, as ηA(n1, q, λt) (anticipating its dependence on q and
λt). Then ηA(n1, q, λt) = 1 for n1 > 0. To determine the
decision rule for the case when n1 = 0, we calculate

ηA(0, q, λt) = P (X = 0 | n1 = 0)

=
P (n1 = 0 | X = 0)P (X = 0)

P (n1 = 0 | X = 0)P (X = 0)
+ P (n1 = 0 | X = 1)P (X = 1)

=
e−λt(1− q)

e−λt(1− q) + q
=

1

1 + eλtq/(1− q)
.(3)

This expression for ηA is comparable to the expression
for P (X = 0 | n1 = 2, n2 = 0) in Equation (2). Just as in
the N = 2 case, if P (X = 0 | n1 = 0) > P (X = 1 | n1 =

0), we would want X̂ = 0, and vice-versa. Therefore, we
get as our decision rule (for n1 = 0):

X̂ =

{
1, for ηA(0, q, λt) < 1

2 ;
0, otherwise.

(4)

As we had anticipated, this decision rule depends on both
q and λt. This decision rule is summarized in Table 6.

n1 X̂

0 1, ηA(0,q,λt)< 1
2

0, otherwise

≥ 1 0

TABLE 6. Decision rule for Scheme A.

We plot ηA(0, q, λt) as a function of q, for different val-
ues of λt between 0 and 5, in Fig. 2. We also depict
the decision threshold ηA(0, q, λt) ≶ 1

2 by the horizontal
dashed line. The probability of the beam having zero
electrons is given by e−λt. Therefore, for low values of
λt the probability of no detections at D1 (n1 = 0) due
to the beam having zero electrons is high. Hence, we
gain little information from the illumination experiment,
and it makes sense to infer X̂ based on q. Therefore,
ηA(0, q, λt) = 1 − q for λt = 0 in Fig. 2. As λt in-
creases, the probability of zero electrons in the beam re-
duces. Therefore, the probability of n1 = 0 being due to
an opaque pixel increases. Hence, we can conclude that
X̂ = 1 over a wider range of the prior q. As a result,
ηA(0, q, λt) < 1

2 over an increasingly wider range of q in

FIG. 2. ηA(0, q, λt), the probability of the pixel being trans-
parent (X = 0) given n1 = 0, vs. the known prior q, for λt
ranging from 0 (no beam) to 5 electrons in the beam on aver-

age. We infer X̂ = 1 if ηA(0, q, λt) < 1
2

and X̂ = 0 otherwise.
The horizontal black dashed line indicates this threshold for
inferring X̂, ηA(0, q, λt) = 1

2
. We see that as λt increases, the

value of q at which ηA(0, q, λt) is less than 1
2

decreases. Physi-
cally, when the beam becomes stronger (i.e. λt increases), the
probability of there being no electrons in the beam reduces
and n1 = 0 is more likely to be caused by an opaque pixel
(X = 1). Therefore, as λt increases, Perr is minimized by the

decision X̂ = 1 over a wider range of q.

Fig. 2 for λt = 0.5, 2 and 5.

We can now look at the probabilities of missed de-
tections and false alarms, PMD and PFA. When the
pixel is opaque (X = 1), we do not get detections at
D1 (n1 = 0). Hence, we either always make a mis-
take (when ηA(0, q, λt) ≥ 1

2 ) or never make one (when

ηA(0, q, λt) < 1
2 ). Thus,

PMD = P (X̂ = 0 | X = 1)

=

{
0, for ηA(0, q, λt) < 1

2 ;
1, otherwise.

When the pixel is transparent (X = 0), if the beam has
electrons (N > 0), we never make a mistake. Errors arise

only when N = 0. In this case, if ηA(0, q, λt) ≥ 1
2 , X̂ = 0

and our inference is still correct. If ηA(0, q, λt) < 1
2 ,

X̂ = 1 and we have a false alarm. Hence,

PFA = P (X̂ = 1 | X = 0)

=

{
P (N = 0), for ηA(0, q, λt) < 1

2 ;
0, otherwise

=

{
e−λt, for ηA(0, q, λt) < 1

2 ;
0, otherwise.
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The total error probability Perr is given by:

Perr =

{
(1− q)e−λt, for ηA(0, q, λt) < 1

2 ;
q, otherwise.

The condition for ηA(0, q, λt) can be recast into one for
q using Equation (3), as follows:

ηA(0, q, λt) <
1

2
⇒ eλt

q

1− q
> 1⇒ q >

1

1 + eλt
.

Hence,

Perr =

{
q, for q ≤ 1

1+eλt
;

(1− q)e−λt, otherwise.

This expression is similar to the expression for Perr in
the N = 2 case, with the addition of the statistics of the
incident beam (through the e−λt term).

We can evaluate n̄damage = E[N | X = 1] = λt. Hence,
Perr can also be expressed as

Perr =

{
q, for q ≤ 1

1+eλt
;

(1− q)e−n̄damage , otherwise.
(5)

As an example, consider the case of λt = 1
2 and q = 1

2 .

From the equations above, 1
1+eλt

= 1
1+e1/2

≈ 0.378, and

n̄damage = 1
2 . Since q > 1

1+eλt
, Perr = 1

2e
−1/2 ≈ 0.303.

Scheme B: Classical imaging with D3

In this scheme, we detect every electron in the beam
in one of the two detectors D1 and D2. The possible
detection events are summarized in Table 7.

X n1 n3

0 N 0
1 0 N

TABLE 7. Possible outcomes at D1 and D3 for Scheme B.

Just as for Scheme A, if n1 > 0, we can correctly infer
that X̂ = 0. Similarly, if n3 > 0, we can infer that
X̂ = 1. The only case in which we need to guess is when
n1 = 0 and n3 = 0. Due to the presence of D3, we
can be sure that all electrons in the incident beam were
counted. Hence, n1 = 0 and n3 = 0 is only possible if
N = 0. In this case, we do not gain any information
about the sample from our experiment. Therefore, we
would assign X̂ based on the known prior q, which is
unchanged:

ηB(0, q, λt) = P (X = 0 | n1 = 0, n3 = 0) = 1− q.(6)

X̂ = 0 if q ≤ 1
2 and X̂ = 1 if q > 1

2 . The final decision
rule is summarized in Table 8.

n1 n3 X̂
0 ≥1 1
≥1 0 0

0 0
0 q≤ 1

2

1 q> 1
2

TABLE 8. Decision rule for Scheme B.

We make errors only for pixels where n1 = 0 and n3 =
0. In this case,

PMD = P (X̂ = 0 | X = 1) =

{
e−λt, for q ≤ 1

2 ;
0, otherwise,

PFA = P (X̂ = 1 | X = 0) =

{
0, for q ≤ 1

2 ;
e−λt, otherwise.

Here, as in Scheme A, the e−λt term comes from the
probability that N = 0. Using these results, we can
evaluate Perr as follows:

Perr =

{
qe−λt, for q ≤ 1

2 ;
(1− q)e−λt, otherwise.

(7)

Compared to the expression for Perr for Scheme A (Equa-
tion (5)), we see from Equation (7) that the error proba-
bility in Scheme B is reduced by a factor of e−λt for small
values of q. This reduction demonstrates the benefit of
the addition of D3 in Scheme B.

We can rewrite Equation (5), for the case q < 1
1+e−λt

<
1
2 , as

Perr = q = qe−λt + q(1− e−λt).

The first term in this equation is the same as Perr in
Equation (7) for q ≤ 1

2 and arises when the beam has no

electrons and we guess X̂ incorrectly. The second term
is due to errors made when the beam has electrons, but
they are scattered by an opaque pixel. Since q < 1

1+e−λt
,

we decide that X̂ = 0, which is an error. These addi-
tional errors in Scheme A are eliminated by having an
additional detector for scattered electrons in Scheme B.

Damage is the same as Scheme A: n̄damage = λt.
Hence, Perr can also be expressed as

Perr =

{
qe−n̄damage , for q ≤ 1

2 ;
(1− q)e−n̄damage , otherwise.

(8)

In the example case outlined for Scheme A (λt = 1
2 and

q = 1
2 ), Perr = 1

2e
−1/2 ≈ 0.303. Hence, for this particu-

lar case, there is no advantage in using D3. This result
occurs because q = 1

2 > 1
1+e−λt

for any λt > 0. As we

have seen above, for q > 1
1+e−λt

the expressions for error
probability for the two schemes are identical. Physically,
this result makes sense when we consider the scenarios in
which an error could be made with q = 1

2 . For Scheme A,
when the beam contains no electrons (N = 0), we would

get n1 = 0 and hence assign X̂ = 1 (since q = 1
2 > 0.378).

For q = 1
2 , this inference is incorrect half the time. If the
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FIG. 3. Comparing Perr vs. q for Schemes A and B, for (a)
n̄damage = 0.5, and (b) n̄damage = 2. The presence of D3

reduces Perr for q < 0.5. Beyond q > 0.5, the two schemes
give the same Perr, as explained in the text.

beam contains at least one electron and we get n1 = 0,
we would again assign X̂ = 1. This would always be
correct, since n1 = 0 with N 6= 0 is only possible when
X = 1. For Scheme B, with n1 = 0 and n3 = 0, we would
assign X̂ = 0, in accordance with the decision rule above
(alternatively, we could guess X̂ at random since q = 1

2 ).
Both these decision rules would also be incorrect half the
time. When N 6= 0, we would get counts at either D1 or
D3. Hence, we would again never make an error for any
q. Therefore, in both schemes, with q ≥ 1

2 , the only case
in which we make errors is when N = 0. Hence, Perr is
equal for both schemes for q = 1

2 .
In Fig. 3, we compare Perr for Scheme B (solid purple

curve) and Scheme A (dashed blue curve), as a function of
q. Fig. 3(a) is for n̄damage = 0.5, and 3(b) for n̄damage = 2.
The addition of D3 lowers Perr for Scheme B compared to
Scheme A, for q < 1

2 . For q ≥ 1
2 , D3 offers no advantage,

as explained previously.

Scheme C: IFM imaging without D3

For this scheme, due to the possibility of detections
at D1 (i.e. n1 > 0) with both opaque and transparent
pixels, there exists a threshold for the number of detec-
tions at D1 below which the decision that the pixel was
opaque (X̂ = 1) is a better choice and vice-versa. We
have summarized the detection probabilities at D1 and
D2 for Scheme C in Table 3. In the most general case,
we will have to infer X̂ with n1 ≥ 0 and n2 ≥ 0 such that
n1 + n2 ≤ N . If n2 > 0, regardless of n1, we can decide
that X̂ = 1, and we would never make an error since this
event is impossible if X = 0. The event n2 = 0 is possible
in two cases: when X = 0, or when X = 1 but no elec-
trons reach D2. In the first case, all incident electrons

will be detected at D1 with probability 1, while in the
second case this probability is 1

4 for each electron. Hence,
we would expect fewer counts at D1 for X = 1 compared
to X = 0. Therefore, there should exist a threshold count
at D1 below which X̂ = 1 is a better decision and above
which X̂ = 0 is better. We denote this threshold by k∗.
This decision rule is summarized in Table 9.

n1 n2 X̂
any ≥ 1 1
< k∗ 0 1
≥ k∗ 0 0

TABLE 9. Decision rule for IFM imaging with Poisson num-
ber of incident electrons.

To find k∗, we first look at the conditional probability
ηC(n1, q, λt) that X = 0 given the specified value of n1

and n2 = 0, similar to the analysis for Scheme A.

ηC(n1, q, λt) = P (X = 0 | n1, n2 = 0)

=
P (n1, n2 = 0 | X = 0)P (X = 0)

P (n1, n2 = 0 | X = 0)P (X = 0)
+ P (n1, n2 = 0 | X = 1)P (X = 1)

=

(
e−λt(λt)n1/n1!

)
(1− q)(

e−λt(λt)n1/n1!
)

(1− q)
+
(
e−λt/4(λt/4)n1/n1!

)
e−λt/4q

=
1

1 +
(
eλt/2/4n1

)
(q/1− q)

. (9)

Here, the third equality results from the fact that the
counts at D1 and D2 are independent Poisson processes.
When X = 0, the mean of the Poisson process at D1 is
λt, while n2 = 0 is a probability 1 event. When X = 1,
the means of the Poisson processes at both D1 and D2

are λt/4.

The decision rule for X̂ is the same as that in Equa-
tion (4). We can also use the expression for ηC(n1, q, λt)
to find k∗. From Equation 9, we get

ηC(n1, q, λt) ≥
1

2
⇒ eλt/2

4n1

q

1− q
≤ 1.

Solving
(
eλt/2/4n1

)
(q/1− q) = 1 for n1 = k∗, we get

k∗ =
λt

2
log4e+ log4

(
q

1− q

)
. (10)
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We can now work out the error probabilities:

PMD = P (X̂ = 0 | X = 1)

= P (n1 ≥ k∗, n2 = 0 | X = 1)

= P (n1 ≥ k∗ | X = 1)P (n2 = 0 | X = 1)

=

∑
k≥k∗

e−λt/4
(λt/4)k

k!

 e−λt/4,

PFA = P (X̂ = 1 | X = 0)

= P (n1 < k∗, n2 = 0 | X = 0)

= P (n1 < k∗ | X = 0)P (n2 = 0 | X = 0)

=
∑
k<k∗

e−λt
(λt)k

k!
.

Combining these gives the total error probability, Perr:

Perr = q

∑
k≥k∗

e−λt/4
(λt/4)k

k!

 e−λt/4

+ (1− q)

(∑
k<k∗

e−λt
(λt)k

k!

)
.

In these equations, k is a non-negative integer that rep-
resents the possible values of n1.

Since on average only half of the incident electrons
scatter off the sample, n̄damage = λt/2. Hence,

Perr = q

(∑
n>k∗

e−n̄damage/2
(n̄damage/2)k

k!

)
e−n̄damage/2

+ (1− q)

(∑
k<k∗

e−2n̄damage
(2n̄damage)k

k!

)

= qe−n̄damage

(∑
k>k∗

(n̄damage/2)k

k!

)

+ (1− q)e−2n̄damage

(∑
k<k∗

(2n̄damage)k

k!

)
. (11)

The first term in Equation (11) decays as e−n̄damage ,
which is the same decay as Equations (5) for Scheme A
and (8) for Scheme B. The second term decays as
e−2n̄damage , which is faster than the decay for the clas-
sical Schemes A and B. Therefore, we expect this factor
to lower Perr for IFM below that for Schemes A and B.

As an example, consider the case of λt = 1 and q = 1
2 .

We take λt = 1 instead of 1
2 (as in the examples for

Schemes A and B) to keep n̄damage = 1
2 . From Equa-

tion (10), k∗ = 1
2 log4e ' 0.36. Since k in Equation (11)

can only take non-negative integer values, the first term
in the equation will have all values of k greater than 1,
and the second will have just a single term, k = 0. Hence,

we get

Perr =
1

2

∑
n≥1

e−1/4

(
1
4

)n
n!

 e−1/4

+
1

2
e−1 =

1

2

(
1− e−1/4

)
e−1/4 +

1

2
e−1 ≈ 0.27.

Note that Perr here is lower than that for the classical
imaging Schemes A and B (for which Perr = 0.303), for
the same n̄damage = 1

2 . This lower damage illustrates the
advantage offered by IFM imaging.

Scheme D: IFM imaging with D3

Here, we add D3 to count scattered electrons, just as in
Scheme B. The detection probabilities are summarized
in Table 10.

X D1 D2 D3

0 1 0 0
1 1

4
1
4

1
2

TABLE 10. Detection probabilities at D1, D2 and D3 for
Scheme D.

If we observe counts at D2 or D3, i.e. either n2 ≥ 1
or n3 ≥ 1 (or both), we decide that X̂ = 1, regardless
of the counts on D1, and we would never make an error.
Ambiguity only arises if n2 = 0 and n3 = 0. As in
Scheme C, there should exist a threshold count k∗ at D1

below which X̂ = 1 is a better decision and above which
X̂ = 0 is better. Table 11 summarizes this decision rule.

n1 n2 n3 X̂
any any ≥ 1 1
any ≥ 1 any 1
< k∗ 0 0 1
≥ k∗ 0 0 0

TABLE 11. Decision rule for Scheme D.

Using the same approach for finding k∗ as before, we
begin with

ηD(n1, q, λt) = P (X = 0 | n1, n2 = 0, n3 = 0)

=
P (n1, n2 = 0, n3 = 0 | X = 0)P (X = 0)

P (n1, n2 = 0, n3 = 0 | X = 0)P (X = 0)
+ P (n1, n2 = 0, n3 = 0 | X = 1)P (X = 1)

=

(
e−λt(λt)n1/n1!

)
(1− q)(

e−λt(λt)n1/n1!
)

(1− q)
+
(
e−λt/4(λt/4)n1/n1!

)
e−λt/4e−λt/2q

=
1

1 + (1/4n1) (q/1− q)
. (12)

Again, the second equality results from the fact that
the counts at each of the three detectors are indepen-
dent Poisson processes (with means λt/4 at D1 and
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D2, and λt/2 at D3, when X = 1). We can solve for
ηD(n1, q, λt) = 1

2 to obtain the value of k∗:

k∗ = log4

(
q

1− q

)
. (13)

This expression is the same as the second term in Equa-
tion (10) for Scheme C. Here, we see that k∗ does not
depend on the mean number of incident electrons. This
is because by adding D3, we have eliminated uncertainty
from the Poisson statistics of the beam, since each input
electron is detected. The only case in which the beam
statistics matter is when there are no electrons in the
beam (N = 0).

In Fig. 4, we plot ηA(n1, q, λt), ηC(n1, q, λt) and
ηD(n1, q, λt) as functions of the prior q. The curves
are plotted at λt = 2, for n1 = 0 (Fig. 4(a)) and
n1 = 2 (Fig. 4(b)). When n1 = 0, for Scheme D,
we gain no new information in the experiment. Hence
ηD(n1, q, λt) = 1− q. For Scheme C, the possibility that
n1 = 0 due to X = 1 is not ruled out. Therefore, the
range of q over which inferring X̂ = 1 gives fewer errors
is larger than that for Scheme D. In Schemes C and D,
on average half the incident electrons interact with the
sample, while in Scheme A all of them do. Therefore, if
we observe n1 = 0 with Scheme A, inferring X̂ = 1 leads
to fewer errors over a wider range of q than with Schemes
C and D. When n1 = 2, the value of ηA(n1, q, λt) remains
the same in Scheme A since ηA(n1, q, λt) is the same for
all n1 > 0. However, for both Schemes C and D, we can
be much more certain that the pixel is transparent for
n1 = 2 than for n1 = 0. Therefore, the range of q over
which we infer X̂ = 0 increases.

We can compute the error probabilities for Scheme D
in the same way as for Scheme C:

PMD = P (X̂ = 0 | X = 1)

= P (n1 ≥ k∗, n2 = 0, n3 = 0 | X = 1)

= P (n1 ≥ k∗ | X = 1)P (n2 = 0 | X = 1)

P (n3 = 0 | X = 1)

=

∑
k≥k∗

e−λt/4
(λt/4)k

k!

 e−λt/4e−λt/2,

PFA = P (X̂ = 1 | X = 0)

= P (n1 < k∗, n2 = 0, n3 = 0 | X = 0)

= P (n1 < k∗ | X = 0)P (n2 = 0 | X = 0)

P (n3 = 0 | X = 0)

=
∑
k<k∗

e−λt
(λt)k

k!
,

Perr = q

∑
k≥k∗

e−λt/4
(λt/4)k

k!

 e−3λt/4

+ (1− q)

(∑
k<k∗

e−λt
(λt)k

k!

)
.

We note that the false alarm probability PFA is the same
as for Scheme C, since P (n3 = 0 | X = 0) = 1. However,
the missed detection probability PMD is reduced by a
factor of e−λt/2 due to the presence of D3. Intuitively,
some of the pixels for which we incorrectly inferred X̂ = 0
without D3 are now correctly assigned as opaque due to
detections at D3, lowering the rate of missed detections.

n̄damage is the same as for Scheme C, i.e. λt/2. Hence,

Perr = q

∑
k≥k∗

e−n̄damage/2
(n̄damage/2)k

k!

 e−3n̄damage/2

+ (1− q)

(∑
k<k∗

e−2n̄damage
(2n̄damage)k

k!

)

= qe−2n̄damage

∑
k≥k∗

(n̄damage/2)k

k!


+ (1− q)e−2n̄damage

(∑
k<k∗

(2n̄damage)k

k!

)
. (14)

Equation (14) has two terms, both with a decay factor
of e−2n̄damage . Just as for Equation (11) in Scheme C,
we can expect this factor to lower Perr for Scheme D
below that for Schemes A and B (Equations (5) and (8)).
Further, since this factor is present in both terms (as
opposed to just the second term in Equation (11)), we can
expect Perr for Scheme D to be lower than in Scheme C
as well. From Equation (13), with the same example
parameters as Scheme C (λt = 1 and q = 1

2 ), k∗ = 0.
This value of k∗ eliminates the second term from the
expression for Perr, and we get

Perr =
1

2

∑
k≥0

e−1/4

(
1
4

)k
k!

 e−3/4 =
1

2
e−3/4 ≈ 0.236.

We see that Perr for Scheme D is lower than Schemes A,
B and C, for the same value of n̄damage.

Fig. 5(a) is a comparison of Perr vs. q for the four
different schemes outlined above. Each curve was plotted
for n̄damage = 2, to compare the schemes at constant
damage. The kinks in the curves are due to changes in the
optimal decision scheme (and therefore, the expression
for Perr) as a function of q (see Equations (5), (8), (11)
and (14)). For Schemes C and D, there are multiple kinks
due to the dependence on q of k∗ (see Equations (10) and
(13)).

The advantage of the scattering detector D3 in terms
of lowering Perr for both classical and IFM imaging is
apparent in Fig. 5(a). Further, the error for Scheme D
is the lowest of all four schemes for a broad range of q.
This range of q includes two important regimes: low q,
which is applicable to most electron microscopy samples,
and q = 1

2 , which is a reasonable initial guess for a com-
pletely unknown sample. We see that Scheme C offers
an advantage over Scheme A for low values of q as well,
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FIG. 4. η(n1, q, t) vs. q at λt = 2 for classical imaging Scheme A, and IFM imaging Schemes C and D, for (a) n1 = 0 and

(b) n1 = 2. Also indicated by the horizontal dotted line with cross markers is the threshold for inferring X̂, η(n1, q, λt) = 1
2
.

For Scheme A, ηA is the same for all n1, and remains unchanged in (a) and (b). For Schemes C and D, as n1 increases, the

probability of the pixel being transparent increases, and hence the range of q for which inferring X̂ = 0 leads to lower Perr

grows larger.

FIG. 5. Comparison of Perr and n̄damage for classical imaging Schemes A and B, and IFM imaging Schemes C and D. (a) Perr

vs. q for the four imaging schemes. Scheme D gives the lowest Perr. (b) Perr vs. n̄damage for the imaging schemes. The curve
for Scheme B overlaps with that for Scheme A. Again, Scheme D gives the lowest Perr for a given value of n̄damage.

although the reduction in Perr here is not as large as the
reduction in Perr for Scheme D. Finally, Scheme C has
a larger error than Scheme B for all values of q. For
q > 0.5, the error in Scheme C is larger than all other
schemes, because of missed detections due to scattering
from opaque pixels.

Fig. 5(b) shows Perr as a function of n̄damage for all
the schemes, at q = 1

2 . As described earlier, for all

λt > 0, eλt > 1, and hence 1
1+eλt

< 1
2 . Therefore, the

expressions for Perr are identical for Schemes A and B.
Hence, the two curves overlap in Fig. 5(b). We see that

Scheme C provides a lower Perr than classical imaging
for n̄damage < 0.93. Beyond this value of n̄damage, missed
detections due to scattering from the sample result in a
greater Perr than Schemes A and B. Since q is constant,
the kinks in the curve for Scheme C indicate the values
of the mean number of beam electrons λt (and corre-
spondingly, n̄damage) at which the threshold k∗ changes,
in accordance with Equation (10). As in Fig. 5(a), the
optimal decision scheme evolves, this time with λt. We
had already made this observation in Fig. 4. Removing
missed detections by introducing D3 in Scheme D fur-
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ther reduces Perr below Schemes A and B for all values
of n̄damage. As we had noted earlier, the expression for
k∗ (Equation (13)) for Scheme D does not depend on λt.
Therefore, k∗ does not change with n̄damage, leading to a
smooth curve for Perr for Scheme D.

V. CONDITIONAL RE-ILLUMINATION

As seen above, the Poisson distribution of the source
creates an ambiguity in the interpretation of the electron
counts at the detectors, leading to errors. One possible
strategy to reduce these errors is to re-illuminate each
pixel with the same beam. In this case, the error would be
equivalent to single-shot illumination with a beam that
has twice the dose (i.e. twice the λt). As seen from the
expressions for the error probability Perr in each scheme,
an increase in λt would lead to a reduction in Perr for a
given value of prior q.

However, we do not need to re-test each pixel. Pixels
that we are sure are either opaque or transparent (i.e. the

inference of X̂ for those pixels is not made on the basis
of a probabilistic decision rule) need not be re-tested.
For example, for Scheme C (IFM imaging without D3),
we would re-test pixels for which the number of counts
on detector D2, n2 = 0 (for any value of the counts on
D1, n1), since this was the only case in which the pixel
value is not known with surety. We will refer to such a
re-illumination scheme as conditional re-illumination.

Even after re-illumination, some pixel values will not
be known with surety. For some of the pixels for which
n2 = 0 in Scheme C, the probability of making an in-
correct inference for X̂ will be low. For example, if the
number of detections at D1 is high, we can be confi-
dent that the pixel is transparent. One way to use a
confidence level is to set a re-illumination threshold, ε,
such that if η(n1, q, λt) < ε or η(n1, q, λt) > 1 − ε, we
do not re-test the pixel under consideration. Thus, we
only re-illuminate pixels for which η(n1, q, λt) ∈ [ε, 1− ε].
Note that here we have used a general η(n1, q, λt) to re-
fer to the probability of a pixel being transparent given
n1, q and λt, since these considerations can apply to any
of the schemes considered in Section IV.

A sequence of illuminations updates our belief on the
opacity of the pixel. Starting with prior qm−1 on the
probability that the pixel is opaque before the mth round
of illumination, we again use Bayes’ rule to update the
prior to

qm = 1− η(n1, qm−1, λt),

after the mth round of illumination. Note that we now
use λt to refer to the mean electron number per pixel
per illumination. The initial prior is q0 = q, and based
on the re-illumination threshold above, we re-illuminate
when qm ∈ [ε, 1 − ε], which we call the range of uncer-
tainty. Illuminations are repeated until qm falls outside
the range of uncertainty, or a pre-defined maximum num-

ber of illuminations M is reached.
Before considering the general case of a Poisson-limited

beam for all four imaging schemes, we illustrate the idea
of conditional re-illumination through two short exam-
ples, for Schemes A (classical imaging without D3) and C
(IFM imaging without D3).

Example 1: Scheme A

We consider the imaging Scheme A with λt = 2 and
q0 = 1

2 and set the re-illumination threshold at ε = 0.1.
After the first round of illumination, we would infer that
any pixels for which n1 > 0 are transparent (X̂ = 0); this
decision is always correct, and no re-testing is required.
For pixels where n1 = 0, we have

q1 = 1− ηA(n1, q0, λt) = 1− ηA(0, 1
2 , 2)

= 1− 1

1 + e2 1
2/(1−

1
2 )
≈ 0.881,

by substituting in Equation (3). Since q1 falls in the
range of uncertainty, we re-test each of these pixels.

In the second round of illumination, if n1 > 0 for any
of the re-tested pixels, X̂ = 0 as before. If n1 = 0 again,

q2 = 1− ηA(n1, q1, λt) = 1− ηA(0, 0.881, 2)

= 1− 1

1 + e2 (0.881/0.119)
≈ 0.992.

Now, since q2 falls outside the range of uncertainty, we
will not re-test any of these pixels and assign X̂ = 1. The
probability of error is still non-zero, but smaller than that
with just one round of illumination. In this case all the
opaque pixels will be re-tested, and on average we will
not gain any advantage in terms of reduced damage.

As a final remark, we note that if λt = 3,
ηA(n1, q0, λt) ≈ 0.047 for pixels for which n1 = 0, af-
ter the first round of illumination. Thus, we would not
re-test any pixel. As λt increases, the probability that
there was at least one electron in the beam increases.
Therefore, if n1 = 0, there is a smaller chance of making
an error if we set X̂ = 1 with increasing λt.

Example 2: Scheme C

We consider the imaging Scheme C with λt = 10 and
q0 = 1

2 . Ambiguity arises when n2 = 0. We can evaluate
ηC(n1, q0, λt) for these parameters using Equation (9):

ηC(n1, q0, λt) = ηC(n1,
1
2 , 10) =

1

1 + e5/4n1
.

In Fig. 6(a), we plot ηC(n1, q0, λt) as a function of the
counts at D1, n1. This figure shows that ηC(n1, q0, λt) is
small for low values of n1, and increases to ≈ 1 for n1 ≥
7. If we detect few electrons at D1, it is more probable
that an opaque pixel is scattering the incident electrons
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than for the pixel to be transparent and the number of
illumination electrons being very low. Therefore, we can
be confident that X = 1. If we detect more electrons at
D1, it is more probable that the pixel was transparent.
In these limits, the probability of making an error is low.
The solid orange horizontal lines in Fig. 6(a) show the re-
illumination thresholds with ε = 0.05. We can see that
the re-illumination condition is satisfied for 2 ≤ n1 ≤ 5.
Instead, if we use ε = 0.25, as shown by the dashed orange
horizontal lines in Fig. 6(a), the re-illumination condition
is satisfied for 3 ≤ n1 ≤ 4. For each value of ε, outside the
corresponding range of n1, the probability of incorrectly
inferring X̂ is below our re-illumination threshold. For
example, if n1 = 2 for a particular pixel, ηC(n1, q0, λt) =
0.097 (hence q1 = 0.903), and this pixel would be re-
tested if we work with ε = 0.05. In the second round, if
n1 = 2 again for this pixel, ηC(n1, q0, λt) = 0.044. Hence

we would assign X̂ = 1 with a very low Perr. However, if
we work with ε = 0.25, this pixel would not be re-tested.
Hence, n̄damage with ε = 0.25 would be lower than that
with ε = 0.05, at the cost of increased Perr.

Evolution of qm

In Fig. 6(b), we plot the evolution of qm for three
sample pixels over multiple rounds of conditional re-
illumination, for Scheme C. We obtained this plot us-
ing a Monte Carlo simulation, the details of which are
described later, and Bayesian inference to update qm as
described before. For this simulation, we chose the dose
per illumination λt = 0.1, M = 20, and ε = 0.05. For
the pixel in the top plot in Fig. 6(b), there was a detec-
tion at D1 on the first illumination. Hence, q1 reduced
from its initial value of 1

2 . Following this detection, there
were no further detections till the fourteenth illumina-
tion. However, since this imaging scheme does not have
a D3, the lack of detections could be because of electrons
scattering off the pixel. Therefore, qm slowly increases
to account for this possibility. Further D1 detections in
the fourteenth and fifteenth illuminations reduced q15 to
below ε, and we inferred X̂ = 0. This pixel was not illu-
minated in future rounds. For the pixel depicted in the
middle plot in Fig. 6(b), there were no detections until
the seventh round of illumination, when there was a de-
tection at D2. This detection set q7 to 1. Hence, we
inferred that X̂ = 1 and stopped illuminating this pixel
in future rounds. For the pixel in the bottom plot, there
were no detections in any of the twenty rounds of illumi-
nation. Just as for the pixel in the top panel, qm slowly
increased, but did not cross 1−ε. At the end of the twen-
tieth round, we were forced to make a guess for X̂. Since
q20 is closer to 1, we guessed X̂ = 1, which was correct
in this case. These three examples demonstrate different
trajectories that the prior q can take for different pixels.
Conditional re-illumination ensures that the illumination
strategy for each pixel is tailored to the trajectory being
followed by that pixel’s prior.

The acceptable ranges of the error probability Perr and
scattered electrons n̄damage dictate the parameter space
for designing a conditional re-illumination experiment.
Fig. 7(a) shows Perr as a function of the maximum num-
ber of illuminations M for ε = 0.05 (solid orange curve
with cross markers) and ε = 0.25 (dashed orange curve
with circular markers), for q = 1

2 , λt = 0.2. As M in-
creased, Perr continuously decreased. This trend is as we
would expect; more illuminations drive qm for each pixel
closer to 0 or 1, reducing errors. Fig. 7(b) shows the
corresponding values of n̄damage; we see that n̄damage in-
creased with increasing M , saturating to 0.95 for ε = 0.25
and 1.8 for ε = 0.05. This saturation occurs because as
the number of illuminations increases, the number of pix-
els being re-tested reduces, and hence the contribution of
each successive round of illumination to the damage re-
duces. Therefore, Fig. 7 illustrates the trade-off between
error probability and sample damage with increasing con-
ditional re-illumination. Further, this figure also shows
the impact of the acceptable re-illumination threshold on
error probability and damage: a larger re-illumination
threshold leads to a greater probability of error but a
smaller amount of sample damage, and vice-versa. For
example, suppose for a particular imaging experiment, an
acceptable value of Perr is ≈ 0.16. As can be seen from
Fig. 7(a), we can obtain this value by choosing M ≈ 30
and ε = 0.25, or M ≈ 16 and ε = 0.05. From Fig. 7(b),
we see that the value of n̄damage for the first choice of
parameters would be ≈ 0.95, while for the second choice
of parameters it would be ≈ 1.15. Hence, the first choice
seems preferable. However, there might be other exper-
imental constraints that influence the choice of parame-
ters (for example, data collection time, and therefore M ,
might be limited by sample drift).

In order to determine the optimal set of parame-
ters to obtain a given Perr and n̄damage point, we per-
formed Monte Carlo simulations of the conditional re-
illumination process for all four imaging schemes. We
use an object with 106 pixels and an initial q = 1

2 . In
our simulations, we picked the number of electrons inci-
dent on each pixel per illumination from a Poisson dis-
tribution with mean λt. Then, we allocated electrons to
each detector for the imaging scheme under investigation
(IFM without D3), based on the detection probability at
that detector. At the end of each round of illumination,
we used the expressions for η(n1, q, λt) derived for each
scheme (Equations (3), (6), (9) and (12)) to update qm
for each pixel. We used this updated qm as the prior for
the next round of illumination. During the simulation,
we used counts at D3 to keep track of the number of
electrons incident on each opaque pixel, even for schemes
in which we did not use the counts at D3 to update qm.
We repeated this process for each pixel until one of two
stopping conditions were met: either the updated qm fell
outside the re-illumination range, or the number of illu-
minations reached a predefined maximum, M . At the
end of the simulation, we made an inference for pixels
for which qm was still inside the re-illumination range
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FIG. 6. Conditional re-illumination applied to IFM imaging Scheme C. (a) ηC(n1, q0, λt) (black dots) as a function of n1, with
λt = 10 and q0 = 1

2
. Also indicated are re-illumination ranges corresponding to two values of the re-illumination threshold

ε: ε = 0.05 (solid orange line) and ε = 0.25 (dashed orange line). (b) Three examples of the evolution of q with multiple
illuminations for Scheme C. These q trajectories were obtained using Monte Carlo simulations, with a maximum of M = 20
illuminations, a dose per illumination λt = 0.1 electrons per pixel, and ε = 0.05. The top panel is for a transparent pixel
(X = 0); qm decreased with each detection at D1, and dropped below ε = 0.05 after the third D1 detection. For the pixel in

middle panel, a D2 detection at the 7th round of illumination confirmed qm = 1 (hence X̂ = 1). For the pixel in the lower panel,
there were no detections in any of the illuminations. qm slowly increased but did not cross the error threshold. Therefore, at
the end of the 20th illumination, we were forced to make a guess for this pixel. Since q20 > 0.5, we guessed X̂ = 1.

based on whether qm was greater or less than 1
2 . Fol-

lowing this decision, we calculated Perr by averaging the
absolute difference between the actual pixel value X and
the inferred value X̂ over all the pixels. We calculated
n̄damage by dividing the total counts at D3 for all the pix-
els by the number of opaque pixels. We performed these
simulations for λt ∈ [0.1, 2], M ∈ [1, 100], and ε ∈ [0, 0.2],
for each imaging scheme.

In Fig. 8 we plot the convex hull of the (n̄damage, Perr)
points obtained from these simulations for each scheme.
This figure has almost the same n̄damage values for a given
Perr as the values in Fig. 1(e), which were obtained for ε =
0, λt = 0.1 and the same range of M as here. However,
the specific (ε,M, λt) values at which convex hull for each
of the schemes was obtained are different from those in
Fig. 1(e). As an example, for Scheme D (IFM imaging
with D3, green curve with square markers in Fig. 8), the
10 points with the smallest Perr values on the convex
hull, along with the (M, ε, λt) values at these points, are
summarized in Table 12.

The general trend in these values is for ε to reduce
towards 0, λt to increase, and M to increase towards
100 as Perr reduces and n̄damage increases. The choice of
parameters in a potential experiment would depend on
the acceptable Perr and n̄damage values, along with the
achievable λt and M values in the experimental setup.

ndamage Perr(×10−2) M ε λt
0.5686 8.783 25 0.15 0.1
0.5883 7.834 25 0.05 0.1
0.5958 6.900 30 0.15 0.1
0.6261 4.495 40 0.10 0.1
0.6458 3.079 100 0.10 0.1
0.6796 0.778 100 0.05 0.1
0.6901 0.059 90 0 0.1
0.6917 0.035 100 0 0.1
0.7172 0.0058 60 0 0.2
0.7184 0.0006 75 0 0.2

TABLE 12. Detection probabilities at D1, D2 and D3 for
Scheme D.

As can be seen in Fig. 8, there appears to be no ad-
vantage of using conditional re-illumination for Scheme A
(classical imaging withoutD3) – the curve for this scheme
is identical to the one in Fig. 5(b). We had already made
the observation that conditional re-illumination does not
benefit Scheme A in Example 1 earlier in this section.
However, for the other three schemes, we obtain a satura-
tion in n̄damage with increasingly low values of Perr. This
saturation occurs for the same reasons as for Fig. 7(b).
For Scheme B (classical imaging with D3), n̄damage satu-
rated to ∼ 1 at low Perr. This value makes sense because
for correct identification of an opaque pixel, we would ide-
ally need only one electron. For Scheme C (IFM imaging
without D3), n̄damage saturated at 2. In this scheme, we
want a detection at D2 to correctly identify an opaque
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FIG. 7. Error and damage for IFM imaging Scheme C. λt is kept constant at 0.2 for these simulations. (a) Perr as a function
of the maximum number of illuminations M , for both re-illumination thresholds in Fig. 6(a). The solid orange curve with
cross markers is for ε = 0.05, and the dashed orange curve with circular markers is for ε = 0.25. Perr decreased with increasing
illuminations for both values of ε. Increasing the re-illumination threshold ε from 0.05 to 0.25 led to an increase in the values
of Perr (b) n̄damage vs. M . n̄damage increased with increasing illuminations, saturating at n̄damage ≈ 1.8 for ε = 0.05, and
n̄damage ≈ 0.95 for ε = 0.25.

FIG. 8. Perr vs. n̄damage for all 4 imaging schemes, with vary-
ing ε, λt and M . Each curve represents the convex hull of
(n̄damage, Perr) points obtained from Monte Carlo simulations,
whose details are described in the text. (n̄damage, Perr) values
are similar to Fig. 1(e), but ε, λt and M values are different,
as outlined in Table 12. For schemes B, C and D, n̄damage

saturates (at n̄damage = 1 for Scheme B, 2 for Scheme C and
2
3

for Scheme D).

pixel. The probability of this event is 1
4 . On average,

we need 4 electrons to identify an opaque pixel, 2 of
which will scatter off the sample. For Scheme D (IFM
imaging with D3), n̄damage saturated at ∼ 2

3 . This value
also makes sense - to correctly identify an opaque pixel,
we want a detection at either D2 or D3 in this scheme.

The total probability of a detection at D2 or D3 is 3
4 .

Therefore, on average, we need 4
3 electrons to identify

an opaque pixel. Half of these electrons will scatter off
and damage the sample, giving n̄damage = 2

3 . Overall,
Scheme D also gives the lowest n̄damage for a given Perr,
which demonstrates the benefits of IFM imaging.

In Fig. 9, we show simulated images of a butterfly,
using classical and IFM imaging schemes with and with-
out conditional re-illumination. Fig. 9(a) is the original
object we used in our imaging simulations. We added
an equal number of transparent (white) pixels outside
the opaque (black) butterfly pixels, so that q = 1

2 . We
performed imaging simulations using the same Monte
Carlo method as before. We varied λt to ensure that
n̄damage = 1 for all simulations, and we fixed M at 10
and ε = 0.01. Fig. 9(b) is the simulated image using
Scheme B (classical imaging with D3) without condi-
tional re-illumination. The image reproduces the gen-
eral shape of the butterfly, but has a lot of missed de-
tections; Perr = 0.18. Fig. 9(c) is the simulated image
using Scheme D (IFM imaging with D3) without condi-
tional re-illumination. It has fewer errors than Fig. 9(b);
Perr = 0.11. Fig. 9(d) is the simulated image using
Scheme B with conditional re-illumination. The use of
conditional re-illumination reduced Perr to 5.1 × 10−2.
Finally, Fig. 9(e) is the simulated image using Scheme D
with conditional re-illumination. This imaging scheme
produced the fewest errors, with Perr = 1.3 × 10−3.
Therefore, these imaging simulations again demonstrate
the error reduction in IFM imaging and conditional re-
illumination.
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FIG. 9. Image simulation using conventional and IFM imaging, and conditional re-illumination. We performed all simulations
at n̄damage = 1 electron per opaque pixel, and M = 10. (a) Original object used for image simulations. The object has an
equal number of opaque (black) and transparent (white) pixels. (b) Simulated image using Scheme B, without conditional re-
illumination. Perr = 0.18 for this image. (c) Simulated image using Scheme D, without conditional re-illumination. Perr = 0.11
for this image. (d) Simulated image using Scheme B with conditional re-illumination. Perr = 5.1 × 10−2 for this image. (e)
Simulated image using Scheme D with conditional re-illumination. Perr = 1.3 × 10−3 for this image.

VI. CONCLUSION

In this paper, we analyzed the performance of classi-
cal and IFM imaging, with and without a detector for
scattered electrons. We found that for a given rate of
misidentifying sample pixels (Perr), the additional de-
tector reduces the required electron dose, and hence the
damage suffered by the sample (n̄damage). We also pre-
sented a sample re-illumination scheme, where the deci-
sion to re-illuminate the sample is made based on the
result of previous illuminations. This conditional re-
illumination scheme can be applied to both classical and
IFM imaging. We showed that this scheme further re-
duces n̄damage for a given Perr. We reduced n̄damage to≈ 1

for Scheme B, ≈ 2 for Scheme C, and ≈ 2
3 for Scheme D,

for Perr ≤ 10−3. Our imaging simulations further con-
firmed the advantages of using IFM and conditional re-
illumination.

In order to implement conditional re-illumination on
an electron microscope, we would need to address two
major issues. The first is the requirement of fewer than
one electron per pixel to reach low damage values, as
shown in Fig. 8. With a pixel dwell time of 0.2 µs, a dose
of 1 electrons/pixel would require a beam current of 0.64
pA. Although these dwell times and currents are achiev-
able on current STEMs [18, 22], getting lower doses would
be challenging. One possible solution could be the em-
ployment of fast electron gated mirrors [5]. The second
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issue is the requirement of a fast beam blanker. Ideally,
we would want to blank the electron beam before chang-
ing the voltages on the beam deflector coils to move it to
the next pixel to be imaged, to avoid exposing the sam-
ple during the beam motion. The speed of this blanking
would need to be on the order of nanoseconds, to ensure
that the probability of the sample being exposed while
the beam is being blanked is small. A possible solution to
this challenge is to perform re-illumination experiments
at lower electron beam energies (lower than 30 kV), to
make fast beam blanking easier.

A major limitation of our analysis is the treatment of
the object. Our assumption of opaque-and-transparent
pixels is an inherent limitation of IFM [1]. Semitranspar-
ent objects would require higher dose to distinguish be-
tween areas with similar transparencies. We expect that
our re-illumination scheme would need to be modified for
semitransparent objects, since we would not be inferring
a binary-valued random variable (X̂) anymore [36]. In-

stead, X̂ would now take continuous values between 0
and 1, which would require a more sophisticated proba-
bilistic decision scheme. We expect that the incorpora-
tion of conditional re-illumination into existing investi-
gations of IFM imaging with semitransparent objects [6–
10], as well as with Quantum Zeno-enhanced IFM [2–5]
will be an interesting area of future research. A related
issue is the assumption that opaque pixels in the object
remain opaque upon being scattered by electrons. In
real microscopy experiments, beam-induced damage de-
grades sample contrast [37]. This loss of contrast would
increase the error probability Perr, and accounting for

would again require extension of our formalism to semi-
transparent samples.

A second major limitation of this work is the exclu-
sion of the effect of the object on the phase of the elec-
tron beam. Interferometric schemes are ideally suited for
detecting phase, and previous work [9] has shown that
IFM imaging provides an advantage for phase objects.
A third limitation is the assumption of perfect detectors
(no losses or dark counts) and a lossless system. We
will address the impact of object phase, as well as lossy
beamsplitters and detectors on the efficiency of our re-
illumination scheme in future work.

The conditional re-illumination scheme provides mi-
croscopists with a method of using both prior knowledge
about the sample and information gained during the ex-
periment to reduce sample damage and allow the inves-
tigation of radiation-sensitive samples, such as organo-
metallic frameworks, proteins and biomolecules. The
scheme could also be combined with existing schemes
of sparse sampling, and using denoising and inpaint-
ing algorithms for low-dose STEM and SEM imag-
ing [27, 28, 35, 38].
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