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The ability to transmit light through an array of closely packed waveguides while minimizing
interwaveguide coupling has important implications for fields such as discrete imaging and telecom-
munications. Proposals for achieving these effects have involved phenomena ranging from Floquet-
induced flat bands to Anderson localization. An approach based on Anderson localization is benefi-
cial since every eigenstate localizes and this localization is applicable to arbitrarily large propagation
distances. However, the localization lengths can be large so that sites within a given finite region
can exhibit significant crosstalk. Here we pose an optimization problem in which we seek to max-
imally confine the eigenstates. We demonstrate that, for strongly detuned waveguides arranged
in an equally spaced lattice in 1D and a square lattice in 2D, optimal eigenstate localization can
be achieved by fractal potentials. We further show that these structures possess a localization-
delocalization phase transition in both 1D and 2D. The structures are related to a more general
family of self-similar potentials that can be constructed on the class of k-partite lattices satisfying
the property that each sublattice forms a rescaled copy of the original lattice. The structures may
also be approximated by a family of periodic structures, and we characterize the performance of
these approximations in comparison to the full aperiodic structures.

I. INTRODUCTION

The transmission of light through a discrete array
of waveguides has important applications ranging from
imaging to telecommunications [1–3]. In these contexts,
each waveguide serves as an independent channel through
which information is transmitted. Ideally, the waveguides
should be closely packed in order to maximize the amount
of information that can be encoded into a given cross-
sectional area of the array. Unfortunately, this leads to an
increase in the mode overlap of adjacent waveguides and
produces problematic interwaveguide crosstalk. One po-
tential way to eliminate this crosstalk is through dynamic
localization [4–8], where a periodic spatial modulation
of the waveguide trajectory causes renormalized nearest-
neighbor couplings to vanish. This is equivalent to intro-
ducing a Floquet drive that generates a flat quasienergy
band. Alternatively, one can take the waveguides to be
straight and either arrange them into a structure, such as
a Lieb lattice, that exhibits a non-dispersive flat band [9–
13], or introduce a detuning between adjacent waveguides
by offsetting their propagation constants to reduce the ef-
fective strength of the interwaveguide coupling [14, 15].
Here, the waveguide propagation constants are tuned ei-
ther by adjusting the waveguide diameter or by varying
the refractive index of the core. Another avenue takes
inspiration from the phenomenon of Anderson localiza-
tion [16–21] and uses disorder to localize the system’s
eigenstates.

Each of these approaches comes with a distinctive set
of limitations. A Floquet system introduces bending
losses and, if the waveguides deviate from a precisely
specified, curved trajectory, the renormalized couplings
will no longer vanish. Structures, like the Lieb lattice,
that contain flat bands also contain additional bands
that are dispersive. Since an arbitrary input state will
excite a combination of the flat and dispersive bands,

general states are not preserved under evolution through
the structure. Additionally, higher-neighbor couplings
add dispersion to the bands so that coupling is only sup-
pressed out to a finite propagation distance determined
by the associated coupling length. Similarly, strategies
that rely on detuning the propagation constants using
a pattern that is periodic in the transverse plane will
produce crosstalk at long distances since the structure is
subject to Bloch’s theorem and therefore has extended
eigenstates. In contrast, disorder generates Anderson
localization, which applies to every eigenstate and sup-
presses diffraction out to infinite propagation distance.
However, the degree to which crosstalk is reduced cru-
cially depends on the localization lengths which, in two
dimensions, can be large. It is therefore natural to pose
the question: to what extent can the localization lengths
be reduced by more precisely tailoring the configuration
of individual waveguide propagation constants?

In this work, we demonstrate that, in the regime in
which waveguide propagation constants can be strongly
detuned, maximally localized eigenstates can be gen-
erated by self-similar configurations in which sites are
recursively detuned from one another over increasingly
larger spatial scales. Being aperiodic, these structures
possess the advantages of disorder arising from eigen-
state localization, but they surpass disorder in their abil-
ity to tightly confine the eigenstates. We characterize
these structures, noting the existence of a localization-
delocalization phase transition in both 1D and 2D. We
also characterize a closely related series of periodic struc-
tures with increasingly larger unit cells that are able to
suppress diffraction out to increasingly larger propaga-
tion distances. These periodic structures can be nat-
urally organized according their complexity, beginning
with very simple periodic arrangements and approach-
ing the full aperiodic fractal. This organization provides
a systematic method for realizing approximations to the
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FIG. 1. Objective function at z →∞ (average eigenstate participation ratio) for different onsite energy configurations. Panels
(a) and (b) respectively show the results for 1D and 2D systems. The dashed black curve was obtained using simulated
annealing to optimize the onsite energies. The dashed orange curve shows the results for onsite disorder averaged over many
disorder realizations and the shaded orange region corresponds to one standard deviation from the mean. The red curve shows
the results for the fractal structure described in the text, using α = 0.25 and α = 0.36 for the 1D and 2D cases, respectively.
In the strongly detuned regime, the fractal structure surpasses disorder in both 1D and 2D and performs comparably to the
optimized structures.

fractal in a way that tailors the complexity of the struc-
ture to the requirements of a given application.

II. OBJECTIVE FUNCTION AND ITS
OPTIMIZATION

We consider light evolving through an array of coupled
waveguides and note that, while we develop our results
in the photonic context, they in fact generalize to sys-
tems that can be modeled as a lattice of coupled degrees
of freedom with a tunable onsite potential. In such a
waveguide array, the waveguides act as lattice sites that
possess bound modes whose profiles weakly overlap with
their neighbors so that the system can be modeled using
tight-binding theory [22]. Throughout our analysis, we
assume that the waveguides are single-mode. The onsite
energy, Vi, of each waveguide is determined by the de-
viation of the waveguide propagation constant from its
background value, which can be controlled by varying ei-
ther the waveguide diameter or the refractive index of the
waveguide core. This yields a tight-binding Schrödinger
equation

i∂zψi(z) =
∑
j

(cij + Viδij)ψj(z) (1)

where i labels the individual waveguides of the structure
(on a lattice of arbitrary dimension), ψi is the amplitude
of the electric field in waveguide i, z is the propagation
distance measured along the axial direction of the waveg-
uides, and cij is the coupling constant between sites i and
j.

At the input facet, one injects an electric field profile
ψi with intensity amplitudes |ψi|2 representing the input
data. The light propagates through the structure and
produces an output intensity pattern |ψ′i|2 representing
the output data. In this context, eigenstate localization

is desirable in order to keep |ψ′i|2 as similar as possible
to |ψi|2. Motivated by the ability of disorder to induce
localization, we pose the question: what is the optimal
way to distribute the onsite energies, Vi, so as to produce
maximal localization?

To answer this question, we define an objective func-
tion, S(z), related to how much the intensity distribution
of input states changes during evolution over a propaga-
tion distance z. In choosing such a function, we note that
the sum of squared differences in position space intensi-
ties between the initial and final states is given by∑

i

(
|ψi|2 − |ψ′i|

2
)2

=
∑
i

(
〈ψ|Mi|ψ〉

)2

(2)

where the Mi are operators defined by Mi = |ei〉〈ei| −
|ui〉〈ui|. Here |ei〉 is the unit vector with all except the
ith entry equal to zero and 〈ui| is the ith row vector of the
unitary evolution operator U(z) evaluated at a propaga-
tion of distance z. Keeping |ψ〉 general, we then seek to
minimize

∑
i ||Mi||2, where we use the entry-wise matrix

norm ||A||2 =
∑
ij |Aij |2. It is simple to show that this

is equivalent to maximizing
∑
i |〈ui|ei〉|2 = tr |U(z)|2,

where the absolute value is taken element-wise when U(z)

is expressed in the position basis. In general, tr |U(z)|2
can oscillate rapidly as a function of z, so that a solution
that is optimal at z may fail to be optimal at a nearby
point z + ∆z. To avoid this problem, we perform an
integral over z so as to capture information about the
behavior over the entire interval:

S(z) =
1

Nz

∫ z

0

dz′ tr |U(z′)|2 . (3)

Here we have further normalized the function by the
number of sites, N , so that S(z) ∈ [0, 1] with S(z) = 1
implying that an arbitrary single-site injection will re-
main perfectly localized at the injection site out to prop-
agation distance z.
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FIG. 2. Construction of the fractal potentials described in the text. Panel (a) shows the construction of the 1D case and
panel (b) the 2D case, where the onsite energies have been encoded in the radii of the circles (with the variation of the radii
exaggerated for clarity). The structure is generated by recursive application of a detuning procedure in which each increase
in the recursion level, n, results in an exponentially larger unit cell, with the full aperiodic structure obtained in the n → ∞
limit. Panel (c) shows the first four terms of the decomposition of the 1D potential into square waves, with the sites of the
lattice overlaid on the x-axis. Panel (d) shows the dependence of the onsite energies on the parameter α for a 32-site periodic
approximation to the fractal (truncated at n = 5). In this plot, the onsite energies at a given α are simply sorted by energy and
do not directly correspond to locations on the lattice. The onsite energies are normalized by V , which, in this case, is taken to
be the full range of the potential covered by this periodic approximation.

In our optimization, we will take the infinite propa-
gation distance limit of S(z) and only evaluate S(z) at
finite z when characterizing a set of periodic structures
that are closely related to the self-similar potential that
we will introduce later. In this limit, S(z) bears a close
relation to the participation ratios of the energy eigen-
states: assuming the system possesses no degeneracies,
we have

lim
z→∞

S(z) = 〈PE〉 (4)

where 〈PE〉 represents the average of the participation
ratios over all the energy eigenstates (see Appendix B).

In this work, we restrict attention to potentials defined
over an equally spaced array in 1D and a square lattice
in 2D. We note, however, that the structures we uncover
can be constructed on a more general class of k-partite
lattices satisfying the property that the k independent
sublattices form rescaled copies of the original lattice.
This includes the important case of the triangular lat-
tice, which is used in applications that seek to maximize
the density of lattice sites. We perform an optimization
of S(z) at z → ∞ (that is, the average eigenstate par-
ticipation ratio in Eq. 4) using simulated annealing on
a 256 site chain in 1D and a 16 × 16 lattice in 2D. In
both cases, we impose periodic boundary conditions and
include only nearest-neighbor coupling c. We restrict the
onsite energies to lie within a finite interval [−V,+V ] and

perform independent optimizations for different values of
V .

The results of the optimization are plotted in Fig. 1
and provide a baseline standard for ideal performance.
For comparison, we have also shown the corresponding
curve for a disordered potential (with onsite disorder
drawn uniformly from the interval [−V,+V ]) using the
same system size as in the optimization and averaged
over 1000 disorder realizations. We note, in particular,
that the optimum is achieved not by disorder but by some
other potential. While the optimized results themselves
provide a useful measure of ideal performance, it is de-
sirable to locate structures that perform at the level in-
dicated by the optimization and that are amenable to a
precise description that enables us to construct the struc-
tures for arbitrarily large system size, both to provide a
well-defined class of structures that can be further stud-
ied and to verify that the optimized results do not rely on
finite size effects. We find that this can be done in the
regime of strong detuning, where optimal performance
can be achieved by a family of self-similar potentials that
we construct below. While these highly ordered poten-
tials perform comparably to the optimized structures, we
note that our optimization suggests that the optimum
may be non-unique or nearly degenerate with other struc-
tures. In particular, the numerically optimized structures
themselves both contain features associated with the po-
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tentials that we construct below, as well as features that
differ from these potentials. The fact that these features
do not significantly change the performance of the struc-
tures suggests the non-uniqueness of the optimum.

III. FRACTAL POTENTIALS

A. Construction and performance

We now demonstrate that the degree of localization
achieved by the numerically optimized structures can be
achieved by a fractal potential that can be constructed
analytically. We begin by fixing an onsite energy scale
V0 and a dimensionless parameter α ∈ [0, 1

2 ] that con-
trols the structure of a Cantor set from which the onsite
energies are sampled (see discussion below). Noting that
the lattice (a 1D linear array or 2D square lattice) can
be made to be bipartite, we subdivide the lattice into
two sublattices to which we respectively assign onsite en-
ergies of ±V0. Since each of the sublattices themselves
form rescaled copies of the original lattice (rotated by
π/4 in the 2D case), we can independently repeat the
detuning procedure on each sublattice, this time using a
smaller detuning of ±αV0. In general, at a recursion level
n, we apply a detuning of ±αnV0 to obtain the structure
at level n+ 1. This procedure is illustrated in Fig. 2.

When this process is iterated sending n → ∞, the
structure converges to an aperiodic potential with onsite
energies contained in the interval [−V,+V ], where V =
V0/(1 − α). In the 1D case, the resulting potential can
be written as:

Vm = V0

∞∑
k=0

αks

(
m+ 1/2

2k+1

)
(5)

where s(x) is an odd, unit-period square wave that alter-
nates between ±1. Here the potential has been evaluated
at site xm = ma, where a is the nearest-neighbor spacing.
See Fig. 2(c) for an illustration of this square wave ex-
pansion. In the 2D case, the potential takes on a similar
form:

Vmn = V0

∞∑
k=0

[
α2ks

(
m+ 1/2

2k+1

)
+ α2k+1s

(
n+ 1/2

2k+1

)]
(6)

where the pair of indices on Vmn indicate that the poten-
tial has been evaluated at site xmn = mR1 + nR2 with
R1 = a(1, 0) and R2 = a(1, 1).

In Fig. 1, we have plotted the objective function for
these structures to show that, in the regime of strong
detuning, they perform comparably to the optimized re-
sults from simulated annealing. We note that we have
increased the system size in producing the plots for these
structures to a 1024 site chain in 1D and a 32×32 struc-
ture in 2D to demonstrate that our fractal model achieves
optimal performance for system sizes beyond that used

(a)

(b)

α

V/c

α

V/c

FIG. 3. Average eigenstate participation ratio for (a) the
1D and (b) the 2D fractal structures. The sharp transition
indicates a phase transition in which the eigenstates go from
being extended to being localized. A 1024 site chain and
32 × 32 site grid were used for the 1D and 2D structures,
respectively. In the 1D case, an analytical approximation for
the phase boundary can be calculated for small α and yields
the boundary shown in panel (a) as a dashed line.

in the optimization. As before, we have imposed peri-
odic boundary conditions at the system’s edges. We also
mention that, in the regime of nearly perfect localization
(S ∼ 1), the fractal yields an order of magnitude improve-
ment over disorder in terms of the potential strength re-
quired to generate such strong localization. For example,
an objective function value of S = 0.98 is achieved by the
1D fractal at V/c ∼ 10 and by the 2D fractal at V/c ∼ 20.
In contrast, achieving this value, on average, using dis-
order requires V/c > 100 (which resides outside the plot
region in Fig. 1) in both 1D and 2D. Finally, we have
included in the Supplemental Material [23] a set of ani-
mations in which we sweep the strength of the potential
across the V/c axis of Fig. 1 while showing the output
obtained by evolving an image through the corresponding
structure, with the results for the fractal and disordered
potentials compared side-by-side. We have included sep-
arate animations for the cases of coherent imaging and
incoherent imaging [24], with the fractal yielding notice-
able improvements over disorder in both cases.
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B. Localization-delocalization phase transition

To further study the localization properties of these
potentials, we show in Fig. 3 the average eigenstate par-
ticipation ratio as a function of V/c and α. We note the
presence of a sharp boundary at which the participation
ratio rapidly changes, indicating a transition between a
phase with extended eigenstates and a phase with local-
ized eigenstates. As shown in Appendix A, an analytical
approximation to the phase boundary can be computed
in 1D using a renormalization group based calculation
and is shown in Fig. 3(a) as a dashed line. We con-
trast these phase transitions with the behavior of dis-
ordered systems, which exhibit localization for arbitrar-
ily weak disorder in both 1D and 2D and only exhibit a
localization-delocalization transition in 3D. The presence
of such phase transitions in lower-dimensional potentials
has previously been observed for structures such as the
Aubry-André model [25, 26].

C. Cantor set associated with the onsite energies

The onsite energies that appear in the construction of
the fractal potentials lie in a Cantor set determined by
the parameter α. Here we describe this set for the general
case, alluded to above, where the potential is constructed
on a k-partite lattice that satisfies the property that the k
independent sublattices form rescaled copies of the orig-
inal lattice. The two fractal potentials described above
constitute the k = 2 case since both the 1D array and
2D square lattice can be partitioned so as to be bipartite.
The general k-partite construction proceeds analogously
to the bipartite case. In particular, we begin by choos-
ing an energy scale, V0, and a parameter α ∈ [0, 1

k ]. We
then divide the interval [−V0,+V0] into k equally spaced
onsite energies, {v1, ..., vk}, and assign these onsite ener-
gies to the k sublattices so as to detune neighboring sites.
This constitutes the n = 1 level structure. To generate
the n = 2 level structure, we repeat this procedure in-
dependently on each sublattice, this time detuning over
a smaller interval [vi − αV0, vi + αV0] centered on the vi
associated with the respective sublattice. This process is
repeated infinitely many times to yield the final onsite
energy configuration.

Note that iterating the above process yields—for the
onsite energies centered on vi—a bounded set contained
in the interval

[vi−
∞∑
m=1

αmV0, vi +

∞∑
m=1

αmV0] = [vi−αV, vi +αV ] (7)

where V = V0/(1−α). Note that this interval has length
αL with L = 2V . In particular, the procedure has di-
vided the full interval [−V,+V ] of length L = 2V into
k equally spaced, closed subintervals of length αL such
that all onsite energies of the final structure lie within
these subintervals. Note that the subintervals generally

1 k. . .

1 k. . . 1 k. . .

1 k. . . 1 k. . . 1 k. . . 1 k. . .

−V +V

L = 2V

αL

α2L

α3L

FIG. 4. Cantor set associated with the onsite energies of the
fractal structures for the general k-partite case. The energy
interval [−V,+V ] of length L = 2V is divided into k smaller,
equally spaced subintervals, each of length αL. The gaps
between these subintervals represent excluded ranges of onsite
energies that are not used in the structure. Iterating this
process of subdivision yields a Cantor set within which the
onsite energies reside.

do not cover the full interval [−V,+V ] since they have a
combined length of k(αL) with α ∈ [0, 1

k ]. The spaces be-
tween the subintervals form regions of excluded energies
that are not assigned to any site in the structure. This is
illustrated in Fig. 4. Iterating this argument over higher
levels of detuning yields a Cantor set within which the
onsite energies of the final structure reside. Note that,
as the collection of onsite energies is countable (since the
underlying lattice is countable), the actual onsite ener-
gies only form a proper subset of this Cantor set. Finally,
we note that this construction makes clear why the gen-
eral k-partite structure is parameterized by α ∈

[
0, 1

k

]
:

the boundary case, α = 1
k , yields a subdivision of the

interval [−V,+V ] into subintervals that fully span the
interval (i.e., which leave no excluded regions).

D. Periodic approximations

In practice, implementations of an onsite energy con-
figuration will be subject to restrictions on how many
distinct onsite energies are available within fabrication
tolerances and to perturbations such as higher-neighbor
couplings and disorder. Here we discuss how our struc-
ture can be implemented with a constrained set of avail-
able onsite energies and provide in Appendix C a charac-
terization of the effects of perturbations. As the fractal
is constructed via a recursive series of detuning opera-
tions—each yielding a larger unit cell requiring a larger
but finite number of distinct onsite energies—it provides
a natural set of periodic structures that can be used to ap-
proximate the full structure. Here we characterize these
structures based on the maximal propagation distance at
which they are able to suppress crosstalk.

As the truncated structures are periodic, the eigen-
states will be extended and the corresponding value of
limz→∞ S(z) vanishes. As a result, a different metric is
necessary to study the periodic truncations. We therefore
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FIG. 5. Behavior of periodic truncations of the fractal. (a)
Finite z objective function plotted for the 1D structure with
α = 0.25 and V/c = 5 (parameters which, for the full struc-
ture, yield a localized phase) truncated at various detuning
levels n. The function follows the value S associated with
the full aperiodic structure out to some critical propagation
distance z0 which diverges as n → ∞. (b) Dependence of z0
on n for a 1D structure defined by the parameters mentioned
above and a 2D structure defined by parameters α = 0.36 and
V/c = 10. In the 1D case, the dashed curve shows the analyt-
ical result obtained from the effective coupling c(N) discussed
in the text.

relax our criteria and evaluate S(z) at finite propagation
distance. Defining S ≡ limz→∞ S(z) evaluated for the
full aperiodic fractal, a given periodic truncation will pro-
duce a function S(z) that approximately follows the value
S out to some critical propagation distance, z0, beyond
which it approaches zero. This effect is demonstrated
in Fig. 5(a), where we plot S(z) for the 1D structure
truncated at unit cells of size 2n for n = 0, . . . , 4. The
behavior in the 2D case is similar.

The propagation distance at which the function drops
below S can be understood as the coupling length scale
of diffraction associated with the average width of the 2n

individual bands of the periodic system (i.e., by interpret-
ing the average bandwidth ∆Eavg in terms of an effec-
tive coupling ceff via ∆Eavg = 4ceff for the 1D array and
∆Eavg = 8ceff for the 2D square lattice, and then comput-
ing an associated coupling length scale z0 ∼ 1/ceff). In
Fig. 5(b), we plot z0, as extracted from the average band-
width, as a function of n for both the 1D and 2D cases.

Here we see that increasing the level n of the truncation
results in a drastic increase in the distance over which
the structure is capable of suppressing diffraction. We
further note that, in the 1D case, we can obtain an ana-
lytical approximation for this distance. Defining N ≡ 2n

as the number of sites in the unit cell after n detuning op-
erations, the effective coupling c(N) that determines the
coupling length takes the form c(N) = c e−γ(N−1)/Nβ

with γ = log(2αV0/c), β = log2(1/α), and c the nearest-
neighbor coupling of the physical structure (see Appendix
A). The associated length scale is then z0 ∼ 1/c(N)
which is plotted in Fig. 5(b) as a dashed line. Note
that in the above approximation, the distance over which
diffraction is suppressed scales exponentially in N but
only as a power law in V0, demonstrating the sense in
which it can be more effective to increase the structure’s
complexity (i.e., the size, N , of the unit cell) instead of
merely increasing the strength of the detuning V0.

IV. CONCLUSION

Motivated by the ability of disordered potentials to
suppress diffraction, we have studied the question of how
one should structure a potential to achieve maximal lo-
calization. We conclude that, while disorder is efficient in
the sense of being able to induce localization for arbitrar-
ily weak disorder, it is inefficient in the degree of localiza-
tion it generates. In particular, we have found that, when
the range of onsite energies is large relative to the cou-
pling, maximally efficient localization can be obtained by
constructing a highly ordered, self-similar potential. Like
the disordered case, the resulting structure is aperiodic
and, as such, circumvents Bloch’s theorem, allowing for
the existence of localized eigenstates. Unlike disorder,
however, it exhibits a localization-delocalization transi-
tion in both 1D and 2D. Almost immediately upon pass-
ing through the transition, the potential induces eigen-
state localization that is maximal in comparison to a
baseline obtained using simulated annealing. In com-
parison to approaches based on engineered flat bands,
our structure is advantageous in that it avoids the bend-
ing losses associated with a Floquet drive and does not
possess the additional dispersive bands associated with
static flat-band systems like the Lieb lattice. Further-
more, unlike the flat band of a Lieb lattice, the addition of
moderate strength higher-neighbor couplings (discussed
in Appendix C) does not significantly alter the perfor-
mance.

A useful feature of the fractal potentials arises from
their construction via a series of simpler periodic struc-
tures that are labeled by the recursion level, n, at which
the construction of the fractal is terminated. These struc-
tures suppress diffraction out to a propagation distance
that diverges rapidly with n. The complexity of the
structure can therefore be tailored to the total propaga-
tion distance required by a given application, with larger
values of n being better suited for applications that re-
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quire larger propagation distances—a feature that could
find use for crosstalk reduction in spatially multiplexed
fibers for use in long-distance data transmission. The
limiting aperiodic structures thus provide a direct recipe
for designing structures that suppress diffraction at a
given propagation distance. Additionally, they clarify the
existence of a localization-delocalization transition that
affects the ability of the periodic truncations to suppress
diffraction at long distances.

The objective function value, S, associated with the
full fractal structure also provides information about the
performance of the periodic structures. In the regime
with localized eigenstates, the value of S may be intu-
itively thought of as restricting the radius within which
crosstalk can occur, where the radius shrinks to zero as
S increases. For the full fractal, this radius of restriction
applies even out to infinite propagation distance. For the
periodic structures, the value of S is effectively inherited
from the full fractal, but only out to a finite propagation
distance z0. This inherited value provides the periodic
structures with the same crosstalk-restricting radius, but
only out to z0, which is in turn determined by n. The pe-
riodic structures are therefore characterized by a pair of
quantities: (S, n). The quantity S determines the degree
to which light will remain localized around its injection
site, and it can be increased by increasing the strength
of the detuning. The quantity n determines the maximal
propagation distance at which this degree of localization
can be maintained, and it can be increased by introduc-
ing higher levels of detuning that increase the structure’s
complexity.
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Appendix A: Analytical approximation to phase
boundary

Here we compute an analytical approximation for the
localization-delocalization phase boundary for the 1D
fractal structure discussed in the text. We begin by con-
sidering an equally spaced 1D array in which adjacent
sites are detuned by ±u (Fig. 6). Assuming a nearest-
neighbor coupling of c, the eigenstates form two bands
with energies given by

E(k) = ±
√
u2 + 4c2 cos2(k/2) (A1)

= ±(u2 + 2c2)1/2

√
1 +

2c2

u2 + 2c2
cos k (A2)

E
/c

k

0 π/2 π 3π/2 2π

3

2

1

0

−1

−2

−3

+u

−u

+u

−u

+u

−u

+u

−u

2u

4c′

4c′

FIG. 6. Illustration of a detuned linear array and its band
structure. In the strongly detuned regime, the upper and
lower bands become highly localized on the +u and −u sub-
lattices, respectively. In this limit, we may reinterpret the
two bands as forming two independent arrays governed by a
modified interwaveguide coupling c′ that is determined by the
width of the individual bands.

which can be expanded as

E(k) = ±
[
(u2 + 2c2)1/2 +

c2 cos k

(u2 + 2c2)1/2
+ . . .

]
(A3)

We now consider the regime where c/u � 1 and neglect
higher-order terms in the expansion. Noting that, in this
approximation, the individual bands obey a dispersion
proportional to cos(k) (up to an offset in energy), we
may reinterpret the two bands as forming two distinct
linear arrays with a modified nearest-neighbor coupling
determined by the bandwidth:

c′ =
c2

2(u2 + 2c2)1/2
(A4)

= c2/(2u) +O(c3/u3). (A5)

We now make an additional approximation in which
we note that, in the regime c/u � 1, the eigenstates of
the upper and lower bands are highly localized on the +u
and −u sublattices, respectively. Since the construction
of the potential described in the text proceeds by in-
dependently reapplying the detuning procedure on these
two sublattices (with smaller detuning energies ±αu), we
may iterate the procedure discussed above to generate a
flow of the effective interwaveguide coupling. In particu-
lar, for the next iteration, we repeat the above calculation
using a new coupling c′ = c2/(2u) and a new detuning
u′ = αu. This will again generate a modified coupling
c′′ = c′2/(2u′) = c4/(8αu3). More generally, we define ck
and uk as the effective coupling and energy detuning at
recursion level k. In particular, for the structure defined
in the text uk = αkV0.

Note that in the approximation introduced above, the
eigenstates will localize when the ratio rk ≡ ck/uk goes
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to zero for large k, as this indicates that the asymptotic
energy detuning becomes infinitely large relative to the
corresponding effective coupling. From the procedure in-
troduced above, we have ck+1 = c2k/(2uk) and hence

rk+1 =

(
uk

2uk+1

)
r2
k. (A6)

This recursion relation can be solved exactly, yielding

log rk = 2k

{
k∑

m=1

1

2m
log

(
um−1

2um

)
+ log r0

}
. (A7)

Using the detuning function uk = αkV0 and denoting
c0 = c, this simplifies to

log rk = 2k log

(
c

2αV0

)
− log

(
1

2α

)
(A8)

so that limk→∞ rk = 0 when

V0

c
>

1

2α
, (A9)

indicating eigenstate localization. In the opposite regime,
V0/c < 1/(2α), the ratios formally diverge, limk→∞ rk =
∞, indicating that the asymptotic onsite energies become
negligible relative to the corresponding couplings, sug-
gesting the presence of extended eigenstates. We note,
however, that in this latter regime, the expansion used
above with c/u � 1 begins to break down after some
finite number of iterations k. Hence, the behavior of the
eigenstates in this regime must be verified numerically.
Finally, to keep the derivation consistent with the as-
sumption c/u� 1, we require α appearing in Eq. A9 to
be small. In this regime, the bound is in good agreement
with the numerical results, as shown in the localization-
delocalization phase diagram of the main text (which
shows the boundary curve defined by Eq. A9 after using
the relation V = V0/(1− α)).

We note that Eq. A8 also contains information about
the critical propagation distances, z0, which, as discussed
in the text, determine the maximal distance at which the
periodic truncations of the structure are capable of sup-
pressing diffraction. In particular, a periodic structure
truncated after k detuning levels has an associated cou-
pling length scale z0 ∼ 1/ck and from Eq. A8 we have

log
(ck
c

)
= (2k − 1) log

(
c

2αV0

)
− k log

(
1

α

)
. (A10)

Noting that after k detuning operations, the unit cell con-
tains N = 2k sites, we rewrite the coupling as a function
of system size via ck → c(N) with N = 2k yielding

c(N) = c e−γ(N−1)/Nβ (A11)

with γ = log(2αV0/c) and β = log2(1/α). Note that this
result is only applicable to the localized phase where we
have γ > 0. The formal divergence of c(N) in the delo-
calized phase is unphysical and signals the breakdown of
the expansion used above. In particular, in the delocal-
ized phase, the c(N) decay slower than the uk, so that
eventually the condition c/u� 1 fails to be satisfied.

Appendix B: Expressions for S(z) at finite and
infinite z

We now provide a useful formula for the objective func-
tion, S(z), at finite z and derive the relation of its infinite
distance limit to the average eigenstate participation ra-
tio. Consider a Hamiltonian H that is diagonalized by
a unitary matrix V and has eigenvalues Ei. That is,
(V†HV)ij = δijEi. We define matrices ∆Eij = Ei − Ej ,
Wij = |Vij |2, and M = WTW . We then have

tr |U(z)|2 =
∑
ijk

|Vij |2e−i(Ej−Ek)z|Vik|2 (B1)

= tr

[
We−i∆EzWT

]
(B2)

= tr

[
cos(∆E z)M

]
(B3)

where in the last two lines the exponential and cosine
are taken element-wise (i.e., are not the matrix exponen-
tial/matrix cosine) and we have used the fact that M is
a symmetric matrix to conclude that the corresponding
sine term vanishes. Integrating this result with respect
to z, we obtain

S(z) =
1

Nz

∫ z

0

dz′ tr |U(z′)|2 (B4)

=
1

N
tr

[
M sinc(∆E z)

]
(B5)

where the sinc is taken element-wise. This form

S(z) =
1

N
tr

[
M sinc(∆E z)

]
(B6)

expresses S(z) purely in terms of the eigenvalues and
eigenvectors of the system and is useful for evaluating
S(z) for periodic structures like those described in the
text. For aperiodic structures, it is useful to take the
limit z → ∞. In the absence of degeneracies, we have
limz→∞ sinc(∆Eijz) = δij so that

lim
z→∞

S(z) =
1

N
trM. (B7)

Finally, noting that the diagonal entries of M are equal
to the eigenstate participation ratios PE =

∑
i |〈xi|E〉|

4

with |E〉 normalized, we have

lim
z→∞

S(z) = 〈PE〉 . (B8)

Appendix C: Characterization of the effect of
perturbations

Here we characterize how the introduction of disor-
der and higher-order couplings to the fractal structure
affects the resulting localization. To study the effect of
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FIG. 7. Characterization of the dependence of the objective function on various types of perturbations introduced to the fractal
structure. The upper and lower rows show the results for the 1D fractal and 2D fractal, respectively. As in Fig. 1 of the main
text, we use α = 0.25 for the 1D structure and α = 0.36 for the 2D structure. The plots are colored according to the value
of the objective function, S, and constant S contours are drawn as solid lines. The first column shows the effect of including
couplings beyond nearest-neighbor, with c′/c representing the ratio between second-neighbor and first-neighbor couplings. The
second and third columns show the effect of onsite disorder and off-diagonal disorder, respectively, as a function of the relative
disorder strength λ.

higher-order couplings, we assume an exponential model,
c(r) = A exp(−γr), governing the dependence of the in-
terwaveguide couplings on separation distance r. Note
that for a model of this form, once both first-neighbor
and second-neighbor couplings have been specified, all
other higher-order couplings are determined. In our com-
putations, we therefore specify the first two orders of
couplings and then include all higher-order couplings in
accordance with the exponential model. In the first col-
umn of Fig. 7, we plot the objective function, S, for
the fractal as a function of V/c and c′/c, where c and
c′ are the first-neighbor and second-neighbor couplings,
respectively, and V is the strength of the potential. In
producing the plots for the 1D and 2D structures, we
take α = 0.25 and α = 0.36, respectively. Note that tak-
ing the horizontal cut c′/c = 0 through the plot yields
the objective function curve shown in Fig. 1 of the main
text, where higher-neighbor couplings are turned off.

In studying the effect of disorder on the fractal, we
separately consider both onsite disorder and off-diagonal
disorder. In the case of onsite disorder, we perturb each
onsite energy by an energy drawn uniformly from the
interval [−λV,+λV ], where V is the strength of the un-
perturbed potential and λ is a factor that determines the
relative strength of the disorder. Note that such onsite
disorder will outweigh finer levels of onsite detuning that
occur beyond some sufficiently large maximal recursion
level n, the value of which depends on the strength of the

disorder. The structure may then be thought of as one of
the periodic approximations to the fractal (discussed in
the text) with the addition of disorder at a smaller energy
scale. When realizing such a structure, one should then
only realize this corresponding periodic approximation,
since the higher levels of detuning that are outweighed by
the disorder will only serve to add unnecessary additional
complexity. We consider λ in the range λ ∈ [0, 0.10].
At each λ, we compute the objective function averaged
over 250 disorder realizations using only nearest-neighbor
couplings. The results are shown in the second column
of Fig. 7. We perform an analogous calculation for the
case of off-diagonal disorder. Here we randomly perturb
the interwaveguide couplings by an amount drawn uni-
formly from the interval [−λc,+λc] and, as before, com-
pute the objective function averaged over 250 disorder
realizations. The results are shown in the third column
of Fig. 7.

As a concrete example utilizing the above results,
consider a typical single-mode waveguide operating at
1550 nm with a cladding index n0 = 1.5, an index con-
trast δn = 3.0× 10−3, and a core diameter of 8 µm. If we
assume that the core diameter can be varied over ±2 µm,
this yields an available onsite energy range of ±18 cm−1

to be used in constructing the fractal potential. A 2%
fabrication error in the waveguide diameters will intro-
duce onsite disorder in the range ±1.5 cm−1, yielding a
relative disorder strength of approximately 10%. Taking
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the 2D fractal as an example, this shifts the strength
of the potential required to obtain an objective func-
tion value of S = 0.95 from approximately V/c = 13
to V/c = 20 (see the second column of Fig. 7). This
remains a significant improvement over disorder, which
requires V/c > 100 to achieve this value when averaged
over disorder configurations. For second-neighbor cou-
plings with amplitudes of less than 20% of the nearest-

neighbor couplings, the value of V/c mentioned above
remains nearly unchanged (see the first column of Fig.
7). Similarly, the introduction of random variations in
the coupling amplitudes on the scale of 10% of the un-
perturbed couplings has little effect on the structure’s
performance, with V/c = 13 continuing to yield an ob-
jective function value of S = 0.95 (see the third column
of Fig. 7).
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