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We identify a general connection between the physics of exceptional points in non-Hermitian

systems and the few-photon bound states in waveguide quantum electrodynamics (QED) systems.

We show that, in waveguide QED systems where the local quantum system exhibits an exceptional

point, the tightest-bound few-photon bound state occurs at the exceptional point. We illustrate

this connection with an explicit computation on a waveguide QED system in which a waveguide is

coupled to a Jaynes-Cummings system. Our result provides a quantum signature of the exceptional

point physics and indicates that the physics of exceptional point can be used to understand and

control the photon-photon interaction.

PACS numbers:

Exceptional points generally occur in the eigensystem of a non-Hermitian matrix. At exceptional points, the

matrix becomes defective and pairs of eigenvalues and eigenstates coalesce. In optics, the implications of exceptional

points have been widely investigated in open systems and PT-symmetric systems [1], both of which are described by

non-Hermitian Hamiltonians [2, 3]. As a few examples, nontrivial geometric phase under cyclic parameter variation

around exceptional points has been directly observed in a microwave cavity [4], chaotic optical microcavity [5] and

Jaynes-Cummings system [6]. In laser systems, exceptional points due to non-uniform pumping can strongly affect

the above-threshold behavior [7]. However, in all these studies, the signature of the exceptional point is at the classical

level. There have been few explorations about the implications of exceptional points on the quantum level.

Separate from the development of non-Hermitian physics, there has been significant recent developments in the field

of waveguide quantum electrodynamics (QED). In waveguide QED systems, one couples a local quantum system to a

waveguide and study the transport properties of few-photon quantum states in the waveguide [8–36]. As a particularly

noteworthy development in waveguide QED, it has been noted by Shen and Fan that when two photons are injected
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into a waveguide QED system, the scattering process can create a two-photon bound state [8]. This prediction

has been recently demonstrated experimentally by Firstenberg et al [37]. The discovery of two-photon bound state

points to the promise of exploring the strongly interacting quantum many-body states of light in waveguide QED

systems[38, 39].

In this paper, we identify a general connection between the physics of exceptional point and the physics of few-

photon bound state in waveguide QED systems by considering few-photon transport in a waveguide coupled to a local

quantum system. We show that the exceptional point of the effective Hamiltonian of the local quantum system in

general gives the tightest few-photon bound state in the waveguide, which can be probed experimentally by measuring

the few-photon correlation functions. We illustrate this connection with an explicit computation on a waveguide QED

system in which the local quantum system is a Jaynes-Cummings system. Our work points to a general connection

between the non-Hermitian physics and the waveguide QED that has not been explored previously. The results

indicate that the physics of exceptional point can be used to control photon-photon interaction, and therefore such

physics may prove useful in the quest to create many-body quantum photon states in waveguide QED systems.

We start with a general Hamiltonian of the waveguide QED system

H =

∫
dk k c†kck +

√
κ

2π

∫
dk
(
c†ka+ a†ck

)
+Hloc , (1)

where ck (c†k) are annihilation (creation) operators of photon states in the waveguide that satisfies the standard

commutation relations
[
ck, c

†
k′

]
= δ(k − k′). Here for simplicity we consider a waveguide consisting of only a single

mode in the sense of Ref. [9]. We consider waveguides supporting multiple modes towards the end of the paper.

We consider only a narrow range of frequencies in which the waveguide dispersion relation can be linearized, and we

normalize various quantities with respect to the group velocity of the waveguide. Thus, in the rest of the paper we

set vg = 1. Hloc is the Hamiltonian of the local quantum system. a(a†) is one of the local system’s operators that

couples to the waveguide with coupling constant κ. In practice, a can either be a bosonic operator describing a cavity

mode or a spin operator for atom-waveguide interaction. When coupled to a waveguide, the local quantum system

becomes an open system whose dynamics can be described by a non-Hermitian effective Hamiltonian. Specifically,

for the waveguide-cavity coupling as described in Hamiltonian (1), it has been shown that the effective Hamiltonian

takes the form of [14, 31]

Heff = Hloc − i
κ

2
a†a . (2)
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Here, the imaginary part of the effective Hamiltonian arises since the waveguide degrees of freedom that couples to

the local system forms a continuum. We further assume that there exists a conserved excitation number operator

Nloc for the local system, satisfying [Nloc, Heff] = 0. As a result, Heff in (2) has eigenstates

Heff |n, λ〉 = En,λ|n, λ〉 , Nloc |n, λ〉 = n |n, λ〉 , (3)

where n ∈ Z+ is the total excitation number and λ denotes different eigenstates with the same excitation number. Here,

we focus on the local quantum systems having a two-dimensional single-excitation subspace spanned by eigenstates

|1,+〉 and |1,−〉. The systems of this kind include, for example, a Jaynes-Cummings system [14, 21], a three-level

V -shape atom [40] or a pair of colocated two-level atoms [16]. The eigenvalues E1,+ and E1,− are in general in pairs.

However, at exceptional point, the effective Hamiltonian is defective and the pair of eigenvalues E1,± coalesce. The

existence of such an exceptional point in open quantum systems has been noted previously [4–6].

We consider the implication of the existence of the exceptional point for the few photon transport properties for

the full Hamiltonian (1). For simplicity, we first analyze the case of two-photon transport and then extend our

discussion to the N -photon case. If we inject two photons in the waveguide, these photons will propagate along the

waveguide, interact with the local quantum system and output a two-photon bound state. Such a bound state was

first discovered by Shen and Fan in the waveguide QED system where the local quantum system is a single two-level

atom [8]. Intuitively, the two-photon bound state occurs due to the photon-photon interaction as induced by the

two-level atom. Later, it was found that the two-photon bound state exists in many other waveguide QED systems

including cases where the local quantum system is Kerr-nonlinear cavity [11], optomechanical cavity [24], three-level

atom [18, 35] and the Jaynes-Cummings system [14, 21], as long as there exists nonlinearity in the Hamiltonian of

the local quantum system that couples to the waveguide. Note that a bound state in quantum mechanics usually

refers to a localized state with a discrete energy spectrum. Here the so-called two-photon bound state in waveguide

QED systems has a continuum spectrum, but its wavefunction decays exponentially with respect to the two photons’

relative distance. To compute the two-photon bound state in these systems, one can first evaluate the two-photon

scattering matrix (S matrix)

Sp1p2k1k2 = 〈p1, p2|Ŝ|k1, k2〉

that relates the incident photons with frequencies k1, k2 to the outgoing photons with frequencies p1, p2. The two-
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photon S matrix can in general be decomposed into the form

Sp1p2k1k2 = S0
p1p2k1k2 + SCp1p2k1k2 . (4)

The first term S0
p1p2k1k2

is the non-interacting part. In the case where the local quantum system has a unique

ground state, S0
p1p2k1k2

= tk1tk2 [δ(p1 − k1)δ(p2 − k2) + δ(p1 − k2)δ(p2 − k1)], which describes the process in which

each photon transports independently with transmission amplitudes tk1 and tk2 . SCp1p2k1k2 is the interacting part that

describes the interaction between the two photons [28]. For the input of two photons with frequencies k1, k2, the

wavefunction of the output bound state is [12, 34]

B(x1, x2) =
1

4
√

2π

∫
dp1dp2 S

C
p1p2k1k2

(
eip1x1eip2x2 + eip1x2eip2x1

)
. (5)

Furthermore, it has been argued that SCp1p2k1k2 has the analytic structure [28, 35]

SCp1p2k1k2 =
A(p1, p2, k1, k2)δ(p1 + p2 − k1 − k2)∏2

l=1

∏
λ=±(pl − E1,λ)(kl − E1,λ)

∏
ρ(k1 + k2 − E2,ρ)

, (6)

where A(p1, p2, k1, k2) is an analytic function on photon frequencies. (As has been shown in Ref. [35], this form is true

independent of whether the local quantum system has one or multiple ground states.) Note that the eigenvalues of the

effective Hamiltonian, E1,± as shown in (3), correspond to the single photon excitation poles in the interacting part

of the two-photon S matrix (6) at the lower half of the complex energy plane [28, 35]. The eigenvalues E2,ρ, if they

exist, correspond to the two-photon excitation poles. Since the eigenvalues E1,± coalesce at the exceptional points of

the effective Hamiltonian, we expect that the exceptional point should play a role in the two-photon transport and

two-photon bound state as well.

To explicitly connect the exceptional points in the non-Hermitian physics of the effective Hamiltonian (2) to the

two-photon bound state in the waveguide QED physics, we consider the scattering process of two single-photon pulses

against the local quantum system. The two single-photon pulses have the same group velocity vg but with a separation

L as shown in Fig. 1 (a). The first pulse excites the local quantum system, and then the amplitude of excitation

inside the local system decays into the waveguide in the form of A+ e
−iE1,+t +A− e

−iE1,−t as controlled by the single

excitation poles E1,± in the single photon transmission amplitude. The interaction between the photons can occur

only if there remains excitation in the local system at the moment when the second photon pulse arrives. At that

moment, the remaining excitation inside the local system should be A+ e
−iE1,+τ + A− e

−iE1,−τ where τ ≡ L/vg = L

is the time decay between two photons (Fig. 1 (b)), note that we have set vg = 1. As a result, we expect that the
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FIG. 1: (a) Two single-photon pulses with a separation L scatter against the local quantum system. (b) After the first single-

photon pulse passes, the excitation in the local quantum system decays exponentially. The strength of the interaction depends

on the amplitudes of such excitation when the second single-photon pulse arrives.

outcome of such an interaction should decay as a function of the separation L between the two pulses in the form

of A+ e
−iE1,+L + A− e

−iE1,−L when L is large. At the exceptional point where E1+ = E1−, such form exhibits the

feature of the critical damping, that is, the interaction decays quickest to zero. Note that the two-photon bound state

is from such photon-photon interaction, we thus expect intuitively that the critical damping at the exceptional point

leads to the tightest two-photon bound state. Indeed, we can verify such an intuition by computing the wavefunction

of the two-photon bound state explicitly from (5) and (6). For E1,+ 6= E1,−, we have

B(x1, x2) ∝
∑
λ=±

Aλe−iE1,λ|x1−x2| , (7)

while at the exceptional point E1+ = E1−,

B(x1, x2) ∝
[
1− i

(
k1 + k2

2
− E1,+

)
|x1 − x2|

]
e−iE1,+|x1−x2| . (8)

Eq. (8) is the form of critical damping as a function of photons’ separation |x1−x2|, suggesting that two-photon bound

state is tightest compared when the system exhibits an exceptional point. This feature comes from the degeneracy of

single photon excitation poles at the exceptional point in the two-photon S matrix (6). Such degeneracy also exists

in the single photon S matrix, but no signature of the exceptional point can be found in the single photon state.

The above relation between the exceptional point and the tightest two-photon bound state also applies to cases

where there are more than two photons. In general, as proved in the appendix, the wavefunction of the N -photon

bound state has a pairwise decay form in terms of photons’ separations

B(x1, · · · , xN ) ∝
∑
Q

N−1∏
i=1

Di(xQ(i) − xQ(i+1))θ(xQ(i) − xQ(i+1)) , (9)
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where Q represents all the permutations of indices {1, · · · , N}. Di(xQ(i) − xQ(i+1)) is a linear combination of decay

terms controlled by excitation poles En,λ in (3) for n = 1 up to N . Such a pairwise decay form has been explicitly

computed in special cases of multiple-level atoms [12, 20]. In waveguide QED systems, one typically has ImEn,ρ <

ImE1,± < 0 for n > 1. The slowest decay is from the single excitation poles and asymptotically we have

Di(xQ(i) − xQ(i+1)) ∝
∑
λ=±

Ai,λe−iE1,λ|xQ(i)−xQ(i+1)| . (10)

The coefficient Ai,λ in (10) can be calculated from the part of the connected N -photon S matrix that only describes

the single excitation processes. As proved in the appendix, such S matrix is the product of a single off-shell two-photon

S matrix and a series of single photon S matrix. As a result, the N -photon bound state should also be tightest at

the exceptional point E1,+ = E1,−. Our result here suggests that the presence of the exceptional point manifests in

strongly correlated many-body state of photons.

To support the general argument, we perform an explicit computation for the case where the local quantum system

is described by the Jaynes-Cummings Hamiltonian

Hloc = ω a†a+ Ωσ+σ− + g
[
a†σ− + σ+a

]
,

where a (a†) is the annihilation (creation) operator of the cavity mode with frequency ω. σ± are operators of the two-

level atom defined by the Pauli matrices 1
2 (σx ± iσy). Ω is the atomic transition frequency and g is the atom-cavity

coupling rate. In this case, the non-Hermitian effective Hamiltonian (2) and the excitation number operator take the

forms of

Heff =
(
ω − i κ

2

)
a†a+ Ωσ+σ− + g

[
a†σ− + σ+a

]
, (11)

Nloc = a†a+ σ+σ− .

As a result, the eigenvalues in (3) are

En,± =
(2n− 1)

(
ω − iκ2

)
+ Ω

2
±

√(
ω − iκ2 − Ω

2

)2

+ n g2 , (12)

In general, for each n, there is a pair of eigenvalues. However, at exceptional point, where ω = Ω and κ = 4
√
n g,

the Hamiltonian (11) is defective and the pair of eigenvalues (12) coalesce. As shown in Fig.2 (a), in the vicinity of

exceptional points, the eigenvalue surfaces form intersecting Riemann sheets in terms of parameters ω and κ, leading

to a nontrivial geometric phase under cyclic parameter variation in the parameter space [41]. If we fix ω = Ω and
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vary κ, as shown in Fig.2 (b), the eigenvalues (12) coalesce and exhibit slope discontinuity at the exceptional points

κ = 4
√
n g for each n ∈ Z+. Also, we see that indeed ImEn,± < ImE1,± < 0 for n > 1, confirming a condition

required above for the general argument. All these behaviors related to the existence of exceptional points have been

observed experimentally in an open Jaynes-Cummings system [6].

(a)�

(b)�

FIG. 2: (a) The ω and κ dependence of the real of imaginary part of eigenvalues E1,± in Eq. (12) when g = 0.025 Ω. The

exceptional point is located on the curve where the eigenvalue surfaces intersect ω = Ω, κ = 0.1Ω. (b) The real and imaginary

parts of eigenvalues in the subspaces of excitation numbers n = 1 (solid red line), 2 (dashed blue line) and 3 (dotted green line)

as a function of κ. ω = Ω and g = 0.025 Ω.

The exceptional point behavior as indicated above manifests in the few photon transport properties. As calculated

in Ref. [14, 21], The single photon transmission coefficient has the form

tk =

(
k − ω − iκ2

)
(k − Ω)− g2(

k − ω + iκ2
)

(k − Ω)− g2
, (13)

and the interacting part of the two-photon S-matrix is

SCp1p2k1k2 =
κg2F (k1, k2) δ(p1 + p2 − k1 − k2)

(p1 − E1,+)(p1 − E1,−)(p2 − E1,+)(p2 − E1,−)
, (14)
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with

F (k1, k2) ≡ i
√
κg

π

2g
[
s

(c)
k1

+ s
(c)
k2

]
+ (k1 + k2 − 2ω + iκ)

[
s

(a)
k1

+ s
(a)
k2

]
(k1 + k2 − E2,+)(k1 + k2 − E2,−)

,

and s
(c)
k ≡

√
κ(k−Ω)

(k−ω+iκ2 )(k−Ω)−g2
, s

(a)
k ≡

√
κg

(k−ω+iκ2 )(k−Ω)−g2
. In (14), we have E1,+ = E1,− at the exceptional point

ω = Ω, κ = 4g. As a result, p1 and p2 have a double pole instead of two single poles, which results in the critical

damping as discussed above. In a special case of resonant scattering where two input photons have the same frequency

k1 = k2 = ω = Ω, we can compute the wavefunction of the two-photon bound state explicitly from (5) and (14) as

B(xc, τ) = − 4κ2

√
2π(κ2 + 4g2)

e2iωxcf(τ) , (15)

where xc is the coordinate of the two-photon center-of-mass xc ≡ x1+x
2 and τ is the spatial separation τ ≡ x1 − x2.

f(τ) has different forms depending on the values of κ and g:

f(τ) =



(
cos

√
g2 −

(
κ
4

)2|τ |+ κ sin
√
g2−(κ4 )

2|τ |√
(4g)2−κ2

)
e−

κ
4 |τ | κ < 4g

(1 + g |τ |) e−g|τ | κ = 4g(
cosh

√(
κ
4

)2 − g2|τ |+
κ sinh

√
(κ4 )

2−g2|τ |√
κ2−(4g)2

)
e−

κ
4 |τ | κ > 4g

, (16)

which is a special form of (7) and (8). The behavior of f(τ) is shown in Fig. 3 (a). At κ = 4g, f(τ) is critically

damped and has the smallest spatial extent. At κ < 4g, f(τ) is underdamped, it oscillates as a function of τ . At

κ > 4g, f(τ) is over damped, it decays to zero exponentially as τ increases. For both κ > 4g and κ < 4g, the spatial

extent of f(τ) is larger as compared to the critically damped case with κ = 4g. The result here illustrates that the

exceptional point in waveguide QED systems has a quantum signature in the properties of the two-photon bound

state of the system.

The properties of the two-photon bound state can be probed experimentally by measuring the two-photon correlation

function. In particular, we consider the reflected two-photon correlation function in a two-mode waveguide in which

the behavior of the even mode is described by the single-mode Hamiltonian (1) [8, 21]. As calculated in the appendix,

for an input state consisting of two photons with frequencies k1 = k2 = ω = Ω, the single-photon reflection amplitude

is zero, and thus the reflected two-photon correlation function G
(2)
rr (τ) is purely from the reflected two-photon bound

state:

G(2)
rr (τ) =

∣∣∣∣ κ2

π (κ2 + 4g2)
f(τ)

∣∣∣∣2 . (17)
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(a)� (b)�

FIG. 3: (a) The profile of the two-photon bound state as a function of the separation between two photons in different regions

separated by the exceptional point. (b) The reflected two-photon correlation function G
(2)
rr (τ) in different regions separated by

the exceptional point.

We plot the function

√
G

(2)
rr (τ) for different values of κ/g in Fig. 3 (b). At κ = 4g, where the effective Hamiltonian

supports an exceptional point in the single-excitation subspace, the decay of G
(2)
rr (τ) to zero is the quickest. For under

damping where κ < 4g, we can observe oscillations in G
(2)
rr (τ). Therefore, there is an experimental signature of the

exceptional point in the two-photon correlation function.

For the N -photon scattering with resonate frequency k1 = k2 · · · = kN = ω = Ω, as calculated in the appendix, the

output N -photon bound state has the asymptotic form of

B(x1, · · · , xN ) ∝
∑
Q

f(xQ(j) − xQ(j+1))θ(xQ(1) − xQ(2))

N−1∏
j=2

g(xQ(j) − xQ(j+1))θ(xQ(j) − xQ(j+1)) (18)

with f(τ) defined in (16) and g(τ) defined as

g(τ) ≡



sin
√
g2−(κ4 )

2|τ |√
(g)2−(κ4 )

2
e−

κ
4 |τ | κ < 4g

|τ |e−g|τ | κ = 4g

sinh
√

(κ4 )
2−g2|τ |√

(κ4 )
2−g2

e−
κ
4 |τ | κ > 4g

. (19)

The N -photon bound state also exhibits critical damping and thus is tightest at the exceptional point κ = 4g.

In summary, we consider the few-photon transport in a waveguide coupled to a local quantum system. We show

that the exceptional point in the open quantum local system has a direct signature in the few-photon bound state
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of in the waveguide. The tightest-bound few-photon bound state in this system occur at the exceptional point. This

connection between the tightest-bound photon bound state, and the exceptional point of the open system, is a general

one, since it arises from the critical damping property that occurs at the exceptional point. Our work points to

a connection between the non-Hermitian physics and the waveguide QED that has not been explored before. The

results indicate that the exceptional-point physics can be used to control photon-photon interaction, and therefore

the exceptional-point physics may prove useful in the quest to create many-body quantum photon states in waveguide

QED systems. One application of such many-body entangled photon states is in the area of quantum metrology, where

one utilizes entangled states to overcome the standard quantum limit of measurement [42, 43]. Having a many-photon

state that is tightly bounded could be of interest since it enables multiple entangled photons to probe the measured

system simultaneously. It may also be of interest to study the propagation of such many-body entangled states in

linear optical circuits such as those used in boson sampling [44, 45].

This research is supported by AFOSR-MURI programs, Grant No. FA9550-12-1-0488 and FA9550-17-1-0002.

APPENDIX

A.1. Wavefunction of N-photon bound state

When the input state consists of N photons with frequencies k1, k2, · · · , kN , the wavefunction of output N -photon

bound state is

B (x1, · · · , xN ) =

∫
dp1 · · · dpN(√

2π
)N SCp1···pNk1···kN

1√
N !

∑
Q

eip1xQ(1) · · · eipNxQ(N) , (20)

where Q denotes all the permutations on indices {1, · · · , N} and SCp1···pNk1···kN is the connected part of N -photon S

matrix [31]. Here, we focus on the decay behavior of N -photon bound state as a function of photons’ separations. For

this purpose, all we have to do is to identify the pole structures of p1, · · · , pN in SCp1···pNk1···kN , which can be written

down directly in a diagrammatical approach as proposed in Ref. [46].

For illustration, we take the three-photon case as an example. Our discussion can be generalized straightforwardly to

the N -photon case. For three photons, SCp1p2p3k1k2k3 is the sum of five diagrams as listed in Fig. 4 up to permutations

of photon frequencies. Following the rules in [46], for each diagram in Fig. 4, we define variables

P1 ≡ p1 , P2 ≡ p1 + p2 , P3 ≡ p1 + p2 + p3 , K1 ≡ k1 , K2 ≡ k1 + k2 , K3 ≡ k1 + k2 + k3 ,
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FIG. 4: The five types of terms of three-photon S matrix in diagrams. (a) 〈aa†aa†aa†〉; (b) 〈aaa†a†aa†〉; (c) 〈aa†aaa†a†〉; (d)

〈aaa†aa†a†〉; (e) 〈aaaa†a†a†〉.

and write down the pole structure as follows :

(a) 1
K1−E1

P
K1−P1

1
K2−P1−E1

P
K2−P2

1
K3−P2−E1

δ(K3 − P3),

(b) 1
K1−E1

P
K1−P1

1
K2−P1−E1

1
K3−P1−E2

1
K3−P2−E1

δ(K3 − P3),

(c) 1
K1−E1

1
K2−E2

1
K2−P1−E1

P
K2−P2

1
K3−P2−E1

δ(K3 − P3),

(d) 1
K1−E1

1
K2−E2

1
K2−P1−E1

1
K3−P1−E2

1
K3−P2−E1

δ(K3 − P3),

(e) 1
K1−E1

1
K2−E2

1
K3−E3

1
K3−P1−E2

1
K3−P2−E1

δ(K3 − P3).

Based on the poles listed above, we can evaluate (20) by contour integrals with respect to new variables P1, P2 and

P3, which gives the decay forms:

(a) e−iE1(xQ(1)−xQ(2))eiE1(xQ(3)−xQ(2))θ(xQ(1) − xQ(2))θ(xQ(2) − xQ(3)),

(b)
[
e−iE1(xQ(1)−xQ(2)) + e−iE2(xQ(1)−xQ(2))

]
eiE1(xQ(3)−xQ(2))θ(xQ(1) − xQ(2))θ(xQ(2) − xQ(3)),

(c) e−iE1(xQ(1)−xQ(2))eiE1(xQ(3)−xQ(2))θ(xQ(1) − xQ(2))θ(xQ(2) − xQ(3)),

(d)
[
e−iE1(xQ(1)−xQ(2)) + e−iE2(xQ(1)−xQ(2))

]
eiE1(xQ(3)−xQ(2))θ(xQ(1) − xQ(2))θ(xQ(2) − xQ(3)),
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(e) e−iE2(xQ(1)−xQ(2))eiE1(xQ(3)−xQ(2))θ(xQ(1) − xQ(2))θ(xQ(2) − xQ(3)).

Summing them together, the wavefunction of the three-photon bound state B(x1, x2, x3) has the decay form of

B(x1, x2, x3) ∼
∑
Q

[
Ae−iE1(xQ(1)−xQ(2)) +B e−iE2(xQ(1)−xQ(2))

]
e−iE1(xQ(2)−xQ(3))θ(xQ(1) − xQ(2))θ(xQ(2) − xQ(3)) .

(21)

In general, for N photons, the wavefunction of the N -photon bound state always has the pairwise decay form as

B (x1, · · · , xN ) ∝
∑
Q

N−1∏
i=1

Di

(
xQ(i) − xQ(i+1)

)
θ
(
xQ(i) − xQ(i+1)

)
, (22)

where each Di

(
xQ(i) − xQ(i+1)

)
is the linear combination of exponential decays controlled by different excitation

poles. The proof is similar to that in previous three-photon case. For each diagram of the connected N -photon

S matrix, we assign the up arrows from left to right with labels k1, · · · , kN and the down arrows from left to

right with labels p1, · · · , pN . The connected N -photon S matrix is the direct product of terms, each contain-

ing one of the poles of P1 ≡ p1, P2 ≡ p1 + p2, · · · , PN−1 ≡ p1 + · · · + pN−1. To evaluate (20), we first inte-

grate out pN to remove the δ-function and the exponential term eip1xQ(1) · · · eipNxQ(N) in (20) becomes the form

of eiP1(xQ(1)−xQ(2))eiP2(xQ(2)−xQ(3)) · · · eiPN−1(xQ(N−1)−xQ(N)). As a result, the integral (20) is decomposed to N − 1

independent integrals with respect to variables P1, · · · , PN−1, which results in the pairwise form as shown in (22).

For the general form of (22), because of the existence of the diagram like Fig.4 (a) that only contains the single

excitation poles, Di

(
xQ(i) − xQ(i+1)

)
must at least contain the term e−iE1(xQ(i)−xQ(i+1)). In typical waveguide QED

systems, ImEi < ImE1 < 0 for i > 1, the single excitation poles E1 dominates the decay (the slowest decay mode).

As a result, the slowest decay part in (22) has the form:

B(slowest) (x1, · · · , xN ) ∝
∑
Q

N−1∏
i=1

e−iE1(xQ(i)−xQ(i+1))θ
(
xQ(i) − xQ(i+1)

)
. (23)

Furthermore, we can calculate the exact form of the slowest decay (23) explicitly. It can be proved that there

are only two types of diagrams, as listed in Fig.5, in which all the poles of P1, P2, · · · , PN−1 are single excitation

poles. Summing up terms corresponding to these two diagrams lead to (23). The exact form of the connected part of

N -photon S matrix contributed by the two diagrams is

S
C (slowest)
p1···pNk1···kN =

δ(PN −KN )

(2πi)N−2

∑
Q,R

G
(
PQ(1),KR(1),KR(2)

)N−1∏
j=2

P
PQ(j) −KR(j)

G
(
KR(j+1) − PQ(j)

)
, (24)

where Q,R are the permutations on indices {1, · · · , N}. KR(i) ≡
∑i
l=1 kR(l) and PQ(i) ≡

∑i
l=1 pQ(l) for i = 1, · · · , N .

G(k) is related to the single photon S matrix as Spk = [1 +G(k)] δ(p−k) and G (P1,K1,K2) is related to the connected
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k1� p1� p3�p2� k3�k2� p��k��

E1�

(a)� pN�kN�

k1�

p1�

p3�p2� k3�

k2�

p��k��

E1�

pN�kN�

E2�

(b)�

FIG. 5: The only two types of diagrams that contain only single excitations pole of P1, P2, · · · , PN−1. (a) 〈aa† · · · aa†aa†aa†aa†〉;

(b) 〈aa† · · · aa†aa†aaa†a†〉.

two-photon S matrix as

SCp1p2k1,k2 = [G (p1, k1, k1 + k2) + G (p2, k1, k1 + k2) + G (p1, k2, k1 + k2) + G (p2, k2, k1 + k2)] δ(p1 + p2 − k1 − k2) .

For the effective Hamiltonian Heff = Hloc − iκ2a
†a, Heff|λ〉n = Enλ|λ〉n, Nloc|λ〉n = n|λ〉n,

G(k) = −iκ
∑
λ

〈0|a|λ〉11〈λ̄|a†|0〉
k − E1λ

,

G (P1,K1,K2) =
κ2

2πi

∑
µν

〈0|a|ν〉1
K2 − P1 − E1ν

[
1〈ν̄|a†|0〉

P
K1 − P1

〈0|a|µ〉1 −
∑
λ

1〈ν̄|a|λ〉22〈λ̄|a†|µ〉1
K2 − E2λ

]
1〈µ̄|a†|0〉
K1 − E1µ

.

Here, since the effective Hamiltonian is non-Hermitian, we have to use the bi-orthogonal basis |λ〉n and n〈λ̄| when

computing the Green functions [14].

The wavefunction of the slowest decay part of the bound state can be evaluated as

B(slowest) (x1, · · · , xN ) =

∫
dp1 · · · dpN(√

2π
)N S

C (slowest)
p1···pNk1···kN

1√
N !

∑
Q

eip1xQ(1) · · · eipNxQ(N)

=

√
N !(√

2π
)N ∑

Q,R

eiKNxQ(N)

(∫
dP1 G

(
P1,KR(1),KR(2)

)
eiP1(xQ(1)−xQ(2))

)

×
N−1∏
j=2

∫
dPj
2πi

P
Pj −KR(j)

G
(
KR(j+1) − Pj

)
eiPj(xQ(j)−xQ(j+1)) . (25)

When there are two single excitation poles E1,+ and E1,−, G(k) and G (P1,K1,K1) have the form of

G(k) ≡ A(k)

(k − E1,+) (k − E1,−)
, G (P1,K1,K2) ≡ 1

2πi

B(P1,K1,K2)

(K2 − P1 − E1,+) (K2 − P1 − E1,−)
, (26)
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where A(k) and B(P1,K1,K2) are the analytic function of variables k and P1, respectively. We can evaluate

∫
dP1 G

(
P1,KR(1),KR(2)

)
eiP1(xQ(1)−xQ(2))

=

∫
dP1

2πi

B(P1,KR(1),KR(2))(
KR(2) − P1 − E1,+

) (
KR(2) − P1 − E1,−

)eiP1(xQ(1)−xQ(2))

=
[
B(KR(2) − E1,+,KR(1),KR(2)) e

−iE1,+(xQ(1)−xQ(2)) − B(KR(2) − E1,−,KR(1),KR(2)) e
−iE1,−(xQ(1)−xQ(2))

]
×e

iKR(2)(xQ(1)−xQ(2))

E1,+ − E1,−
θ(xQ(1) − xQ(2))

≡ FkR(1),kR(2)

(
xQ(1) − xQ(2)

)
eiKR(2)(xQ(1)−xQ(2))θ(xQ(1) − xQ(2)) , (27)

and

∫
dPj
2πi

P
Pj −KR(j)

G
(
KR(j+1) − Pj

)
eiPj(xQ(j)−xQ(j+1))

=

∫
dPj
2πi

P
Pj −KR(j)

A(KR(j+1) − Pj)(
Pj −KR(j+1) + E1,+

) (
Pj −KR(j+1) + E1,−

)eiPj(xQ(j)−xQ(j+1))

=

[
A(E1,+) e−iE1,+(xQ(j)−xQ(j+1))

kR(j+1) − E1,+
− A(E1,−) e−iE1,−(xQ(j)−xQ(j+1))

kR(j+1) − E1,−

]
eiKR(j+1)(xQ(j)−xQ(j+1))

E1,+ − E1,−
θ(xQ(j) − xQ(j+1))

≡ FkR(j+1)

(
xQ(j) − xQ(j+1)

)
eiKR(j+1)(xQ(j)−xQ(j+1))θ(xQ(j) − xQ(j+1)) . (28)

As a result,

Bslowest(x1, · · · , xN ) =

√
N !(√

2π
)N ∑

Q,R

FkR(1),kR(2)

(
xQ(1) − xQ(2)

)
ei(kR(1)+kR(2))xQ(1)θ(xQ(1) − xQ(2))

×
N−1∏
j=2

FkR(j+1)

(
xQ(j) − xQ(j+1)

)
eikR(j+1)xQ(j)θ(xQ(j) − xQ(j+1)) . (29)

For the special case of Jaynes-Cummings model, we have

E1,± =

(
ω − iκ2

)
+ Ω

2
±

√(
ω − iκ2 − Ω

2

)2

+ g2 , A(k) = −i κ (k − Ω) .

Consider the resonsant scattering k1 = k2 = · · · = kN = ω = Ω, as shown in the main context, (27) has the decay

form of f(xQ(1) − xQ(2)) while (28) has the decay form of g(xQ(j) − xQ(j+1)) with g(τ) defined as

g(τ) ≡



sin
√
g2−(κ4 )

2|τ |√
(g)2−(κ4 )

2
e−

κ
4 |τ | κ < 4g

|τ |e−g|τ | κ = 4g

sinh
√

(κ4−g2)
2|τ |√

(κ4 )
2−g2

e−
κ
4 |τ | κ > 4g

. (30)

Therefore, the N -photon bound state scattered from Jaynes-Cummings system in the resonant scattering case has
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the decay form of

B(x1, · · · , xN ) ∝
∑
Q

f(xQ(j) − xQ(j+1))θ(xQ(1) − xQ(2))

N−1∏
j=2

g(xQ(j) − xQ(j+1))θ(xQ(j) − xQ(j+1)) (31)

A.2. G(2) correlation function

We consider a two-mode waveguide coupled to the Jaynes-Cummings system with the Hamiltonian

H =

∫
dk k

(
r†krk − l

†
klk

)
+

√
κ/2

2π

∫
dk
[(
r†k + l†k

)
a+ a† (rk + lk)

]
+Hloc , (32)

where lk (l†k) and rk (r†k) are annihilation (creation) operators of the respective left-going and right-going photon states.

Both modes couple to the Jaynes-Cummings system with the same coupling constant
√
κ/2. We define the even and

odd modes

ck ≡
1√
2

(rk + l−k) , dk ≡
1√
2

(rk − l−k) ,

the Hamiltonian (32) becomes two independent parts: H = He+Ho, where He is exactly Eq. (1) in the main context

and Ho is a free Hamiltonian Ho =
∫
dk k d†kdk. As a result, the S matrices and the correlation functions in the

two-mode waveguide can be obtained directly from the results (13)-(14) of the single mode model in the main context.

As calculated explicitly in Ref. [21], if we send in two right-going photons with individual energies k1 and k2, the

reflected two-photon state is

|out〉LL =

∫
dx1dx2

[
r̄k1 r̄k2

1√
2 2π

(
e−ik1x1e−ik2x2 + e−ik1x2e−ik2x1

)
+

1

4
B(−x1,−x2)

]
1√
2
l†(x1)l†(x2)|0〉 , (33)

where B is defined in Eq. (5) and r̄k is the reflection coefficient that can be computed from Eq.(13) as

r̄k =
1

2
(tk − 1) = −iκ

2

k − Ω(
k − ω + iκ2

)
(k − Ω)− g2

. (34)

Note that at frequency k1 = k2 = Ω, r̄k1 = r̄k2 = 0 and the only reflected state is the two-photon bound state.

Finally, the reflected two-photon correlations function is

G
(2)
LL(τ) = LL〈out|l†(x)l†(x+ τ)l(x+ τ)l(x)|out〉LL . (35)

We can compute G
(2)
LL(τ) from (33), (34) and Eq. (5), (14). For the case of resonant scattering where k1 = k2 = ω = Ω,

we have

G
(2)
LL(τ) =

∣∣∣∣ κ2

π(κ2 + 4g2)
f(τ)

∣∣∣∣2 . (36)
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