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We investigate the dimension of the phase space attractor of a quantum chaotic many-body
ratchet in the mean-field limit. Specifically, we explore a driven Bose-Einstein condensate in three
distinct dynamical regimes - Rabi oscillations, chaos, and self-trapping regimes - and for each of
them we calculate the correlation dimension. For the ground state of the ratchet formed by a system
of field-free non-interacting particles, we find four distinct pockets of chaotic dynamics throughout
these regimes. We show that a measurement of local density in each of the dynamical regimes has
an attractor characterized by a higher fractal dimension, DR = 2.59± 0.01, DC = 3.93± 0.04, and
DS = 3.05± 0.05, compared to the global measure of current, DR = 2.07± 0.02, DC = 2.96± 0.05,
and DS = 2.30 ± 0.02. We find that the many-body case converges to the mean-field limit with
strong sub-unity power laws in particle number, Nα, with αR = 0.28± 0.01, αC = 0.34± 0.067
and αS = 0.90± 0.24 for each of the dynamical regimes mentioned above. The deviation between
local and global measurements of the attractor’s dimension corresponds to an increase towards
higher condensate depletion, which remains constant for long time scales in both Rabi and chaotic
regimes. The depletion is found to scale polynomially with particle number N , namely as Nβ with
βR = 0.51± 0.004 and βC = 0.18± 0.004 for the two regimes. Thus, we find a strong deviation
from the mean-field results, especially in the chaotic regime of the quantum ratchet. The ratchet
also reveals quantum revivals in the Rabi and self-trapping regimes but not in the chaotic regime,
with revival times scaling linearly in particle number for Rabi dynamics. Based on the obtained
results, we outline pathways for the identification and characterization of emergent phenomena in
driven many-body systems. This includes the identification of many-body localization from the
many-body measures of the system, the influence of entanglement on the rate of the convergence to
the mean-field limit, and the establishment of a polynomial scaling of the Ehrenfest time at which
the mean-field description fails to describe the dynamics of the system.

I. INTRODUCTION

In recent years, periodically driven quantum systems
have been the subject of extensive theoretical [1–4] and
experimental [5–8] efforts. These systems allow the ex-
ploration of unique physical phenomena such as topolog-
ical states of matter [1, 2, 8], the ability to precisely tune
quantum phase transitions [5, 7], and localization [3, 6, 9].
In close relation to localization, periodically driven quan-
tum systems have also been instrumental in probing the
understanding of various aspects of quantum chaos [10–
12]. In particular, these dynamical systems have estab-
lished firm connections between quantum signatures of
chaos beyond Random Matrix theory by observing quan-
tum dynamics that are comparable to phase space attrac-
tors of classical particle–like or semi-classical wave–like
chaos [12, 13]. However, the role of particle interaction
in many-body systems and their semi–classical counter-
parts has not been fully understood in this context. Such
driven and interacting systems typically possess many
relevant length and time scales that may give rise to a
new realm of physical phenomena. In this article, we
explore the dynamics of a periodically driven quantum
many-body system in the mean-field limit for both reg-
ular and chaotic dynamics. We find that chaos in a
quantum ratchet manifests itself in a quantifiably differ-
ent way depending on the length scale observed within
the system, i.e., local measurements reveal higher dimen-
sional attractors as compared to global measurements.
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FIG. 1. Quantum Ratchet via Toroidal Condensate (a) Off
center rotation of a toroidal Bose-Einstein condensate [14–
18] generates the effect of driving by two counter propagating
waves in one spatial dimension [19]. Only when the ampli-
tude of the two waves is unequal can such a system present
a ratchet effect due to asymmetric coupling to positive and
negative angular momentum modes. (b) Space-time plot of
the drive given in (a) with equal amplitude fields. (c) Once
the drive amplitudes differ, the BEC becomes coupled to pos-
itive and negative modes, easy visible in the symmetries of
the space-time plot for this case.

Specifically, we study an interacting many-body quan-
tum ratchet that is known to be chaotic for a particular
range of atomic interaction strengths and external driv-
ing parameters. This system consists of a Bose-Einstein
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condensate (BEC) under periodic driving that breaks
generalized parity and time-reversal symmetries [19–21],
see Fig. 1. The ratchet effect, or directionally biased
motion, is induced by these symmetry violations [22–
24] and manifests in the particle current [19, 20]. For
near resonant driving this results in two regular dynam-
ical regimes, Rabi oscillations for weak particle inter-
action and self-trapping for strong interactions, with a
chaotic regime for intermediate couplings [19–21]. This
system can be treated in the many-body framework of
the Bose-Hubbard model with a time-dependent poten-
tial, or, alternatively, in a time-independent truncated
Floquet model [19–21]. In either case, a well defined
mean-field limit gives rise to nonlinear dynamics. Us-
ing the delay embedding method for calculating attrac-
tor correlation dimension [13, 25–28], we investigate the
phase space structures of the many-body models as well
as their mean-field counterparts. We show agreement be-
tween the attractor dimension for both mean-field mod-
els. Moreover, we identify four distinct regions of in-
teraction strengths that produce chaotic dynamics, con-
trasting its identification in the spectral statistics and
quantum many-body dynamics [21]. We shall point out,
however, that the performed analysis of the dimension of
the strange attactor and the correlation dimension of the
system are meaningful only if the system is character-
ized with a nonzero dissipation. Indeed, the existence of
strange attractors in the quantum ratchet indicates the
existence of an underlying structure that the system lim-
its to in the presence of dissipation. We shall point out
that the identification of strange attractors allows one to
determine dynamical outcomes of the system [29].

Mean-field methods have been instrumental in the de-
scription of a wide range of many-body phenomena such
as the Ginzburg–Landau theory of superconductivity and
the Bogoliubov theory of superfluidity, among many oth-
ers [30–32]. The success of the mean-field description of
a wide spectrum of physical systems heavily relies on the
fast convergence of the dynamics of finite sized many-
body systems with the number of particles that form the
system. However, whenever these systems exhibit chaotic
dynamics, one usually considers either classical aspects
of the system with the corresponding mean-field descrip-
tion, or the full quantum many-body treatment. In the
studies that have merged both of these descriptions, the
physical systems have not been dominated by the inter-
actions, and therefore classical measures and parameters
have been utilized in describing the dynamics of the sys-
tem [10–12]. In contrast, we take both approaches for
the quantum ratchet system where interactions play the
dominant role in defining the type of dynamics exhib-
ited by the system. This allows us to differentiate in a
quantitative way between different models that are used
in the description of current experiments [15, 16, 18].
Such differences can be seen even in regular dynamical
regimes via large condensate depletion and subsequent
quantum revivals. This situation only becomes worse
for chaotic regimes, where the condensate depletes, and

thus results in an absence of quantum revivals. The
non-equilibrium dynamics of the condensate held at a
finite temperature and driven by external fields results
in both thermal and dynamical depletion of the conden-
sate. A number of powerful methods have been devel-
oped that allow one to investigate thermal depletion of
the condensate, including the Hartree-Fock-Bogoliubov-
Popov method [33–35] and the Zaremba-Nikuni-Griffin
method [36, 37], along with methods based on the pro-
jected Gross-Pitaevskii [38, 39] and stochastic Gross-
Pitaevskii equations [40, 41]. The self-consistent treat-
ment of the dynamical depletion of a driven condensate
held at a finite temperature can be obtained within the
second-order number-conserving method [42–45]. The
latter method allows one to obtain a number-conserving
description of a driven condensate, preserve the orthog-
onality of condensate and non-condensate parts of the
BEC using the Penrose-Onsager criterion of the Bose–
Einstein condensation [46], and allows for the interac-
tion and transfer of particles within the entire BEC.
Specifically, the application of this method to a δ-kicked-
rotor condensate revealed that the unbounded growth of
the non-condensate part of the condensate is a direct
consequence of the instabilities in the linearized Gross-
Pitaevskii equation. By incorporating the second-order
corrections, this method enables a self-consistent treat-
ment of the condensate’s back-action and shows that the
growth of the non-condensate part is damped out, thus
revealing the role of the dynamical depletion in a driven
BEC [43–45].

Advances in the experimental control of ultra-cold
atoms have opened up a wide variety of new research
directions [47]. In particular, studies have demonstrated
novel phenomena including persistent currents [15, 16,
18], precision and dynamic control of optical traps [14,
17, 18], the generation of quantum ratchets [48, 49], and
the measurement of quasi-classical phase space struc-
tures [12]. Such techniques, along with the knowledge
that mean-field models have been well tested and vali-
dated [30–32], allow for new perspectives on the connec-
tion between linear quantum many-body dynamics and
mean-field nonlinear dynamics in the out of equilibrium
regimes. Furthermore, they allow investigations into dy-
namical features of quantum chaos beyond the well stud-
ied single particle case [10–12]. Here we provide a de-
tailed study of the mean-field and quantum many-body
dynamics and find that both treatments lead to the same
sub-unity power law time scaling. Furthermore, we pro-
vide a context in which the deviation from the mean-field
description with the subsequent recovery of the mean-
field phase space structures can be observed via long lived
condensate depletion and quantum revivals.

II. MANY-BODY AND MEAN-FIELD MODELS

In this paper, we consider a BEC in a toroidal trap [14–
18], resonantly driven by a generalized parity and time-
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reversal symmetry breaking potential that is periodic in
time. We will focus on a potential that can be experi-
mentally realized by rotating the entire condensate con-
fined in a trap around a circle of radius r. [19, 21].
This driving, together with repulsive particle interac-
tions, produces three distinct dynamical regimes for a
particle current: Rabi oscillations, quantum chaotic, and
self-trapping regimes, in accordance with increasing in-
teraction strength. This system can be effectively treated
using a one dimensional Bose-Hubbard model with pe-
riodic boundary conditions, which can be viewed as a
discretization of the torus or explicit lattice sites on a
ring [21]. The Hamiltonian for this model is

ĤB =− J
L∑
j=1

(b̂†j b̂j+1 + h.c.) +
U

2

L∑
j=1

n̂j(n̂j − 1̂)

+

L∑
j=1

Vj(t)n̂j (1)

where the driving field, Vj(t), is given by,

Vj(t) = E+ cos(κrθj − ωt) + E− cos(κrθj + ωt). (2)

Here b̂†j , b̂j , and n̂j = b̂†j b̂j are the bosonic creation, an-

nihilation, and number operators on the jth site, respec-
tively. These operators obey the standard bosonic com-

mutation relations [b̂i, b̂
†
j ] = δij and [b̂i, b̂j ] = 0. Each site

in the L length discretization corresponds to a position
rθj , where r is the radius of the torus, θj ∈ [0, 2π) is the
angle to the site, and the periodic boundary conditions
of the torus impose θj+L = θj . The coefficients E± give
the amplitude of the driving as well as control the vio-
lation of P and T symmetries when they are not equal.
κ is the wave number of the driving field and ω is the
frequency. For simplicity we consider resonant driving
with the first harmonic of the toroidal trap, κ = 1/r,
and ω = 2J [1 − cos(2π/L)]/~. A more detailed list of
drive configurations were considered in [19], while the
specific choice of the potential in (2) was made based on
its simplicity and experimental relevance [19, 21].

The experimental realization of the quantum ratchet
[49–53] with the observation of its characteristic dynam-
ical regimes can be achieved by a Bose-Einstein con-
densate of 87Rb loaded in a ratchet potential given by
Eq. (2) formed by two counter-propagating laser fields.
Upon loading the BEC into the optical potential, the
atomic cloud undergoes a free expansion with a subse-
quent imaging of the BEC via the well-established time-
of-flight (TOF) technique. The TOF-generated images
of the atomic cloud reveal the atomic-velocity distribu-
tion. This allows one to obtain not only the mean atomic
momentum, but also the time evolution of the parti-
cle current and depletion of the condensate as a func-
tion of the coupling parameter U(N − 1)/L. The peri-
odic driving of the system and its dynamical response
give rise to two time scales exhibited by the quantum

ratchet. The first time scale is defined by the driving pe-
riod, T = 2π/ω, while the non-interacting Rabi period,

TR = 2π/(E2
++E2

−)
1
2 , defines the second time scale. The

inclusion of interaction in the system results in three dis-
tinct dynamical regimes: Rabi oscillation for weak inter-
actions, the onset of self trapping for strong interaction
U(N − 1) = 2LJmax(E+, E−), and finally the chaotic
regime that is exhibited by the system for the intermedi-
ate interaction strengths [19, 21].

It has been previously shown that the static and dy-
namic signatures of quantum chaos in our ratchet are
preserved in a truncated three level system (3LS) de-
fined by the Floquet modes of the system [19, 21]. This
model can be derived by applying the (t, t′)-formalism to
the equation of motion for the second quantizated field

operator ψ̂(x). This method takes the time-dependence
induced by the periodic driving and absorbs it into an
auxiliary parameter t′ in a way that makes the equation
of motion take the form of a Floquet operator in t′. By
expanding in Floquet states, a time-independent repre-
sentation of the system is acquired [19, 20]. In the special
case of weak driving, one can restrict the expansion to
the three lowest angular momentum modes and obtain
an effective three level model (3LS) [19]. In this picture
the effective Hamiltonian is,

Ĥ3LS =
E+

2
(â†+â0 + h.c.) +

E−
2

(â†−â0 + h.c.)

− U

2L

∑
ν

n̂ν(n̂ν − 1̂), (3)

where â†ν , âν , and n̂ν are bosonic creation, annihilation,
and number operators, respectively, for the angular mo-
mentum mode ν, which satisfy the bosonic commutation
relations, [âµ, â

†
ν ] = δµν and [âµ, âν ] = 0. Here the index

of the operator represents positive, negative, and zero
angular momentum modes. We note that interactions
that are repulsive in the Bose-Hubbard model become
attractive in the angular momentum representation of
the Floquet modes [19] and the factor of L comes from
the L length spatial discretization of the Bose-Hubbard
model.

Both of these models allow for a corresponding mean-
field model in the limit where N → ∞ and U → 0 with
U(N − 1) = const. These models can be acquired by
first calculating the equation of the boson destruction
operators, and, under the usual assumptions, taking the
expectation value with respect to a tensor product of
Glauber coherent states [54]. The result for the Bose-
Hubbard model is the non-integrable discrete nonlinear
Schrödinger equation (DNLS) [54],

i~
∂

∂t
φj = −J(φj+1 + φj−1) + Vj(t)φj +NU |φj |2φj , (4)

where φj is the coherent state amplitude at the jth site,
with

∑
j |φj |2 = 1, and we are in the mean-field limit.

For the 3LS model, we arrive at a similar DNLS type
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model with only three amplitudes which we will call the
3GP [19],

i~
∂

∂t

φ+φ0
φ−

 =

−NUL |φ+|2 E+

2 0
E+

2
−NU
L |φ0|

2 E−
2

0 E−
2

−NU
L |φ−|

2

φ+φ0
φ−

 ,
(5)

where φν is the coherent state amplitude in the angular
momentum mode ν, we are again in the mean-field limit,
and

∑
ν |φν |2 = 1.

In our previous work [21], we have employed hopping
units where time is scaled by ~/J and energies are scaled
by J . However, for the clarity of the present work we
will not assume ~ = 1, and will use the parameters
E+ = 0.0225J , E− = 0.0075J and vary the mean-field
interaction NU/J in the range [0, 0.325], which covers
all three dynamical regimes. For our simulations we use
the ground state of the non-interacting system with no
driving and time evolve for a duration of 1000TR. In
the DNLS we use L = 6 in order to capture an ex-
tended range of angular momentum modes, which we
simulate using a fourth order Runge-Kutta with a suf-
ficiently converged time step. The 3LS has a much
smaller Hilbert space than the Bose-Hubbard, scaling
with (N + 1)(N + 2)/2 compared to

(
N+L−1
L−1

)
, respec-

tively. This allows for long time dynamics for N up to 40
particles in the 3LS using exact diagonalization. For the
3GP we use a fourth order Runge-Kutta method with a
sufficiently small time step, ∆t, in order to converge re-
sults. We emphasize that the convergence of the numeri-
cal solution for both 3GP and DNLS directly corresponds
to the truncation error of the fourth order Runge-Kutta
method, εRK, which scales as εRK = O(∆t4) [55, 56].

III. NONLINEAR METHODS

Extensive research in nonlinear dynamics has revealed
a number of fundamental results that firmly established
the numerical study of dynamical systems and chaos.
The prime example among them is the Takens’s theorem,
which provides the necessary conditions under which the
evolution of a dynamical system can be obtained from
a discrete time series of the state of a dynamical sys-
tem [13, 27, 28, 57]. This makes it possible to not only
calculate attractor dimensions, but also determine Lya-
punov exponents from experimental data [13]. Similar
methods have also been developed that can identify the
chaotic nature of a time series without having to calcu-
late the full spectrum of Lyapunov exponents [58, 59].
For our study, we will consider the 0 − 1 test for iden-
tification of the chaotic regime [58, 59], and the delay
embedding method for estimating the correlation dimen-
sion of an attractor [13, 27, 28, 57].

A. 0− 1 Test For Chaos

In this section we will introduce the binary 0 − 1 test
for chaos identification in a dynamical system that yields
zero for a regular dynamics and unity for a chaotic dy-
namics. The underlying concept is to map a length N
time series X = {x1, x2, · · · , xN } onto an effective two
dimensional phase space with coordinates (p, q) where a
chaotic system’s trajectory will manifest as the Brown-
ian type motion with characteristic linear scaling of mean
squared displacement with time [58, 59]. This map is de-
fined as

pj =

j∑
i=1

xi cos(ic), (6)

qj =

j∑
i=1

xi sin(ic), (7)

for j ∈ {1, 2, . . . ,N} where c is an arbitrary parame-
ter on the interval (0, π) (see Fig 2). From the mapped
coordinates given by Eq.(6) one then proceeds with the
evaluation of the modified mean squared displacement,

M(j) = D(j) +Wosc(j). (8)

Here, D(j) is the normal mean squared displacement for
points separated by j time steps in the series of p and q,

D(j) = lim
N→∞

1

N

N∑
i=1

[
(pi+j − pi)2 + (qi+j − qi)2

]
, (9)

and the counter-oscillatory function Wosc(j) is give by,

Wosc(j) =

(
lim
N→∞

1

N

N∑
i=1

xi

)2

1− cos(jc)

1− cos(c)
. (10)

The counter-oscillatory function Wosc(j) removes the
oscillatory dynamics of the mean squared displace-
ment D(j), while preserving the original asymptotic
growth of the modified mean squared displacement
M(j) [59]. Since chaotic dynamics is mapped to
Brownian-like motion, M(j) scales linearly with j
approaching infinity, Thus, one can introduce aux-
iliary vectors Λ = (1, 2, . . . , bN/10c) and ∆ =
(M(1),M(2), . . . ,M(bN/10c)), and the final binary 0−1
test output acquires a particularly simple form,

Kc =
cov(Λ,∆)√

var(Λ)var(∆)
, (11)

where the covariance, cov(Λ,∆), between two vectors Λ
and ∆ is defined as,

cov(Λ,∆) ≡ 1

(bN/10c)

bN/10c∑
j=1

(Λj − Λ)(∆j −∆). (12)
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Here x and var(x) = cov(x,x) are the mean value and
variance of the vector x, correspondingly. We note here
that by taking j ∈ {1, · · · , bN/10c} the scheme pre-
serves the limit structure of the mean squared displace-
ment [58, 59]. The test is then carried out for Kc us-
ing a sample of c values in the range (0, π), which en-
sure the binary 0 − 1 test is independent of the partic-
ular choice of c [58]. We should mention that a discrete
time series which is obtained from a dynamical system
is characterized by an upper bound c beyond which the
power spectrum decays to zero for large frequencies f .
This results in a maximal value of the upper bound,
cmax = 2πfmax/fs, which depends on the maximal fre-
quency, fmax, and the the sample frequency, fs. This
limit is imposed in order to prevent false negatives of
identifying chaos in the system, since every bound c ex-
ceeding the maximal value, c > cmax, will result in pe-
riodic values for p and q and thus map phase space to
a torus [59]. It is also convenient to select an irrational
number for c such that it is not resonant with the fre-
quencies of the time-series being tested.

B. Correlation Dimension

The 0 − 1 test allows us to determine the interaction
strengths for which our system exhibits chaotic dynamics.
In this section we will apply delay embedding techniques
in order to determine the fractal dimension of the attrac-
tors for various measures of the quantum ratchet. There
are multiple types of fractal dimensions, i.e., the box
counting, information, and correlation dimensions [13].
All of these use the scaling of some measure on a dynam-
ical system attractor with neighborhood size in phase
space to calculate the dimension. Due to the computa-
tional accessibility, we will focus on the correlation di-
mension in order to characterize the dynamical regimes
beyond the presence of chaos. In order to calculate the
correlation dimension, D2, we take a time-series X and
construct the delay embedding [13, 27]. This takes our
time series and maps it to an m-dimensional phase space
vector for each instant in time, that is X → X ′ with

X ′ = {vτ1 , vτ2 , · · · , vτN−(m−1)τ} (13)

where vτi = (x1, x1+τ , · · · , x1+(m−1)τ ), τ is the time de-
lay, which must be selected so that the attractor is suf-
ficiently unwrapped [13, 27]. Using the delay vectors vτj
in X ′ we can calculate the correlation sum [13, 27],

C(m, ε) =
1

P

P∑
j=m

∑
k<j−w

Θ(ε− |vτj − vτk |), (14)

where ε is the radius of an m-dimensional sphere, P is
the number of pairs of vectors used, Θ(ε) is the Heavi-
side step function, and w is the Theiler window, which
ensures that all of the points taken into account are suf-
ficiently uncorrelated in time [13, 27]. With the proper

selection of parameters, large enough embedding dimen-
sion, and a sufficiently sampled attractor, the correla-
tion sum scales polynomially with the radius of the m-
dimensional sphere, where the power is the correlation
dimension, that is, C(m, ε) ∝ εD2 [13, 27]. Generally, one
does not have the a priori value for m to get a proper
estimate for the correlation dimension D2. Thus, the
convergence of the m value serves as an indicator for the
correct estimate of the correlation dimension D2 [13, 27].
A typical method to select the time delay τ is to take
the first minimum of the mutual information of the time-
series [26], which will be used in our analysis. For the
Theiler window we select w = N 1/2 ≈ 30TR, where TR is
the Rabi period, which ensures that the temporal correla-
tions do not produce spurious attractor dimensions. We
also check each parameter against perturbations in order
to confirm that the attractor is invariant under smooth
transformations [60].

IV. LAYERED CHAOS IN A DRIVEN
QUANTUM RATCHET

We begin our study by characterizing the mean-field
dynamics of our quantum ratchet in the 3GP and the
DNLS. Using the 0 − 1 test we first characterize the in-
teraction ranges for which chaotic dynamics is present.
We then move to calculate the fractal dimension of the
attractors throughout the dynamical regimes of our sys-
tem. For each method, we use a time-series of length
NI = 105 for particle current, and in the DNLS we use
NN ≈ 106 for the local density at the third site, |φ3|2.

In order to avoid resonances, we use a total of 100 c
values at multiples of the golden ratio, ϕ = (1 +

√
5)/2,

for calculating the test parameter Kc, from which the
median is taken as the final test value. For the maxi-
mum c value imposed by the 0−1 test for chaos, we have
set fmax = 2ϕΩR ≈ 3.24ΩR, with ΩR the Rabi frequency,
since for frequencies higher than the Rabi frequency the
power spectrum decays to zero. In Fig. 2 we provide ex-
amples of the effective phase space coordinates p and q
for measurements of current in both of our mean-field
models and local density in the DNLS over each dynam-
ical regime with c = 0.8π/100 ≈ 0.025. In Fig. 3 we give
the final test parameter. We note that there are distinct
pockets of chaos for the particle current in both mean-
field models as well as the local density of the DNLS.
This is contrary to the single dominant feature the level
statistics and dynamical measures display in [21], which
is indicated by the gray shaded region in Fig. 3. How-
ever, the two models are in agreement for the regions
which are chaotic, even though they arise from quantum
models with quite different assumptions and completely
different sets of approximations.

We now calculate the attractor dimension for the quan-
tum ratchet using the correlation method laid out in Sec.
III B. In Figures 4-6, each sub-panel corresponds to the
same time-series as seen in Fig. 2, respectively, giving
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FIG. 2. 0 − 1 Test Coordinates. (a)-(i) Examples of the
mapped coordinates in the 0 − 1 test for chaos for the 3GP
and six site DNLS for all dynamical regimes. As expected in
the regular regimes, the Rabi (left) and self-trapping (right)
dynamics are mapped to tori in the (p.q) plane. The center
column, corresponding to the chaotic regime, displays random
walk like behavior with the points spreading over the effec-
tive phase space. This diffusive behavior is characteristic of
chaotic dynamics under the map used in the 0− 1 test, mak-
ing use of linear scaling in the mean squared displacement to
identify chaos.

an example of all three regimes in both models at dif-
ferent scales of measurement for the DNLS. Each delay
reconstruction uses the first minimum of the mutual in-
formation to calculate the time delay τ [26]. In Fig. 4,
the delay embeddings for the 3GP and DNLS current
show clear tori in the case of Rabi regime (4a and 4d)
and self-trapping dynamics (4c and 4f). However, the
chaotic regime explores a much larger region of the re-
constructed phase space, while also displaying fractal-like
structure (4b and 4e). In contrast to the particle cur-
rent, the local density appears spherical during the Rabi
regime (see Fig. 4g and Fig. 4i), while the chaotic regime,
(see Fig. 4h) is much more dense, and qualitatively dif-
ferent from its counterparts.

The correlations sums are displayed in Fig. 5, where
we have selected the Theiler window w =

√
105 ≈ 33Tr

in order to avoid temporal correlations, for each of the
attractors given in Fig. 4. All show a region of linear scal-
ing with ε on the log-log scale identified by the vertical
dashed lines. When such a region is found, the size of ε
must be within the bounds of the attractor, otherwise an
incorrect dimension will be returned; e.g. for large the ε
seen in Fig. 5(c) one would findD = 1, which is clearly in-
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FIG. 3. 0 − 1 Test For Chaos. The output of the 0 − 1 test
for chaos, K, shows distinct pockets of chaos (gray shading)
that are the same for each model and measure, with no chaos
observed after the transition to self-trapping. This is in con-
trast to the quantum many-body dynamics and level statis-
tics in [21], which predicted one bulk region given by the gray
hashed region. The current and local density in DNLS agree
exceptionally well with the 3GP, indicating that the inclusion
of higher angular momentum modes in the DNLS does not
affect the presence of chaos.

correct as the corresponding attractor (Fig. 4(c)) can be
seen to be dense on a 2D surface. For each measure and
interaction strength tested that can be identified with a
linear scaling, we perform a fit with a linear regression
and extract the correlation dimension D2, keeping those
D2 which have an R2 ≥ 0.99. In Fig. 6 (a)-(i) we see that
a plateau is observed as m is increased. This is indicative
of the convergence of D2. However, one finds a slow in-
creases of the correlation dimension for some time series
after the plateau is reached. This is typical in time-series
of fine length with some amount of noise [27]. In order
to account for this slow increase, we average over the
plateaued region, including the error in the linear fits,
which gives the final correlation dimension with some
uncertainty seen in Tab. I. From these three interaction
strengths it is clear that higher dimensional attractors
are observed for the DNLS local density (Fig. 4(g)-(i))
when compared to the particle current.

Figure 7 gives the correlation dimension for the 3GP
current, DNLS current, and DNLS local density for in-
teraction strengths ranging fro g = 0 to 0.34 with lines
meant to guide the eye. It is clear that an increased cor-
relation dimension is associated with chaotic dynamics
as identified by the 0 − 1 test for the gray shaded re-
gions. We stress that the particle current in the 3GP and
DNLS are in general agreement, with only slight varia-
tions. The local density in the DNLS is greater than the
particle current by δD ' 1 for each interaction strength.
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FIG. 4. Delay Reconstructed Attractors. (a)-(c) and (d)-(f),
the current in both the 3GP and DNLS, respectively, have
qualitatively similar attractors for each dynamical regime.
The differences in coordinate ranges are due to the exclu-
sion of the scaling factors for the angular momentum modes
in the 3GP, which has no effect on the attractor dimension.
(g)-(i) The local density in the DNLS has attractors that are
visibly higher dimensional when compared to the current. In
the Rabi and self-trapping regimes we see densely filled sur-
faces with no holes, unlike the currents, which appear as tori.
The attractors for the chaotic regime all show signs of self
similarity, and have deviated from regular torus shapes to a
higher dimensional region in phase space. Coloring is meant
only to provide contrast to aid the eye.

Model and Rabi Chaos self-trapping
Measure g = 0.03 g = 0.14 g = 0.34

3GP Current 2.06±0.02 3.27±0.13 2.02±0.02

DNLS Current 2.07±0.02 2.97±0.05 2.30±0.02

DNLS Density |φ3|2 2.59±0.01 3.93±0.04 3.05±0.05

TABLE I. Correlation Dimension. Saturation value for the
correlation dimension, D2, of the attractors seen in Fig. 4.
The dimension for 3GP and DNLS particle currents are in
general agreement. Small deviations are expected, as the 3GP
removes the short time dynamics due to driving. The local
density of the DNLS is consistently larger than the corre-
sponding total current, due to oscillations on the time-scale
of the driving that are averaged out for the latter measure.
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FIG. 5. Correlation Sums. (a)-(i) Gray dashed lines indi-
cate the start and end of the linear scaling regions used to
calculate the correlation dimension, with the embedding di-
mension decreasing down and to the right. Each model and
measure approaches a constant slope in the indicated region,
with the range of ε checked for being within the size of delay
reconstructed attractors.

This implies that if one were to experimentally observe a
system such as this, with two vastly different time scales,
the reconstructed attractor dimension can vary with the
layer of the system observed, i.e., global versus local. In
our system, this can be explained by accounting for the
fact that the particle current averages over the entire lat-
tice in the DNLS, and that the fluctuations due to the
driving are averaged out. Moreover, we note that the
drive period T and the Rabi period TR cannot be related
by a rational number. This implies that a time series
which contains the shorter time scale must have an at-
tractor that is one dimension larger for regular dynamics,
which is clearly seen if one observes the weakly interact-
ing regime at g = 0.02.

V. CHARACTERIZING THE APPROACH TO
MEAN-FIELD

With the mean-field attractors characterized, in this
section we test the convergence of our many-body quan-
tum ratchet to its mean-field limit. Many studies have
shown the convergence of the Bose-Hubbard model to
the DNLS by means of MPS methods [32]. However, as
mentioned in our previous work [21], the requirements
of full local dimension and the vast difference in time
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FIG. 6. Converging Correlation Dimension. Each panel cor-
responds to the slope of the correlation sum given in Fig. 5
with the same letter. Each model and interaction strength
shows a plateau corresponding to the convergence of the cor-
relation dimension in the embedding dimension. The final
correlation dimension is given by the average over all m after
the plateau is reached, see Tab. I for numerical values. The
slow increase in dimension as m increases after the plateau,
as seen in (b) and (i) is a typical artifact of noise in the time-
series [27].

scales renders the applicability of time evolution meth-
ods such as the Suzuki-Trotter expansion highly inef-
ficient. This limitation, along with the fact that the
3LS has been well tested dynamically [19, 21], means
that we can consider the 3LS as our testing ground
for the convergence to mean-field. In Fig. 8, we plot
the integrated error of the normalized 3LS particle cur-
rent as compared to the 3GP particle current for var-
ious strengths g. Here we have renormalized the 3LS
current by the particle number, such that it matches
the 3GP normalization. Figure 8 clearly shows that
each regime has polynomial scaling and can be fitted
with a function of the form TIE<0.1 = a N b + c. The
Rabi regime with the coupling strength g = 0.03 gives
b = 0.283 ± 0.013, while the chaotic regimes with the
strength g = 0.14 returns b = 0.342 ± 0.066, and fi-
nally the self-trapping regime with the coupling strength
g = 0.34 yields b = 0.90± 0.236.

From the 3LS it is clear that the many-body dynamics
approach the mean-field limit. However, the applicabil-
ity of the sub-unity scaling approach is limited for testing
the convergence of the correlation dimension. Therefore,
we are led to explore the dynamics of the 3LS for time
tin constrained from below by the convergence time, i.e.,
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FIG. 7. Mean-Field Fractal Dimension. The correlation di-
mension, D2, shows sharp increases for the regimes where
chaos was identified by the 0 − 1 test for chaos (vertical
gray regions). The dimensions of the current in the 3GP
and the DNLS follow the same trend with increasing interac-
tion strength, further reaffirming the effectiveness of the three
mode model. However, the local density in the DNLS is seen
to be greater that the particle current regardless of interac-
tion. This is due to the inclusion of rapid oscillations with the
drive potential that get averaged out when the whole lattice
is considered. Lines are meant only to guide the eye.
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current for g = 0.03, 0.14, and 0.34. The considered interac-
tions give an overall measure for the convergence to mean-field
in the Rabi, chaotic, and self-trapping regimes, respectively.
Each regime has a polynomial approach to mean-field, with
power laws of b = 0.28±0.01, 0.34±0.02, and b = 0.90±0.24,
respectively.
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tin > TIE, while not exceeding the time necessary for
a delay embedded reconstruction. In Fig. 9(a)-(d) we
plot the normalized particle current (I/Imax) in the Rabi
regime (g=0.03) over 100TR for the 3GP and the 3LS
with N = 6, 12, and 18 , respectively. For the N = 6, we
observe beat patterns, where the current is approximated
by the mean-field Rabi dynamics envelopes separated by
a nearly constant particle current in between. As the
number of particles is increased, we see an elongation of
the envelope of the oscillations, with further elongated
regions of nearly constant current. Extending the time
range for the larger system sizes reveals revivals of cur-
rent similar to those seen for N = 6. The onset of nearly
constant current is indicative of a change in the underly-
ing structure of the many-body dynamics. Indeed, if we
plot the depletion (Fig. 10(a)), defined as D = 1−λ1/N ,
where λ1 is the largest eigenvalue of the single particle
density matrix 〈â†µâν〉, for this same time range and par-
ticle numbers, we see high depletion for the constant cur-
rent ranges. The ranges where oscillating current is ob-
served can be seen to have the depletion trend with the
envelope. It is clear that the coherent dynamics of the
quantum ratchet are short lived, indicating that recon-
structing the systems mean-field attractor from quantum
many-body dynamics would require the initial envelope
to range the entire 1000 TR timescale.

For the increased interaction strength into the chaotic
regime (g = 0.14), we again observe the onset of high
depletion, see Fig. 10(b) with N = 6, 12, and 18, respec-
tively. In contrast to the Rabi regime, there is no decay
of the depletion back to near zero for the chaotic dy-
namics within 100TR. For the self-trapping regime, the
depletion increases, but not to the magnitude of Rabi
or chaotic dynamics, with a maximum of approximately
0.2. Similar to our previous finding, the depletion of the
condensate for these regimes makes the reconstruction
of delay embedded attractors not possible for accessible
system sizes and time scales, due to insufficient attractor
sampling.

The initial onset of depletion for the Rabi and
chaotic regimes can be fitted with the function D(x) =
A tanh[B(x+ C)] +D. From these fits we extract value
for C, which is the turning point of the tanh func-
tion, and for increasing system sizes gives a measure
of the time for which a coherent condensate is present.
On a log-log scale it is clear that C scales polynomi-
ally with particle number N . Using the fitting function
C = α(N + β)δ, see Fig. 11, we find that the onset of
depletion gives β = 0.508± 0.004 for Rabi dynamics and
β = 0.179± 0.004. We note that the system sizes N = 2,
4 , 6, and 8 have not been used for the chaotic regime,
and that the self-trapping regime is not included since
it could not be properly fitted for D(t). The trends of
depletion after its initial onset seen in Fig. 10 indicate
that the condensate has revivals for the Rabi and self-
trapping regimes, while the chaotic regime does not. If
we plot the fidelity defined as |〈ψ(t = 0)|ψ(t)〉|, seen in
Fig 12a-i, we confirm that the Rabi and self-trapping dy-
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FIG. 9. Dynamics Beyond Convergence Time. (a)-(d) share
the horizontal axis given by (d). (a) The normalized particle
current, I/Imax, for the mean-field 3GP. (b) The 3LS for par-
ticle number N = 6 has an envelope that decays to a nearly
constant value beyond the initial time it is converged to the
mean-field result. This is then followed by a quantum revival
of nearly Rabi-like oscillations, then the pattern repeats. (c)-
(d) Normalized particle current N = 12 and 16, respectively,
show the same qualitative behavior as N = 6, with envelopes
and regions of near constant current increasing with N .

namics have a large overlap with the initial condensate,
while chaotic dynamics present no revivals. For the first
case, a clear envelope of revival is seen. The other two
simply oscillate rapidly with no discernible pattern. In
the case with clear trending, we extract the mean time
for the first revival of |〈ψ(0)|ψ(t)〉| ≥ 0.75, and give it as
a function of N in Fig 12j, which has a linear scaling with
the particle number, namely TR = −4.41 + 5.79N . We
note the average was taken due to the highly oscillatory
nature of the measure within the broad revival peak.

VI. CONCLUSIONS AND OUTLOOK

In conclusion, we explored a driven Bose-Einstein con-
densate quantum ratchet and identified four distinct
pockets of chaos on the interval of interaction strength
ranging from g = 0 to g = 0.28. These regions are identi-
fied for the same interaction strengths using the particle
current in an effective three level mean-field model and
the discrete nonlinear Schrödinger equation, as well as
the local density of the discrete nonlinear Schrödinger
equation. Our study of the particle current reveals that
the three level mean-field model and discrete nonlinear
Schrödinger equation have qualitatively similar trends in
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FIG. 10. Condensate Depletion. (a)-(c) Depletion of the orig-
inal condensate for each dynamical regime in the 3LS. The
depletion is defined as D = 1 − λ1/N , where λ1/N is the
ratio of the largest eigenvalue of the single particle density
matrix 〈âiâj〉 to a total number of particles, N , that form
the BEC. Physically, depletion measures the portion of the
BEC that remains in a single-particle mode. The large values
of depletion throughout the dynamical regimes reveal signif-
icant deviations from the mean-field description of the BEC.
Thus, persistent depletion indicates many-body dynamics of
the condensate that cannot be captured within the mean-field
approximation. (d)-(f) and (g)-(i) are for the same mean-
field interaction strength with increased particle number, i.e.,
NU3LS = const. The Rabi and self-trapping regimes show
clear quantum revivals of a condensate, while the chaotic
regime remains depleted over multiple macroscopic modes.
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FIG. 11. Onset of Depletion The black points are data
for C and the red curves are the fitting functions. Figures
(a) and (b) show the onset of depletion in the Rabi and
chaotic regimes, respectively, as measured by the turning
point of the tanh fit. Both scale polynomially with parti-
cle number N . For Rabi dynamics the onset of depletion
scales with N0.51±0.004, while for chaotic dynamics it scales
as N0.18±0.004.

correlation dimension for the interaction strengths con-
sidered. However, the local density in the discrete non-
linear Schrödinger equation results in a dimension that
is consistently higher. We characterized the approach
of the many-body three level system to the three level
mean-field model via integrated error, finding a sub-unity
power law scaling with particle number for Rabi, chaotic,
and self-trapping dynamics. Specifically, N0.28±0.013,
N0.34±0.066 and N0.90±0.236 are observed for the Rabi,
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FIG. 12. Fidelity. (a)-(c) Overlap of the system with its ini-
tial state, |〈ψ(0)|ψ(t)〉|, for Rabi, chaotic, and self-trapping
dynamics, respectively. (c)-(f) and (g)-(i) give the same mea-
sure for increased system size, with columns corresponding
to regimes. The Rabi and self-trapping regimes have large
overlaps with the initial condensate, with the revivals in the
Rabi regime corresponding to the decrease in depletion, see
Fig. 10. Chaotic dynamics have little overlap with the initial
condensate, with the fidelity decreasing as the particle num-
ber is increased. (j) Mean time for |〈ψ(0)|ψ(t)〉| ≥ 0.75 in the
Rabi regime increases linearly in particle number, following
Trevive = 5.79N − 4.41.

chaos, and self-trapping regimes, respectively. We also
characterizes the dynamics of each of the mentioned dy-
namical regimes beyond the convergence time, where the
deviation from the mean-field value occurs due to the
onset of condensate depletion. In the Rabi and chaotic
cases, the depletion has a tanh-like onset, the turning
points of which scale as N0.51±0.004 and N0.18±0.004, re-
spectively. The decreases in depletion after its initial
onset, was found to match the revival of over 75% of
the original condensate in the Rabi regime, with the re-
vival time scaling linearly in N . In contrast, a quan-
tum ratchet with the coupling strength corresponding to
the chaotic regime does not exhibit quantum revivals.
Although the time scales necessary to reliably recon-
struct the attractor of our quantum many-body system
are currently out of reach for the current Bose-Einstein
condensate-based experiments, the conclusions obtained
in the paper will be important for the future studies of
driven many-body systems. In fact, local oscillations and
fluctuations that may be averaged out in macroscopic
measures, e.g., current, can present higher dimensional
attractors. Therefore, fractal structures in the dynamics
of many-body systems depend on the observable, which
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thus establishes the notion of layered chaos in these sys-
tems.

The performed study of a driven quantum ratchet
opens up new pathways in the exploration and charac-
terization of emergent phenomena in driven many-body
systems. The prime example is the identification of An-
derson and many-body localization in driven interact-
ing and non-interacting quantum many-body systems by
means of many-body measures, including binary iden-
tification of chaotic dynamics, calculation of the deple-
tion, and evaluation of the correlation dimension. The
other important research pathway corresponds to the
identification of the characteristic time scale at which
mean field description fails to describe quantum many-
body system. Specifically, the characteristic scaling of
the Ehrenfest time, τE , which can be expressed in terms
of the Lyapunov exponent γ and particle number N as
τE ' log (N)/γ, and which is conventionally used in
the estimate of the breakdown of mean field descrip-
tion, was found to have large deviation in the special case
of our system. Therefore, the open question is whether
the Ehrenfest time scales logarithmically or polynomially
with the number of particles that form a quantum many-
body interacting system. The other critical question is
the dependence of the rate of convergence of the many-

body dynamics to its mean-field limit on the amount of
entanglement present in the system. Finally, an impor-
tant question is related to the rate of the convergence
to the semiclassical strange attractors as a function of
dissipation exhibited by the system.
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