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We study quantum quench dynamics in the Fermi-Hubbard model, and its SU(N) generalizations,
in one-dimensional lattices in the limit of infinite onsite repulsion between all flavors. We consider
families of initial states with generalized Neel order, namely, in which there is a periodic N -spin
pattern with consecutive fermions carrying distinct spin flavors. We introduce an exact approach
to describe the quantum evolution of those systems, and study two unique transient phenomena
that occur during expansion dynamics in finite lattices. The first one is the dynamical emergence
of Gaussian one-body correlations during the melting of sharp (generalized) Neel domain walls.
Those correlations resemble the ones in the ground state of the SU(N) model constrained to the
same spin configurations. This is explained using an emergent eigenstate solution to the quantum
dynamics. The second phenomenon is the transformation of the quasimomentum distribution of the
expanding strongly interacting SU(N) gas into the rapidity distribution after long times. Finally,
we study equilibration in SU(N) gasses and show that observables after equilibration are described
by a generalized Gibbs ensemble. Our approach can be used to benchmark analytical and numerical
calculations of dynamics of strongly correlated SU(N) fermions at large U .

I. INTRODUCTION

Nonequilibrium dynamics of isolated many-body quan-
tum systems is currently one of the most active research
fields in many-body quantum physics [1–3]. A special
class of systems, called integrable systems, represent an
important cornerstone in this field [4–14]. They possess
an extensive number of (quasi-local) conserved quanti-
ties, and after equilibration expectation values of few-
body observables can be described by generalized Gibbs
ensembles (GGEs) [10, 15]. Several experimental groups
have been exploring many-body quantum dynamics with
ultracold atoms close to integrability [16–26].

In this work we study the paradigmatic one-
dimensional (1D) Fermi-Hubbard model [27] and its gen-
eralized 1D SU(N) versions [28–42]. The Fermi-Hubbard
model is a minimal model used to describe correlated
electrons in solids, and provides an accurate description
of ongoing experiments with ultracold fermions in opti-
cal lattices [43]. After early theoretical studies of quan-
tum quenches in the Fermi-Hubbard model in dimensions
higher than one [44–49], recent works have focused on
quantum quenches in the 1D Fermi-Hubbard model [50–
63], which is a quintessential integrable model [27].

We introduce an exact approach to study quantum
dynamics of 1D SU(N) fermions, of which the Fermi-
Hubbard model is the N = 2 case, in the limit of in-
finite onsite repulsion. A key requirement of our ap-
proach is that the states of which we study the quantum
evolution must have consecutive impenetrable SU(N)
fermions with different spin flavors. In those configu-
rations, since the spin order is preserved at all times,
one can think of each fermion as a distinguishable quan-
tum particle. This allows us to use spin-charge separa-
tion to treat the charge degrees of freedom as spinless
fermions, and the spin degrees of freedom by means of
nonlocal strings of operators acting on spinless fermion
wavefunctions. Using this decomposition, we develop

FIG. 1. Melting of a Neel domain wall in the Fermi-Hubbard
model at infinite onsite repulsion. (a) At t = 0 the system
is in a Neel product state with 12 fermions. At t > 0 the
fermions expand into an empty lattice. The length of the
arrows is proportional to the magnitude of the z-component
of the spin at site l, Szl (t) = |n↑(l; t)−n↓(l; t)|/2, where nσ(l; t)
are the site occupations of fermions with “flavor” σ at time
t. We show results at (b) t = 4 and (c) t = 8. This setup is
studied in Sec. III.

an efficient (polynomial-time) way to compute one-body
correlations. The ideas behind this approach were re-
cently used to describe equilibrium properties of impen-
etrable 1D SU(N) fermions [64], and can be viewed as
a fermionic generalization of the Jordan-Wigner trans-
formation, which maps spin-1/2 models onto spinless
fermions [65, 66]. We focus on dynamics of states that,
in addition of having consecutive fermions with distinct
spin flavors, have periodic N -spin patterns that we call
generalized Neel order.

As a first application of our approach, we study the
expansion (“melting”) of generalized Neel domain walls
such as the one shown in Fig. 1 for the SU(2) case. This
type of setup has been widely studied in the literature,
in particular for lattice models without internal degrees
of freedom [67–107]. We show that the resulting current-
carrying state exhibits a dynamical emergence of one-
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body correlations with a Gaussian decay. These correla-
tions resemble the ones in the ground state of the same
model, constrained to the same spin configurations [64].
We explain this observation using an emergent eigenstate
solution to quantum dynamics [88], combined with the
local density approximation.

As a second application, we study the expansion of
harmonically trapped SU(N) fermions after suddenly
turning off the trap. Those quenches provide a fertile
playground to unveil remarkable properties of correlated
many-body systems [23, 52, 54, 59, 71, 88, 108–117].
They can be viewed as nontrivial time-of-flight expan-
sions that occur in the presence of interactions. Here
we demonstrate that, during the expansion, the quasi-
momentum distribution of impenetrable SU(N) fermions
evolves into the rapidity distribution, which is the ini-
tial quasimomentum distribution of the underlying spin-
less fermions to which the impenetrable SU(N) fermions
are mapped. Transformations of quasimomentum dis-
tributions of expanding fermions into rapidity distribu-
tions have been previously discussed in the context of the
Fermi-Hubbard model [54, 59].

As a final application of our approach, we study the
equilibration dynamics of SU(N) fermions in a box trap.
In that case, the quasimomentum distribution function
after equilibration is described by means of a GGE in
which the conserved quantities are the occupations of
the single-particle eigenstates of the underlying spinless
fermions to which the impenetrable SU(N) fermions are
mapped. This shows that the GGE can be used to de-
scribe observables after equilibration in integrable multi-
flavor fermionic systems with infinite onsite repulsion.

In addition to studying phenomena of relevance to cur-
rent experiments with ultracold quantum gases, the ap-
proach introduced here can also be used to benchmark
analytical and numerical calculations of quantum dynam-
ics of strongly correlated SU(N) fermions at large U ,
and specifically of the integrable SU(2) Fermi-Hubbard
model. Quantum dynamics of integrable models non-
mappable onto noninteracting ones have proved challeng-
ing. Analytic progress has been made in the context
of the spin-1/2 XXZ chain, for which exact steady-state
properties have been obtained for some classes of initial
states either using special properties of those states (e.g,
within the quench action approach [9, 118–123] and the
quantum transfer matrix formalism [124, 125]), or using
the (quasi-local) conserved quantities of the model [126–
132]. More recently, interest has grown in understanding
systems with internal degrees of freedom, so-called nested
systems, such as the Fermi-Hubbard model. In those sys-
tems, exact steady-state properties can also be obtained
for a few classes of initial states. Examples include the
two-component Lieb-Liniger gas [133, 134], the Fermi-
Hubbard model [54, 59, 62, 135], and the Lai-Sutherland
model [136–138]. Nevertheless, their dynamics remains
widely unexplored, and a systematic study of the GGE
in such systems remains challenging due to difficulties in
obtaining the complete set of conserved quantities.

The rest of the paper is organized as follows. In
Sec. II, we introduce the nonequilibrium setup and the
exact approach used to describe quantum dynamics after
quenches. We then discuss two applications to transient
phenomena: we study the melting of generalized Neel
domain walls in Sec. III, and the sudden expansion of
initially trapped systems in Sec. IV. In Sec. V, we dis-
cuss equilibration to the GGE. A summary of our results
is presented in Sec. VI.

II. SETUP AND QUANTUM DYNAMICS

Here, we discuss general considerations about the sys-
tems studied and introduce the exact approach developed
to describe their dynamics.

A. Distinguishable quantum particles

We consider a generalized 1D Fermi-Hubbard model
for SU(N) fermions, N is the number of flavors, with
infinite onsite repulsion. For open chains with L sites (on
which we focus here), the Hamiltonian can be written as

ĤN = −J
L−1∑
l=1

N∑
σ=1

[
f̂
(σ)†
l f̂

(σ)
l+1 + f̂

(σ)†
l+1 f̂

(σ)
l

]
, (1)

where σ is the spin flavor (σ ∈ {1, · · · , N} in our nota-
tion). Infinite onsite repulsion is enforced by the con-

straints f̂
(σ)†
l f̂

†(σ′)
l = f̂

(σ)
l f̂

(σ′)
l = 0, where f̂

(σ)†
l (f̂

(σ)
l )

is the creation (annihilation) operator of a fermion with
flavor σ at site l. The traditional Fermi-Hubbard Hamil-
tonian corresponds to N = 2. We set the hopping ampli-
tude J and the lattice spacing to unity.

An important property of Hamiltonian ĤN , which
is a consequence of infinite onsite repulsion, is that it
preserves the order of spin flavor configurations σ =
{σ1, ..., σNp}, where σj ∈ {1, ..., N}, and Np is the num-
ber of particles. In a sector with σ, any wavefunction in
the occupation number basis is a linear combination of

base kets |ϕx,σ〉 =
∏Np
j=1 f̂

(σj)†
xj |∅〉, where every base ket

denotes a different set of occupied sites x = {x1, ..., xNp},
with xj ∈ {1, ..., L} and x1 < x2 < ... < xNp .

Here we are interested in quantum dynamics of initial
states with a given spin configuration σ. The most gen-
eral states for which our approach is applicable are states
with σ such that every pair of consecutive fermions car-
ries distinct spin flavors

σ = {{σj}; j = 1, ..., Np; σj 6= σj+1 ∀ j < Np} . (2)

We call the impenetrable SU(N) model governed by

ĤN (1), constrained to a single spin configuration σ that
obeys Eq. (2), a model of distinguishable quantum par-
ticles (DQPs).

In the SU(2) case, the DQP model is the traditional
Fermi-Hubbard model within the sectors with states that
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have alternating spin flavors. An example of such an
spin ordering is shown in Fig. 1(a). In the SU(N) case
with N > 2, different realizations of spin configurations
satisfying Eq. (2) are possible. For simplicity, we focus
on periodic N -spin patterns with consecutive fermions
carrying distinct spin flavors, as described by

σ = {{σj} ; j = 1, ..., Np ; σj = [(j − 1) modN ] + 1} ,
(3)

which we call generalized Neel order for SU(N) particles.
Sectors with desired spin configurations can be accessed
in experiments with ultracold atoms in optical lattices
via spin-resolved manipulation techniques [22, 139].

B. Spin-charge decomposition

Our main goal is to calculate nonequilibrium properties
of spin-resolved one-body correlations Cσl (x; t) between
sites l and l + x

Cσl (x; t) = 〈Ψ(t)|f̂ (σ)†l+x f̂
(σ)
l |Ψ(t)〉 , (4)

where |Ψ(t)〉 is the time-evolving state of the DQP model.
We are also interested in computing the total one-body
correlations

Cl(x; t) =

N∑
σ=1

Cσl (x; t) , (5)

which contain the contributions from all spin flavors.
Central to our approach is exploiting the separation of

spin and charge degrees of freedom at infinite onsite re-
pulsion. In particular, we use a compact representation
of charge degrees of freedom as spinless fermions and spin
degrees of freedom as nonlocal string of operators (pro-
jectors) expressed in terms of spinless fermions. Formal
steps demonstrating the existence of such representations
were reported in Ref. [140]. Here we use an explicit repre-
sentation of the spin and charge decomposition for states
that exhibit a generalized Neel order [see Eq. (3)]. This
representation was introduced in Ref. [64] and allows one
to efficiently (in polynomial time) calculate spin-resolved
one-body correlations numerically.

Our approach is not based on the Bethe ansatz solution
of the infinitely repulsive Fermi-Hubbard model [27, 141–
147]. It has analogies with the Jordan-Wigner trans-
formation used to map spin-1/2 systems onto spinless
fermions. Since the pioneering work by Lieb, Schultz,
and Mattis [66], the Jordan-Wigner transformation has
been used as a standard tool to study quantum mag-
netism. It can be efficiently implemented numerically
using properties of Slater determinants [72], and has been
used to study quantum quenches in 1D hard-core boson
systems [15, 23, 71, 72, 88, 109, 114, 115, 148].

Using a compact representation of the spin-charge de-
composition of states with a generalized Neel order [64],
we rewrite Eq. (4) as

Cσl (x; t) = 〈ΨSF(t)|ĉ†l+xĉl P̂
(σ)
l,x |ΨSF(t)〉 . (6)

Here |ΨSF(t)〉 is the wavefunction that describes the
charges (spinless fermions) at time t, while the time-

independent projection operator P̂(σ)
l,x properly accounts

for the spins. The Hamiltonian that governs the dynam-
ics of the charge degrees of freedom |ΨSF(t)〉 is the spin-
less fermion Hamiltonian

ĤSF = −
L−1∑
l=1

(ĉ†l ĉl+1 + ĉ†l+1ĉl) , (7)

where ĉ†l (ĉl) is the spinless fermion creation (annihila-
tion) operator at site l.

The spin projection operator P̂(σ)
l,x is in general a non-

local multi-body operator [64]. It is constructed as the
product of two operators

P̂(σ)
l,x = M̂l,xR̂(σ)

l . (8)

The role of the operator M̂l,x is to prevent exchange of
fermions. It is defined as

M̂l,x =

l+x−1∏
j=l+1

(
1− ĉ†j ĉj

)
, (9)

and guarantees that all lattice sites from l + 1 through

l+x−1 are empty. The role of R̂(σ)
l is to target spin flavor

σ at site l. For spin configurations that have generalized

Neel order, Eq. (3), R̂(σ)
l (N) is defined as

R̂(σ)
l (N) =

1

N

N−1∑
k=0

e−
2πi
N σk exp

2πi

N
k

l∑
j=1

ĉ†j ĉj

 . (10)

This operator counts the number of fermions from sites 1
through l, and ensures that it is consistent with a fermion
with spin flavor σ occupying site l.

For the total one-body correlations Cl(x; t), the spin
projection operators can be further simplified. In analogy
to equilibrium calculations [64], we get

Cl(x; t) = 〈ΨSF(t)|ĉ†l+xĉl M̂l,x|ΨSF(t)〉 . (11)

Cl(x; t) is hence independent of the number of spin flavors
N . Equation (11) is valid for any spin orderings σ that
fulfills Eq. (2).

C. Implementation for quantum quenches

To evaluate Eq. (6), we follow the approach used
for hard-core bosons in Refs. [71, 72]. We first note
that, given an initial state whose charge degrees of free-
dom can be written as a Slater determinant |ΨI

SF〉 =∏Np
j=1

∑L
m=1Amj ĉ

†
m|∅〉, where Amj are matrix elements

of an L×Np matrix A, the charge degrees of freedom of
the time-evolving state can be written as

|ΨSF(t)〉 = e−iĤSFt|ΨI
SF〉 =

Np∏
j=1

L∑
m=1

Gmj(t)ĉ
†
m|∅〉 , (12)
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whereGmj(t) are the matrix elements of an L×Np matrix
G(t) = Ue−iESFtU†A. Here, ESF is a diagonal matrix
that satisfies HSFU = UESF, and HSF is the single-
particle matrix representation of ĤSF.

A crucial next step is to evaluate P̂(σ)
l,x |ΨSF(t)〉. As in

Ref. [64], the spin projection operator defined in Eqs. (8)-
(10) acting on |ΨSF(t)〉 yields a linear combination of
Slater determinants,

P̂(σ)
l,x |ΨSF(t)〉 =

1

N

N−1∑
k=0

e−
2πi
N σk

Np∏
j=1

L∑
m=1

Gkmj(t)ĉ
†
m|∅〉 ,

(13)
where

Gkmj(t) =

{
e

2πi
N kGmj(t), m ≤ l

0, l < m < l + x
Gmj(t) otherwise

(14)

are matrix elements of a L×Np matrix Gk(t).
The next to last step to evaluate Eq. (6) is to act with

the spinless fermion annihilation and creation operators

on P̂(σ)
l,x |ΨSF(t)〉. We first rewrite Eq. (6) as Cσl (x; t) =

δx,0〈ΨSF(t)|P̂(σ)
l,x |ΨSF(t)〉 − 〈ΨSF(t)|ĉlĉ

†
l+xP̂

(σ)
l,x |ΨSF(t)〉.

In the second term, ĉ†j |ΨSF(t)〉 and ĉ†jP̂
(σ)
l,x |ΨSF(t)〉 result

in adding an extra column to the matrices represent-
ing the Slater determinants involved, yielding G(t) →
G′(t; j) and Gk(t) → G′k(t; j), respectively, where
G′l,Np+1 = G′kl,Np+1 = δl,j (G′li = Gli and G′kli = Gkli,

for i ≤ Np). Finally, computing the inner product of the
resulting Slater determinants, one obtains

Cσl (x; t) =
1

N

N−1∑
k=0

e−
2πi
N σk

(
δx,0 det[G(t)†Gk(t)] (15)

−det[G′(t; l)†G′k(t; l + x)]
)
.

Note that, for time-evolving states after quantum
quenches, Eq. (15) is equivalent to Eq. (19) in Ref. [64].

We are particularly interested in the total one-body
correlation function Cl(x; t) defined in Eq. (5). It was
shown in Ref. [64] that Cl(x) in equilibrium exhibits weak
finite size effects and allows one to learn about universal
properties of DQPs that are independent of the specific
spin configuration σ. Cl(x; t) can be computed as

Cl(x; t) = δx,0 det[G(t)†Gk=0(t)]

− det[G′(t; l)†G′k=0(t; l + x)] , (16)

where the matrix elements of Gk=0(t) are given by
Gkmj(t) in Eq. (14) for k = 0.

Before moving on to applications, we comment on a
subtlety regarding correlations that are summed over
all spin flavors. The total site occupations n(l; t) =
Cl(0; t) are identical to those of the noninteracting spin-
less fermions onto which we map the impenetrable SU(N)
fermions. On the other hand, for x > 1, the total one-
body correlations Cl(x; t) are in general different from

those of the spinless fermions. In fact, in Ref. [64] it was
shown that Cl(x) exhibits a Gaussian decay in the ground
state of the DQP model, while it exhibits a power-law de-
cay in the ground state of spinless fermions.

III. DYNAMICAL EMERGENCE OF
GAUSSIAN ONE-BODY CORRELATIONS

As a first application of the approach introduced in the
previous section, we study the expansion of (generalized)
Neel domain walls. The initial state |ΨI〉 for the Fermi-
Hubbard model (N = 2) is shown in Fig. 1(a). It is a
product state with particles occupying the Np leftmost
lattice sites,

|ΨI〉 =

Np∏
j=1

f̂
(σj)†
j |∅〉 , (17)

and the spin flavors exhibit the generalized Need order
defined in Eq. (3). A computational implementation of
Eqs. (15) and (16) allows us to straightforwardly solve
systems with of the order of L ∼ 103 sites. We set
L = 2Np in our numerical calculations and only con-
sider times at which particles moving to the right (or
holes moving to the left) have not yet reached the lattice
boundaries. Namely, times t < Np/vmax, where vmax = 2
is the maximal group velocity in the lattice.

As Np →∞ our setup is equivalent to the expansion of
a semi-infinite domain wall in an infinite lattice. Such an
expansion gives rise to a current-carrying steady state. In
lattice Hamiltonians without internal degrees of freedom,
properties of the current carrying states emerging from
an initial domain wall, as defined in Eq. (17), have been
studied for spinless fermions [67], hard-core bosons [71],
and for the anisotropic Heisenberg model [73].

Figures 2(a) and 2(b) show nσ(l; t = 0) in the initial
generalized Neel domain wall for SU(2) and SU(4) sys-
tems, respectively, with 24 fermions. Figures 2(c)-2(f)
show the corresponding nσ(l; t) at time t = 8. The latter
make apparent an interesting feature of the domain wall
melting in our setup. At short times, the spin-resolved

site occupations nσ(l; t) ≡ 〈Ψ(t)|f̂ (σ)†l f̂
(σ)
l |Ψ(t)〉 resolve

individual quantum particles quite well. The “resolu-
tion” increases with increasing N , as made apparent by
comparing N = 2 and N = 4. Figures 2(c)-2(f) also

show the total site occupations n(l; t) =
∑N
σ=1 n

σ(l; t) =
Cl(0; t) (dashed lines), which are identical to those of the
corresponding spinless fermions.

As shown in an exact calculation [67], as well as using
hydrodynamic arguments [74], n(l; t) during the domain
wall melting obeys the scaling form

n(l; t)∞ =
1

π
arccos

(
l − l0

2t

)
, (18)

when both l, t → ∞, while their ratio is kept fixed
within the region −1 ≤ (l − l0)/(2t) ≤ 1. Here l0 de-



5

0 5 10 15
t

0

4

8

Q
σ

(t
)

σ = 1
σ = 2

1 10 20 30 40
l

0

0.5

1

1 10 20 30 40
l

0

0.5

1

0 5 10 15
t

0

4

8

σ = 3
σ = 4

1 10 20 30 40
l

0

0.5

1
n

σ

(l
;t

)

1 10 20 30 40
l

0

0.5

1

n
σ

(l
;t

)

(e) SU(2) 
σ = 2

(c) SU(2) 
σ = 1

(d) SU(4) 
σ = 2

(f)  SU(4) 
σ = 4

(g) SU(2) (h) SU(4)

(a) (b)

FIG. 2. Spin resolved site occupations nσ(l; t) during the
“melting” of a domain wall [see Eq. (17)]. (a) [(b)] Initial
SU(2) [SU(4)] domain walls with generalized Neel order (the
spin flavors are encoded in the patterns and colors used). (c)
and (e) [(d) and (f)] nσ(l; t) for σ = 1 and σ = 2 in the
SU(2) case [σ = 2 and σ = 4 in the SU(4) case], respec-
tively, at t = 8. Thick dashed lines in (c)–(f) show the to-
tal site occupations n(l; t), while the overlapping thin solid
lines show the analytical predictions n(l; t)∞ from Eq. (18)
using l0 = Np + 1/2. (g) [(h)] Integrated number of particles
Qσ(t) =

∑
l>l0

nσ(l; t) that have crossed the initial edge of the

domain wall (at l0) for the SU(2) [SU(4)] case. Black dashed
lines depict results for spinless fermions

∑
σ Q

σ(t). Numeri-
cal results are shown for Np = 24 particles in (a)–(f) and for
Np = 120 particles in (g) and (h).

notes the initial domain wall edge. Unless stated oth-
erwise, in this section we set l0 = Np. Outside the
scaling region, site occupations simply equal n(l; t) = 1
(to the left) and n(l; t) = 0 (to the right). The thin
solid lines in Figs. 2(c)-2(f) show n(l; t)∞. They fit very
well the numerical results in finite systems. We identify
the current-carrying steady state as that in the scaling
regime, namely, as that in which local properties only
depend on the ratio (l − l0)/t.

Figures 2(g) and 2(h) show the integrated number
of particles of a given spin flavor σ that have crossed
l0 (l0 = Np + 1/2 in Fig. 2) at time t, defined as
Qσ(t) =

∑
l>l0

nσ(l; t). Qσ(t) exhibits clear plateaus at

integer values (better seen for N = 4). Those values in-
crease by one each time that a particle from the domain
wall (with a given σ) crosses the initial edge. In contrast,
a steady linear growth is seen for spinless fermions [de-
fined as

∑
σ Q

σ(t), shown as dashed lines in Figs. 2(g)
and 2(h)] reflecting the ballistic nature of the charge cur-
rent in the system.

A. Emergent eigenstate solution

One of the most remarkable features of the current-
carrying states generated by the melting of domain walls
such as the ones in Fig. 2, observed in studies involv-
ing spinless fermions [67, 75], hard-core bosons [71, 72],
Bose-Hubbard [110] and Fermi-Hubbard [50] models, and
Bose gases [149], is the dynamical emergence of one-
body correlations with ground-state-like behavior. We
explore one-body correlations in our time-evolving states
to see whether they exhibit a Gaussian decay like the
one observed in the ground state of impenetrable SU(N)
fermions constrained to the same spin configurations [64].

A theoretical framework that provides an understand-
ing of the dynamical emergence of ground-state-like cor-
relations during expansion dynamics was put forward in
Ref. [88]. It was dubbed emergent eigenstate solution to
quantum dynamics as it allows one to construct a local
operator (called the emergent Hamiltonian) of which the
time-evolving state is an eigenstate. For the initial do-
main wall of spinless fermions, the emergent local Hamil-
tonian is (up to a constant)

ĤSF(t) = −t
L−1∑
l=1

(iĉ†l ĉl+1 + H.c.) +

L∑
l=1

ln̂l , (19)

where n̂l = ĉ†l ĉl is the particle number operator at site
l [88]. Note that the expansion time t is a parameter

in ĤSF(t). The time-evolving state is the ground state

of ĤSF(t) (up to corrections that vanish exponentially
with system size) as long as particles (holes) do not reach
the lattice boundary, i.e., as long as n(1; t) = 1 and
n(L; t) = 0 [88]. Hence, in our setup, the ground state

of ĤSF(t) in Eq. (19), denoted by |ΦSF(t)〉, provides an
accurate (exact in the limit Np →∞) description of the
time-evolving state for the charge degrees of freedom of
the impenetrable SU(N) fermions |ΨSF(t)〉. We then cal-
culate one-body correlations Cσl (x; t) via |ΦSF(t)〉 using
the spin projectors introduced in Sec. II B.

While in previous applications of the emergent eigen-
state solution |ΦSF(t)〉 was evaluated exactly numeri-
cally [88, 115, 150], here we use the local density approx-

imation (LDA) in the scaling regime to simplify ĤSF(t).
This approach is similar to the generalized hydrodynamic
approach [85, 151], in which a GGE is constructed for
each rescaled position of the current-carrying state. We
introduce, for t > 0, an effective local chemical potential
at the (continuous) rescaled position s = (l − l0)/t

µ(s) = µ0 − s , (20)

where µ0 is the global chemical potential. For each s,
the system is homogeneous with an effective chemical
potential µ(s),

ĤLDA
SF (s) = −

∑
l

(iĉ†l ĉl+1 + H.c.)− µ(s)N̂ . (21)
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FIG. 3. Matrix elements Cl,j = |Cl(j − l; t)| of the total
one-body correlation matrix for an initial domain wall with
Np = 200 particles [see Eq. (17)]. Results are shown at times
(a) t/Np = 0.1 and (b) t/Np = 0.25. l0 = Np is the initial
edge of the domain wall.

We test the emergent eigenstate solution plus LDA
by analytically calculating the site occupations n(l; t) for
spinless fermions. They follow n(s) = arccos[−µ(s)/2]/π
when −2 < µ(s) < 2, and n(s) = 0 [n(s) = 1] for
µ(s) ≤ −2 [µ(s) ≥ 2]. We fix µ0 using the total particle
number, Np =

∫
n(s)ds, which yields the final expression

for site occupations

n(s) =
1

π
arccos

(s
2

)
, (22)

when −1 ≤ s/2 ≤ 1. This is the result in Eq. (18).

B. Total one-body correlations

Next we study the off-diagonal one-body correlations
in the current-carrying state. They are exactly zero in the
initial product state [Eq. (17)], and become nonzero as a
result of the expansion dynamics. To minimize finite-size
effects [see Appendix A], we focus on the total correla-
tions Cl(x; t) [see Eq. (16)]. As an example, Fig. 3 shows
the absolute value of all matrix elements of the correla-
tion matrix Cl,j = |Cl(j − l; t)| at times t = 20 and 50,
in a system with Np = 200. Those results reveal a very
fast decay of the one-body correlations with x = j − l,
in stark contrast with the power-law decay observed for
spinless fermions (see, e.g., Fig. 2 in Ref. [88]).

Figure 4 shows one-body correlations vs x measured
with respect to sites with a given particle occupation
n(l; t) = n0, for a system larger than the one in Fig. 3.
We answer three questions about the current-carrying
steady state:
(i) Does |Cl(x; t)| exhibit a Gaussian decay with x for
different values of l and t?
(ii) Do off-diagonal one-body correlations obey the scal-
ing solution

|Cl(x; t)| ?
= |Cs(x)| . (23)
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(b)

FIG. 4. Total one-body correlation function |Cl(x; t)| for an
initial domain wall with Np = 1200 particles [see Eq. (17)].
We set the target particle occupation n(l; t) = n0 and use
Eq. (18) to find the optimal l at a given time t. (a) n0 = 0.5,
which corresponds to l = 1200 at all times. (b) n0 = 0.2,
which corresponds to l = 1281, 1443, 1685, 1928, 2171 at
times t = 50, 150, 300, 450, 600, respectively. Dashed lines
are results for Cl(x) in the ground state of the emergent lo-

cal Hamiltonian ĤLDA
SF (s) [see Eq. (21)]. For the latter cal-

culations, we set the particle filling Np/L = 0.5 in (a) and
Np/L = 0.2 in (b), and measure correlations from the center
of the lattice (l = L/2, L = 2400).

(iii) Do the exact numerical results for |Cl(x; t)| match
the predictions from the emergent eigenstate solution
plus LDA?

Figure 4(a) shows one-body correlations with respect
to a site with n0 = 0.5 at different times [see legends in
Fig. 4(b)]. It is apparent that one-body correlations ex-
hibit a Gaussian decay that is independent of time. They
only depend on the filling of the reference site, equiv-
alently, |Cl(x; t)| = |Cs(x)|. The same conclusion ap-
plies, at long times, to the results for n0 = 0.2 shown in
Fig. 4(b). They converge to a Gaussian decay that is in-
dependent of time, i.e., |Cl(x; t)| = |Cs(x)| at long times.
The onset of the scaling behavior for the off-diagonal one-
body correlations occurs at later times as the reference
site occupation departs from half filling.

In Figs. 4(a) and 4(b), we show (as dashed lines) nu-
merical results for one-body correlations in the ground
state of the emergent local Hamiltonian [Eq. (21)] at the
target particle filling. Those correlations are in excellent
agreement with the ones in the current-carrying state at
long times. We should add that the absolute value of the
one-body correlations in the ground state of the emergent
local Hamiltonian are identical to the ground-state cor-
relations in the physical Hamiltonian that governs the
dynamics, Eq. (1) [88]. The latter is known to exhibit
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one-body correlations with a Gaussian decay

|Cs(x)| = n(s) e−x
2/x2

0 , (24)

where x0 ∝ n(s)−1 [64].

C. Quasimomentum distribution function

To conclude the study of the current-carrying state, we
calculate the total quasimomentum distribution function

m(k; t) =
1

L

∑
l,x

e−ikxCl(x; t) , (25)

which is routinely measured in experiments with ultra-
cold quantum gases [152]. (Spin-resolved results are
shown in Appendix A.)

Figure 5(a) shows m(k; t) at different times for a sys-
tem with Np = 400 particles. In the initial product
state, in which fermions are localized, all quasimomenta
are equally occupied, i.e., m(k; 0) = m̄ = Np/L = 0.5.
Two main features are apparent in the dynamics: a peak
emerges at k = π/2, and the height of the peak increases
with time. Figure 5(a) also makes apparent that the re-
sults obtained for m(k; t) during the exact time evolution
are indistinguishable from those obtained in the ground
state of the emergent local Hamiltonian ĤSF(t) [Eq. (19)].

The emergence of the peak at k = π/2 can be under-
stood from the phase i = exp(iπ/2) in the hopping term

-π -π/2 0 π/2 π

k
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0.5
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1.5

m
(k

;t
)

-π -π/2 0 π/2 π

k
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-3
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2×10
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4×10
-3

[m
(k

;t
)-

m_
]/

t
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t = 40
t = 80
t = 120
t = 160
t = 200

(a)

(b)

FIG. 5. Total quasimomentum distribution m(k; t) during the
melting of a domain wall [see Eq. (17)] with Np = 400 par-
ticles. (a) m(k; t) for different times. Thick lines are exact
results for the dynamics while thin solid lines are results ob-
tained in the ground state of the emergent local Hamiltonian
Ĥ(t) [see Eq. (19)]. (b) Rescaled exact results for the quasimo-
mentum distribution [m(k; t)−m̄]/t, where m̄ = Np/L = 0.5.

of ĤSF(t). As a result, the minimum of the energy disper-

sion of the kinetic part of ĤSF(t) is located at k = π/2.
For 1D hard-core bosons, which can also be mapped onto
spinless fermions, the dynamical emergence of the peak
at k = π/2 [71] has been experimentally observed in ex-
periments with bosons in 1D optical lattices [23].

For the current-carrying state of spinless fermions, it
was shown analytically that the evolution of the quasi-
momenta occupations relative to the initial occupations
m(k; t) − m̄ is linearly proportional to time t [88]. In
Fig. 5(b), we plot the rescaled quasimomentum distri-
bution [m(k; t) − Np/L]/t for the impenetrable SU(N)
fermions. We observe a perfect data collapse, confirm-
ing the expectation from Fig. 5(a) that the height of the
peak increases linearly with time.

IV. UNVEILING THE RAPIDITY
DISTRIBUTION

As a second application of the approach introduced in
Sec. II, we study the expansion of harmonically trapped
impenetrable SU(N) fermions in a lattice after suddenly
turning off the trap. We take the initial state to be
the ground state of the infinitely repulsive (generalized)
Fermi-Hubbard model [Eq. (1)] in the presence of a har-
monic confining potential

Ĥ ′N = ĤN +
1

R2

L∑
l=1

N∑
σ=1

(l − l0)2f̂
†(σ)
l f̂

(σ)
l , (26)

where l0 = L/2 is the trap center, and R is the charac-
teristic length of the trap. Since the observables studied
in this section are summed over all spin flavors, our re-
sults apply equally to the two-component Fermi-Hubbard
model (N = 2) as they do to arbitrary N -flavor SU(N)
models, for initial states in which every pair of consecu-
tive fermions carries distinct spin flavors [Eq. (2)]. The
corresponding spinless fermion Hamiltonian, to which we
map the impenetrable SU(N) fermions, has the form

Ĥ ′SF = ĤSF +R−2
∑
l(l − l0)2ĉ†l ĉl.

At time t = 0, the harmonic confinement is turned off
(we set R−1 = 0) and the system evolves under ĤN . We
are interested in dynamics that occurs before particles
reach the boundaries of the lattice [n(1; t) = n(L; t) = 0],
which are equivalent to dynamics in an infinite lattice.

A. Dynamical emergence of rapidities

Figures 6(a) and 6(b) show density plots of the expand-
ing total site occupation n(l; t) and the quasimomentum
distribution function m(k; t), respectively, as functions of
time. Figure 6(b) shows that, after some transient time
and despite the fact that n(l; t) expands at all times,
m(k; t) becomes independent of time. [In this section,
we normalize m(k; t) using the characteristic length of
the initial trap, m(k; t) =

∑
l,x e

−ikxCl(x; t)/R.]



8

FIG. 6. Sudden expansion of Np = 100 impenetrable SU(N)
fermions after turning off a harmonic trap with R = 200. We
take L = 1200 and l0 = 600. (a) Total site occupations n(l; t).
(b) Total quasimomentum distribution m(k; t).

Our main focus next is to understand the station-
ary quasimomentum distribution function observed at
long times. In various 1D bosonic systems including
lattice hard-core bosons [109, 115], as well as Tonks-
Girardeau [153] and Lieb-Liniger gases [154–158], it has
been shown that during expansion dynamics the quasi-
momentum distribution function of the bosons under-
goes a dynamical fermionization. For lattice hard-core
bosons [109, 115] and Tonks-Girardeau gases [153], this
fermionization is nothing but a transformation of the
quasimomentum distribution function of the physical
particles (impenetrable bosons) into the quasimomentum
(rapidity) distribution of the underlying noninteracting
fermions into which the former can be mapped. This
transformation of quasimomentum distribution functions
of physical particles into rapidity distributions under
expansion dynamics is expected to be a generic phe-
nomenon in integrable models [54, 59, 108, 157].

Figure 7(a) shows m(k; t) in the initial state and at
time t = 375, a time at which m(k; t) has already become
stationary (corresponding spin-resolved results are shown
in Appendix A). We consider Np = 100 particles and an
initial trap with R = 200. Remarkably, the stationary re-
sult obtained for m(k; t) is identical to the quasimomen-
tum distribution function mSF(k) of the spinless fermions
to which we mapped the impenetrable SU(N) fermions.
mSF(k) does not evolve in time because the quasimo-
menta occupations of the spinless fermions are conserved
under expansion dynamics. mSF(k) is the distribution of
rapidities in our model, and our results show that it can
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m
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)
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)|
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t = 375
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FIG. 7. Sudden expansion from a harmonic trap with R =
200. Results are shown for impenetrable SU(N) fermions in
the initial state (t = 0) and at t = 375, and for spinless
fermions (SF) at t = 375. Thin solid lines depict the results
for the impenetrable SU(N) fermions in the ground state of
the emergent local Hamiltonian (27). (a) Total quasimomen-
tum distribution function m(k; t). (b) Total one-body corre-
lations |Cl(x; t)| measured from the center of the system (at
l = 1200). The results shown are for Np = 100 and L = 2400.

be unveiled by allowing the impenetrable SU(N) fermions
freely expand up to about two to three times their initial
size.

Figure 7(b), on the other hand, shows that despite the
agreement between the quasimomentum distribution of
impenetrable SU(N) fermions and the quasimomentum
distribution function of spinless fermions, at long times,
the off-diagonal one-body correlations of both systems
are not the same (this also occurs for lattice hard-core
bosons [109, 115] and Tonks-Girardeau gases [153]). The
absolute value of the one-body correlations exhibits a
Gaussian decay for impenetrable SU(N) fermions at all
times and a power-law decay for spinless fermions.

B. Emergent eigenstate solution

Figure 7(b) also shows the one-body correlations of the
impenetrable SU(N) fermions at t = 0. They exhibit a
Gaussian decay as the ground state of homogeneous sys-
tems [64]. The fact that in Fig. 7(b) the decay of correla-
tions has the same behavior in the ground state and dur-
ing the expansion indicates that the time-evolving states
share properties with the initial ground state.

Like for the initial states considered in Sec. III, one can
find an emergent eigenstate solution for the expansion of
spinless fermions after turning off a harmonic trap [115].
The emergent local Hamiltonian for the corresponding
spinless fermion system [115, 150] is (up to a constant)

Ĥ′SF(t) =−
L−1∑
l=1

A(l; t)(eiφ(l;t)ĉ†l+1ĉl + H.c.) (27)

− t2

R2

L−2∑
l=1

(ĉ†l+2ĉl + H.c.) +
1

R2

L∑
l=1

(l − l0)2ĉ†l ĉl ,
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FIG. 8. Total one-body correlations |Cl(x; t)| during the sud-
den expansion of Np = 100 impenetrable SU(N) fermions
after turning off a harmonic trap with R = 100. We take
L = 2400 and measure correlations from the center of the
system (at l = 1200). The results from the exact time evo-
lution are shown as symbols, and the results in the ground
state of Ĥ′LDA

SF (t) [see Eq. (28)] are shown as straight lines.

The chemical potential in Ĥ′LDA
SF (t) is set to match the particle

filling n(l; t) at any given time.

where A(l; t) =
√

1 + [(2t/R2)(l − l0 + 1/2)]2 is the
nearest neighbor hopping amplitude, and the phase is
φ(l; t) = arctan[2t(l − l0 + 1/2)/R2].

In Fig. 7(b) we show (as thin solid lines) the correla-

tions |Cl(x; t)| obtained in the ground state of Ĥ′SF(t),
which perfectly overlap with the exact results from the
nonequilibrium time evolution. Moreover, one can also
combine the LDA with the emergent eigenstate solu-
tion, as in Sec. III, to describe the one-body correlations
|Cl(x; t)| in the nonequilibrium steady state in terms of
those in a homogeneous system.

The appropriate homogeneous Hamiltonian can be ob-
tained from Ĥ′SF(t) replacing the harmonic trap by an
effective local chemical potential, and making the ampli-
tude A(l; t) and the phase φ(l; t) site independent

Ĥ′LDA
SF (t, l) =−A(l; t)

∑
j

[eiφ(l;t)ĉ†j+1ĉj + H.c.]

− t2

R2

∑
j

(ĉ†j+2ĉj + H.c.) + µ(l)N̂ . (28)

In Fig. 8 we compare |Cl(x; t)| calculated during the
exact time evolution (symbols) with the results in the

ground state of Ĥ′LDA
SF (t) in Eq. (28), when the parti-

cle occupation matches the target site occupation n(l; t)
(lines). We show result for correlations measured from
the trap center (l = l0 = L/2), for which A(l; t) ≈ 1
and φ(l; t) ≈ 0, for systems with Np = 100 impenetra-
ble SU(N) fermions and an initial R = 100. The results
shown in Fig. 8 from both approaches yield a perfect
agreement, and follow the functional form in Eq. (24).

V. EQUILIBRATION AND GENERALIZED
THERMALIZATION

As a third, and final, application of the approach intro-
duced in Sec. II, we study the equilibration of impenetra-
ble SU(N) fermions in a finite lattice with open bound-
ary conditions (equivalent to a box trap with infinitely
high walls) after suddenly turning off a harmonic trap
in which the impenetrable SU(N) fermions are initially
confined. The setup is similar to the one in Sec. IV. The
main difference is that the expanding particles now reach
the boundaries of the lattice and equilibrate by moving
back and forth in a finite system. The stationary quasi-
momentum distribution function in this case is not the
rapidity distribution. Also, after particles reach the lat-
tice boundaries, the emergent eigenstate solution is no
longer valid [88].

Figure 9(a) shows the dynamics of the total site occu-
pations n(l; t). At long times, as expected, n(l; t) equi-
librates and becomes (nearly) homogeneous, n(l; t) →
Np/L. In the light of the findings in Sec. IV, the dy-
namics of the total quasimomentum distribution function
m(k; t), shown in Fig. 9(b), is more remarkable. After ap-
proaching the rapidity distribution during the expansion,
when the propagating fronts reach the lattice boundaries
for the first time, m(k; t) begins to change and a revival
occurs in the occupation of low quasimomentum modes.
Ultimately, after some oscillations with decreasing am-
plitude, m(k; t) equilibrates to a new distribution, which

FIG. 9. Long-time dynamics of Np = 100 impenetrable
SU(N) fermions after turning off a harmonic trap with R =
200 in a lattice with L = 1200 sites (l0 = 600). (a) Total site
occupations n(l; t). (b) Total quasimomentum distribution
m(k; t), computed following Eq. (25).
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FIG. 10. Generalized thermalization in a box trap after turn-
ing off a harmonic trap. (a) Evolution of the total occupation
of three quasimomentum modes (k = 0, π/5, and π/3) plotted
vs t/L for three sizes L of the box trap. For L = 1500 there are
Np = 125 impenetrable SU(N) fermions and R = 250. The
other system sizes have the same ratios Np/L and Np/R. The
horizontal dashed lines are the GGE predictions for L = 1500.
(b) Total quasimomentum distribution function m(k; t) in the
initial state (t = 0), in the time-evolving state after a long
equilibration time (t = 50000), in the GGE, in the grand
canonical ensemble (GE), and for the spinless fermions (SF)
onto which we map the impenetrable SU(N) fermions. The
results shown are for the L = 1500 case in (a). (Inset) Dis-
tance ∆m, see Eq. (32), between time-averaged results from
the time evolution and the GGE predictions. The time av-
erage is computed using 100 times between tmin = 10L and
tmax = L2/14 (set to avoid including revivals that occur in
timescales ∝ L2), with a time spacing dt = (tmax− tmin)/100.
Error bars show the standard deviation for the average. The
solid line is a power law fit ∆m ∝ L−α for L ≥ 720, which
yields α = 1.0(1).

is different from that of the spinless fermions to which
the impenetrable SU(N) fermions are mapped.

In Fig. 10(a), we show the evolution of the total occu-
pation of three quasimomentum modes (k = 0, π/5, and
π/3), as functions of time (normalized using the size of
the final lattice L), for three values of L. We select Np
and R for the initial harmonic trap such that Np/L and
Np/R are the same in all cases. Figure 10(a) shows that,
as expected, the time scale for the oscillations in m(k; t)
is set by L (notice the data collapse for different values of
L). Figure 10(a) also makes apparent that, for t/L & 3,
the total occupations of the modes shown, and m(k; t)
in general, are nearly time independent, i.e., they have
equilibrated.

In Fig. 10(b), we show the initial total quasimomentum
distribution function, the long-time equilibrated m(k; t)
(corresponding spin-resolved results are shown in Ap-
pendix A), and the quasimomentum distribution of the

spinless fermions to which we map the impenetrable
SU(N) fermions. They can all be seen to be different,
with m(k = 0; t = 0) being greater than the total occu-
pation of the zero quasimomentum mode after equilibra-
tion, which in turn is greater than the occupation of the
zero quasimomentum mode for spinless fermions.

In order to describe m(k; t) after equilibration, we con-
struct the Generalized Gibbs ensemble (GGE) [10, 15],
whose density matrix is defined as

ρ̂GGE =
1

ZGGE
e−

∑
k λk Îk , (29)

where {Îk} are the conserved quantities [the occupa-
tions of the single-particle eigenstates of the noninteract-
ing spinless fermions to which we map the impenetrable

SU(N) fermions, see Eq. (7)], ZGGE = Tr[e−
∑
k λk Îk ] is

the partition function, and {λk} are fixed by the ini-

tial values of the conserved quantities, Tr[ρ̂GGEÎk] =

〈ΨI
SF|Îk|ΨI

SF〉 ≡ 〈Îk〉I . From this conditions, it fol-

lows that λk = ln[(1 − 〈Îk〉I)/〈Îk〉I ], and that ZGGE =∏
k(1− 〈Îk〉I)−1 [10, 15].
Computing total one-body correlation functions of im-

penetrable SU(N) fermions in the GGE is straightfor-
ward using the grand canonical ensemble approach in-
troduced in Ref. [64]. The off-diagonal part of the total
one-body correlations in the GGE is given by

CGGE
l (x 6= 0) =

1

ZGGE
{ det[I + (I + A)Ml,xU

†e−ΛU]

− det[I + Ml,xU
†e−ΛU]} ,

(30)

where I is the identity matrix, A is a matrix with ele-
ments Aij = δilδj(l+x), Λ is a diagonal matrix whose el-
ements are the Lagrange multipliers λk, and Ml,x is the

matrix form of the projection operator M̂l,x [see Eq. (9)],
which is a diagonal matrix in which the elements between
l + 1 and l + x − 1 are zero and the other ones are one.
Moreover, U is the unitary matrix that diagonalizes ĤSF

in Eq. (7), where UHSFU† = E (here E is a diagonal
matrix with the single-particle eigenenergies). The diag-
onal part of the total one-body correlations in the GGE
is given by

CGGE
l (x = 0) = 1− [I + U†e−ΛU]−1ll , (31)

and is identical to that of the spinless fermions.
The results in Fig. 10(a) show that the total occupa-

tion of the quasimomentum modes of the impenetrable
SU(N) fermions equilibrate at the values predicted by
the GGE. In Fig. 10(b), the long-time result for m(k; t)
is indistinguishable from the GGE one, and they are both
clearly different from the prediction of the grand canoni-
cal ensemble (GE) [64] in which the temperature and the
chemical potential are set by the energy and the num-
ber of particles in the system [3]. This makes apparent
that these systems do not equilibrate at the traditional
statistical mechanics prediction (do not thermalize).
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FIG. 11. Total one-body correlations |Cl(x)| after equilibra-
tion. Comparison between the time-averaged total one-body
correlations |Cl(x)| after equilibration [see Eq. (33)], the ini-
tial total one-body correlations, and the predictions of the
GGE and the grand canonical ensemble (GE). Cl(x) is com-
puted using times ti in the interval 15000 ≤ ti ≤ 160000, with
a time spacing dt = 50. The system studied has L = 1500,
Np = 125, and initial R = 250. (Inset) Same results plotted
versus x2.

In order to understand how the differences between the
GGE and the exact dynamics predictions behave as one
increases the system size, we compute the following time
average of the differences between m(k; t) after equilibra-
tion and the GGE prediction

∆m =
1

M

M∑
i=1

∑
k |m(k, ti)−mGGE(k)|∑

kmGGE(k)
. (32)

Results for ∆m vs L are reported in the inset in
Fig. 10(b). They show that ∆m ∝ L−1, consistent with
findings in studies of 1D hard-core bosons [159, 160].
These results suggest that observables after long times
and the GGE predictions become identical in the ther-
modynamic limit (L→∞, with Np/L and Np/R fixed).

Finally, we discuss the long-time behavior of the total
one-body correlations for the largest system size consid-
ered in Fig. 10 (L = 1500). For every x, we define the
time average

Cl(x) =
1

M

M∑
i=1

Cl(x; ti). (33)

Results for Cl(x) are shown in Fig. 11 for l = L/2. They
reveal that during the equilibration process the Gaussian
decaying correlations present in the initial state evolve
toward a slower, exponential-like, decay at large x. Those
correlations are well described by the GGE, and are very
different from the stretched exponential decay predicted
by the grand canonical ensemble [64].

VI. SUMMARY

We introduced an exact approach to study the time
evolution of spin-resolved one-body observables after

quantum quenches in the (generalized) SU(N) Fermi-
Hubbard model at infinite repulsion. This approach is
tailored for initial states that exhibit generalized Neel or-
der, namely, in which there is a periodic N -spin pattern
with consecutive fermions carrying distinct spin flavors.
Our approach is based on a compact representation of
charge degrees of freedom as spinless fermions and spin
degrees of freedom as nonlocal string of operators (pro-
jectors) expressed in terms of spinless fermions. It can
be used to benchmark numerical and analytical studies
of quantum quenches involving (generalized) Neel order
in the (generalized) Fermi-Hubbard model in the limit of
very strong repulsive interactions.

We studied three unique phenomena that occur dur-
ing expansion dynamics of impenetrable SU(N) fermions
far from equilibrium that are within reach in current
optical-lattice experimental setups. The first one oc-
curs during the melting of generalized Neel domain walls,
in which we unveiled a dynamical emergence of Gaus-
sian (ground-state like [64]) correlations in the resulting
current-carrying steady state. We explained this phe-
nomenon using an emergent eigenstate solution to quan-
tum dynamics [88]. The second one occurs during the
sudden expansion of harmonically trapped impenetra-
ble SU(N) fermions into an empty lattice after turning
off the trap. We showed that the total quasimomen-
tum distribution function of the impenetrable SU(N)
fermions evolves towards the quasimomentum distribu-
tion function of the spinless fermions onto which we map
the former. Namely, as seen in other integrable sys-
tems [54, 59, 108, 109, 115, 153–158], the quasimomen-
tum distribution function of the real particles transforms
into the rapidity distribution at long expansion times.
Finally, we studied the equilibration dynamics of impen-
etrable SU(N) fermions in a box trap after turning off
a harmonic trap. We showed that observables (such as
the quasimomentum distribution function) after equili-
bration can be described using a GGE.
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Appendix A: Spin-resolved quasimomentum
distribution function

In the main text, in order to minimize finite-size ef-
fects, we focused on total one-body correlations [defined
in Eq. (5)] and the corresponding total quasimomentum
distribution functions. A detailed study of finite-size ef-
fects in spin-resolved one-body correlations and quasimo-
mentum distribution functions of impenetrable SU(N)
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FIG. 12. Spin-resolved quasimomentum distribution function
mσ(k; t) for impenetrable SU(2) fermions with generalized
Neel order. (a) Melting of a domain wall with Np = 400
fermions at t = 200 [see Fig. 5(a) in Sec. III]. (b) Sudden
expansion of Np = 100 fermions from a harmonic trap with
R = 200 at t = 375 [see Fig. 7(a) in Sec. IV]. (c) Equilibration
of Np = 100 particles in a box trap with L = 1200. Results
are shown for t = 50000 after turning off a harmonic trap with
R = 200 [see Fig. 10(b) in Sec. V]. Thin black lines depict the
results averaged over spin flavors m̄(k; t) =

∑2
σ=1m

σ(k; t)/2.

fermions in equilibrium was presented in Ref. [64]. There
we showed that those spin resolved observables approach
the averaged ones (the total ones divided by the number
of spin flavors) as one increases the number of particles
while keeping the number of spin flavors fixed.

A similar study of finite-size effects in spin resolved
one-body correlations and quasimomentum distribution
functions out of equilibrium is beyond the scope of this
work. As for the equilibrium systems studied in Ref. [64],
we find that those observables out of equilibrium ap-
proach the averaged ones when increasing the number
of particles (for a fixed number of spin flavors). Finite-
size effects are small for the system sizes considered in the
main text. In Fig. 12, we show the spin resolved quasimo-
mentum distribution functions mσ(k; t) for impenetrable
SU(2) fermions (σ = 1, 2). Results for the melting of
the generalized Neel domain wall (Sec. III), the sudden
expansion after turning off the harmonic trap (Sec. IV),
and equilibration in the box trap (Sec. V), are shown in
Figs. 12(a), 12(b), and 12(c), respectively. The results for
individual spin flavor are almost indistinguishable from
the averaged ones, which are the total ones divided by 2.
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Quenching the XXZ spin chain: quench action ap-
proach versus generalized Gibbs ensemble, J. Stat.
Mech. (2015), P04001.

[123] V. Alba and P. Calabrese, The quench action approach
in finite integrable spin chains, J. Stat. Mech. (2016),
043105.

[124] L. Piroli, B. Pozsgay, and E. Vernier, From the quantum
transfer matrix to the quench action: the loschmidt echo
in xxz Heisenberg spin chains, J. Stat. Mech. (2017),
023106.

[125] L. Piroli, B. Pozsgay, and E. Vernier, What is an inte-
grable quench?, Nuc. Phys. B 925, 362 (2017).

http://dx.doi.org/10.1103/PhysRevB.94.161109
http://dx.doi.org/10.1103/PhysRevB.94.161109
http://dx.doi.org/10.1103/PhysRevB.94.161109
http://dx.doi.org/10.1103/PhysRevX.7.021012
http://dx.doi.org/10.1103/PhysRevX.7.021012
http://dx.doi.org/10.1103/PhysRevX.7.021012
http://dx.doi.org/10.1103/PhysRevB.96.020403
http://dx.doi.org/10.1103/PhysRevB.96.020403
http://dx.doi.org/10.1103/PhysRevB.96.020403
http://dx.doi.org/10.1103/PhysRevB.96.020403
http://dx.doi.org/10.1038/ncomms16117
http://dx.doi.org/10.1038/ncomms16117
http://dx.doi.org/10.1038/ncomms16117
http://dx.doi.org/10.21468/SciPostPhys.3.3.020
http://dx.doi.org/10.21468/SciPostPhys.3.3.020
http://dx.doi.org/10.21468/SciPostPhys.3.3.020
http://dx.doi.org/10.21468/SciPostPhys.3.3.020
http://dx.doi.org/10.1103/PhysRevB.96.054302
http://dx.doi.org/10.1103/PhysRevB.96.054302
http://dx.doi.org/10.1103/PhysRevB.96.054302
http://dx.doi.org/10.1103/PhysRevA.96.033617
http://dx.doi.org/10.1103/PhysRevA.96.033617
http://dx.doi.org/10.1103/PhysRevA.96.033617
http://dx.doi.org/10.1088/1742-5468/aa8c19
http://dx.doi.org/10.1088/1742-5468/aa8c19
http://dx.doi.org/10.1103/PhysRevB.96.174301
http://dx.doi.org/10.1103/PhysRevB.96.174301
http://dx.doi.org/10.1103/PhysRevB.96.174301
http://dx.doi.org/10.1103/PhysRevB.96.174301
http://dx.doi.org/10.1103/PhysRevB.96.220302
http://dx.doi.org/10.1103/PhysRevB.96.220302
http://dx.doi.org/10.1103/PhysRevB.96.220302
http://dx.doi.org/10.1103/PhysRevB.96.115124
http://dx.doi.org/10.1103/PhysRevB.96.115124
http://dx.doi.org/10.1103/PhysRevB.96.115124
http://dx.doi.org/10.1103/PhysRevLett.120.060602
http://dx.doi.org/10.1103/PhysRevLett.120.060602
http://dx.doi.org/10.1103/PhysRevLett.120.060602
http://dx.doi.org/10.1103/PhysRevB.97.081111
http://dx.doi.org/10.1103/PhysRevB.97.081111
http://dx.doi.org/10.1103/PhysRevB.97.081111
http://dx.doi.org/10.1103/PhysRevB.97.081111
http://dx.doi.org/10.1088/1742-5468/aab04b
http://dx.doi.org/10.1088/1742-5468/aab04b
http://dx.doi.org/10.1088/1742-5468/aab04b
http://dx.doi.org/10.1103/PhysRevLett.120.176801
http://dx.doi.org/10.1103/PhysRevLett.120.176801
http://dx.doi.org/10.1103/PhysRevLett.120.176801
http://dx.doi.org/10.1103/PhysRevLett.121.160603
http://dx.doi.org/10.1103/PhysRevLett.121.160603
http://dx.doi.org/10.1103/PhysRevLett.121.160603
http://dx.doi.org/10.1103/PhysRevLett.121.160603
http://dx.doi.org/10.1103/PhysRevB.97.245135
http://dx.doi.org/10.1103/PhysRevB.97.245135
http://dx.doi.org/10.1103/PhysRevB.97.245135
http://dx.doi.org/10.1103/PhysRevB.99.045150
http://dx.doi.org/10.1103/PhysRevB.99.045150
http://dx.doi.org/10.1103/PhysRevB.99.045150
http://dx.doi.org/10.1103/PhysRevB.99.045150
http://dx.doi.org/10.1103/PhysRevB.99.014305
http://dx.doi.org/10.1103/PhysRevB.99.014305
http://dx.doi.org/10.1103/PhysRevB.99.014305
http://dx.doi.org/10.21468/SciPostPhys.6.1.004
http://dx.doi.org/10.21468/SciPostPhys.6.1.004
http://dx.doi.org/10.21468/SciPostPhys.6.1.004
https://arxiv.org/abs/1806.09674
http://dx.doi.org/10.1103/PhysRevLett.80.3678
http://dx.doi.org/10.1103/PhysRevLett.80.3678
http://dx.doi.org/10.1103/PhysRevLett.80.3678
http://dx.doi.org/10.1103/PhysRevLett.94.240403
http://dx.doi.org/10.1103/PhysRevLett.94.240403
http://dx.doi.org/10.1103/PhysRevLett.94.240403
http://dx.doi.org/10.1088/1367-2630/8/8/169
http://dx.doi.org/10.1088/1367-2630/8/8/169
http://dx.doi.org/10.1088/1367-2630/8/8/169
http://dx.doi.org/10.1103/PhysRevB.88.235117
http://dx.doi.org/10.1103/PhysRevB.88.235117
http://dx.doi.org/10.1103/PhysRevB.88.235117
http://dx.doi.org/10.1103/PhysRevA.90.043606
http://dx.doi.org/10.1103/PhysRevA.90.043606
http://dx.doi.org/10.1103/PhysRevA.90.043606
http://dx.doi.org/10.1038/srep14743
http://dx.doi.org/10.1038/srep14743
http://dx.doi.org/10.1038/srep14743
http://dx.doi.org/10.1103/PhysRevA.95.033617
http://dx.doi.org/10.1103/PhysRevA.95.033617
http://dx.doi.org/10.1103/PhysRevA.95.033617
http://dx.doi.org/10.1103/PhysRevA.95.033617
http://dx.doi.org/10.1103/PhysRevA.96.013608
http://dx.doi.org/10.1103/PhysRevA.96.013608
http://dx.doi.org/10.1103/PhysRevA.96.013608
http://dx.doi.org/10.1103/PhysRevA.97.053626
http://dx.doi.org/10.1103/PhysRevA.97.053626
http://dx.doi.org/10.1103/PhysRevA.97.053626
https://arxiv.org/abs/1903.01414
http://dx.doi.org/10.1103/PhysRevLett.110.257203
http://dx.doi.org/10.1103/PhysRevLett.110.257203
http://dx.doi.org/10.1103/PhysRevLett.110.257203
http://dx.doi.org/10.1103/PhysRevLett.113.117202
http://dx.doi.org/10.1103/PhysRevLett.113.117202
http://dx.doi.org/10.1103/PhysRevLett.113.117202
http://dx.doi.org/10.1088/1742-5468/2014/12/p12009
http://dx.doi.org/10.1088/1742-5468/2014/12/p12009
http://dx.doi.org/10.1088/1742-5468/2014/12/p12009
http://dx.doi.org/10.1103/PhysRevLett.113.117203
http://dx.doi.org/10.1103/PhysRevLett.113.117203
http://dx.doi.org/10.1103/PhysRevLett.113.117203
http://dx.doi.org/10.1088/1742-5468/2015/04/p04001
http://dx.doi.org/10.1088/1742-5468/2015/04/p04001
http://dx.doi.org/10.1088/1742-5468/2015/04/p04001
http://dx.doi.org/10.1088/1742-5468/2016/04/043105
http://dx.doi.org/10.1088/1742-5468/2016/04/043105
http://dx.doi.org/10.1088/1742-5468/2016/04/043105
http://dx.doi.org/10.1088/1742-5468/aa5d1e
http://dx.doi.org/10.1088/1742-5468/aa5d1e
http://dx.doi.org/10.1088/1742-5468/aa5d1e
http://dx.doi.org/https://doi.org/10.1016/j.nuclphysb.2017.10.012
http://dx.doi.org/https://doi.org/10.1016/j.nuclphysb.2017.10.012
http://dx.doi.org/https://doi.org/10.1016/j.nuclphysb.2017.10.012


16

[126] M. Fagotti, M. Collura, F. H. L. Essler, and P. Cal-
abrese, Relaxation after quantum quenches in the spin-
1
2

heisenberg xxz chain, Phys. Rev. B 89, 125101 (2014).
[127] E. Ilievski, J. De Nardis, B. Wouters, J.-S. Caux,

F. H. L. Essler, and T. Prosen, Complete generalized
gibbs ensembles in an interacting theory, Phys. Rev.
Lett. 115, 157201 (2015).

[128] E. Ilievski, E. Quinn, J. D. Nardis, and M. Brockmann,
String-charge duality in integrable lattice models, J.
Stat. Mech. (2016), 063101.

[129] L. Piroli, E. Vernier, and P. Calabrese, Exact steady
states for quantum quenches in integrable Heisenberg
spin chains, Phys. Rev. B 94, 054313 (2016).

[130] E. Ilievski, E. Quinn, and J.-S. Caux, From interact-
ing particles to equilibrium statistical ensembles, Phys.
Rev. B 95, 115128 (2017).

[131] L. Piroli, E. Vernier, P. Calabrese, and M. Rigol, Cor-
relations and diagonal entropy after quantum quenches
in XXZ chains, Phys. Rev. B 95, 054308 (2017).

[132] B. Pozsgay, E. Vernier, and M. A. Werner, On general-
ized Gibbs ensembles with an infinite set of conserved
charges, J. Stat. Mech. (2017), 093103.

[133] N. J. Robinson, J.-S. Caux, and R. M. Konik, Motion
of a distinguishable impurity in the Bose gas: Arrested
expansion without a lattice and impurity snaking, Phys.
Rev. Lett. 116, 145302 (2016).

[134] N. J. Robinson, J.-S. Caux, and R. M. Konik, Ex-
act nonequilibrium dynamics of a class of initial states
in one-dimensional two-component integrable quantum
gases, arXiv:1602.05532.

[135] E. Ilievski and J. De Nardis, Ballistic transport in the
one-dimensional Hubbard model: The hydrodynamic
approach, Phys. Rev. B 96, 081118 (2017).

[136] M. Mestyán, B. Bertini, L. Piroli, and P. Calabrese,
Exact solution for the quench dynamics of a nested in-
tegrable system, J. Stat. Mech. (2017), 083103.

[137] L. Piroli, E. Vernier, P. Calabrese, and B. Pozsgay, Inte-
grable quenches in nested spin chains I: the exact steady
states, arXiv:1811.00432.

[138] L. Piroli, E. Vernier, P. Calabrese, and B. Pozsgay, In-
tegrable quenches in nested spin chains II: fusion of
boundary transfer matrices, arXiv:1812.05330.

[139] C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau,
P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, Single-
spin addressing in an atomic Mott insulator, Nature
471, 319 (2011).

[140] B. Kumar, Exact solution of the infinite-U Hubbard
problem and other models in one dimension, Phys. Rev.
B 79, 155121 (2009).

[141] E. H. Lieb and F. Y. Wu, Absence of Mott transition in
an exact solution of the short-range, one-band model in
one dimension, Phys. Rev. Lett. 20, 1445 (1968).

[142] M. Ogata and H. Shiba, Bethe-ansatz wave function,
momentum distribution, and spin correlation in the one-
dimensional strongly correlated Hubbard model, Phys.
Rev. B 41, 2326 (1990).

[143] A. Parola and S. Sorella, Asymptotic spin-spin corre-
lations of the U→∞ one-dimensional Hubbard model,
Phys. Rev. Lett. 64, 1831 (1990).

[144] A. Parola and S. Sorella, Spin-charge decoupling and
the Green’s function of one-dimensional Mott insula-
tors, Phys. Rev. B 45, 13156 (1992).

[145] K. Penc, K. Hallberg, F. Mila, and H. Shiba, Shadow
Band in the One-Dimensional Infinite-U Hubbard
Model, Phys. Rev. Lett. 77, 1390 (1996).

[146] K. Penc, K. Hallberg, F. Mila, and H. Shiba, Spectral
functions of the one-dimensional Hubbard model in the
U→+∞ limit:How to use the factorized wave function,
Phys. Rev. B 55, 15475 (1997).

[147] A. Izergin, A. Pronko, and N. Abarenkova, Tempera-
ture correlators in the one-dimensional Hubbard model
in the strong coupling limit, Phys. Lett. A 245, 537
(1998).

[148] M. Rigol, A. Muramatsu, and M. Olshanii, Hard-core
bosons on optical superlattices: Dynamics and relax-
ation in the superfluid and insulating regimes, Phys.
Rev. A 74, 053616 (2006).

[149] J. De Nardis and M. Panfil, Edge singularities and
quasilong-range order in nonequilibrium steady states,
Phys. Rev. Lett. 120, 217206 (2018).

[150] R. Modak, L. Vidmar, and M. Rigol, Quantum adi-
abatic protocols using emergent local Hamiltonians,
Phys. Rev. E 96, 042155 (2017).

[151] O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura,
Emergent hydrodynamics in integrable quantum sys-
tems out of equilibrium, Phys. Rev. X 6, 041065 (2016).

[152] I. Bloch, J. Dalibard, and W. Zwerger, Many-body
physics with ultracold gases, Rev. Mod. Phys. 80, 885
(2008).

[153] A. Minguzzi and D. M. Gangardt, Exact coherent states
of a harmonically confined Tonks-Girardeau gas, Phys.
Rev. Lett. 94, 240404 (2005).

[154] H. Buljan, R. Pezer, and T. Gasenzer, Fermi-bose
transformation for the time-dependent Lieb-Liniger gas,
Phys. Rev. Lett. 100, 080406 (2008).
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