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Long-time existence of topologically nontrivial configurations of quantum vortices in the form
of torus knots and links in trapped Bose-Einstein condensates is demonstrated numerically within
the three-dimensional Gross-Pitaevskii equation with external anisotropic parabolic potential. We
find out parametric domains near the trap anisotropy – axial over planar frequency trapping ratio
λ ≈ 1.5−1.6 where the lifetime of such quasi-stationary rotating vortex structures is many hundreds
of typical rotation times. This suggests the potential experimental observability of the structures.
We quantify the relevant lifetimes as a function of the model parameters (e.g. λ) and initial condition
parameters of the knot profile.

I. INTRODUCTION

Topological structures bearing vorticity have been long
recognized as objects of high interest in hydrodynamics,
optics, and condensed-matter physics [1–3]. Within the
particular theme of atomic gases in the realm of Bose-
Einstein condensates (BECs) [4–6], a pristine setting has
been identified for the exploration of the properties of
such structures. More specifically, the static and dynam-
ical properties of quantized vortices have played a crucial
role in a wide range of associated theoretical, numerical
and experimental studies; as only a small ensemble of
relevant examples, we mention the reviews [7–12].

A focal theme of interest within this nexus of topologi-
cal charge, nonlinearity and spatial confinement has been
the study of vortex rings and simple filaments [13–31]
whose interaction dynamics and even leapfrogging [32–
34] have been considered. An even more demanding 3D
territory that has been less explored (especially so ex-
perimentally) has been that of vortex knot structures.
These have been examined mainly for a uniform density
background; see [35–43], and references therein. Also,
no experimental technique for producing knots and links
in Bose-Einstein condensates has been developed, with
the exception of the remarkable synthetic structures pro-
duced in spinor Bose-Einstein condensates [44, 45]; see
also [46] for a related theoretical/numerical proposal of
vortex knot realizations in two-component BECs via co-
herent two-photon Raman transitions. The study of
knots is especially interesting given their emergence in a
wide range of physical contexts. These range from macro-
scopic shaken strands of rope [47], to microscopic strands
of DNA [48], and from contexts such as fluids [38], to
magnetic fields in plasmas [49].
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Very recently in Ref. [50], based on the hydrody-
namic approximation (with potential perturbations ne-
glected), simple vortex knots were theoretically consid-
ered in trapped axisymmetric condensates characterized
by an equilibrium density profile ρ(z, r). In particular,
stability of torus vortex knots under suitable conditions
was predicted. Its preliminary numerical verification was
undertaken very recently by one of the present authors
(V.P.R. [51]) within the Gross-Pitaevskii (GP) equation,
with the latter representing a suitable three-dimensional
(3D) model for a rarefied Bose gas at zero temperature.
For a few sets of system parameters, long lifetimes for
torus vortex knots, unknots, and links were indeed ob-
served. On the other hand, it is important to highlight
that the earlier systematic work of [41] (involving thou-
sands of relevant simulations) predicted instability of all
the examined types of knots in the homogeneous conden-
sate cases considered therein.

In light of the above results, there is an important open
question remaining. Can knot (or link) structures be-
come dynamically robust in the presence of trapping?
Here, we examine this question in the context of varia-
tion of model parameters and initial condition parame-
ters. The former are represented by the parametric explo-
ration as a result, e.g., of the trap anisotropy, while the
latter are induced by the variation of the vortical pattern
initial locations. Given the generic rotation exhibited by
knot patterns, we do not seek these as exact stationary
solutions. Rather, we consider a large range of dynam-
ical simulations where a perturbed initial configuration
is evolved and the outcome of the evolution is assessed,
attempting in this way to offer a systematic view of the
knot lifetime problem. The relevant extensive numeri-
cal simulations suggested, among other things, a definite
optimization (maximization) of the vortex knot lifetimes
for values of λ (the axial vs. planar trapping strength)
around 1.5-1.6. They also revealed that in the trapped
setting, distinct destabilization pathways may arise for
the knots. In particular, they may not only “untie” as
they do in the homogeneous setting, but rather portions
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of the knot can leave the condensate, thus destroying the
structure. We now turn to the relevant theoretical setup
and the corresponding detailed numerical findings.

II. THEORETICAL SETUP AND NUMERICAL
METHOD

The 3D Gross-Pitaevskii equation in trap units [52]
takes the dimensionless form

iΨt =
[
− 1

2
∆ +

1

2
(r2 + λ2z2) + g|Ψ|2 − µ

]
Ψ, (1)

where r2 = x2 + y2. The principal parameters here
are the trap anisotropy λ (the ratio between axial and
planar trapping strengths) and the interaction strength:
g = 4πNa/lr with standard unit normalization of the
density (however, other appropriate re-scaling of Ψ is able
to give g = 1). Here a is the s-wave scattering length, lr
is the axial oscillator length:

√
~/mωr, m is the atomic

mass, and ωr is the planar trap frequency. The chemical
potential µ is assumed sufficiently large (here we typi-
cally use µ ∼ 30 unless indicated otherwise), in order to
ensure the hydrodynamic –referred to also as Thomas-
Fermi– regime. As a result of this regime, the equilibrium
condensate density can be well described by the expres-
sion: ρ(z, r) ∝ [µ − (r2 + λ2z2)/2]. Thus, the ellipsoid
r2 + λ2z2 = 2µ, with transverse size R⊥ =

√
2µ, is an

effective boundary of the condensate at equilibrium, i.e.,
its density vanishes outside of this ellipsoid. It is com-
mon for typical experimental parameters (as discussed
e.g. in [6]), for the relevant time scale to correspond to
times of the order of ms. This puts in perspective also
the long life time of the structures that we will consider
below (and which will be in the order of seconds, which
is comparable to the life time of the condensate).

Following Ref. [50], in the deep Thomas-Fermi limit
µ� 1 quasi-stationary vortex torus knots and links Tp,q
are possible. We have knots when p and q are co-prime
integers (including the case p = 1 and/or q = 1 of trivial
knots that can be unfolded to a ring – “unknots”), and
we have links when p = np′, q = nq′, with n ≥ 2 (n knots
or rings that are linked together). For example, the well-
known trefoil knot is T2,3, while the Hopf link is T2,2 [53].
All such structures were theoretically found in Ref. [50]

to have equilibrium toroidal radius R∗(µ) =
√

2µ/3, and

the healing length at that radius is ξ∗ =
√

3/(2µ).
The initial (condition for the) position of the vortex

core in our studies is assumed to be a distorted torus
knot (links are constructed in a similar manner)

r(ϕ) + iz(ϕ) = r0 + r1e
iwϕ +

∑
m

Ame
i(mϕ/p+γm), (2)

where w = q/p is the winding number, r0 (r1) is the
toroidal (poloidal) radius, Am and γm are real ampli-
tudes and phases of perturbations. The latter are needed
to break the symmetry of the knot and thus introduce

“seeds” for the development of possible instabilities. Two
variants of vortex shape are studied in our numerical ex-
periments:

(S1) we use r0=4.0, r1=0.7 and for a single m we take
Am = r1/20 and γm = 0, while all the remaining ampli-
tudes are set to zero;

(S2) the sum in Eq. (2) is taken over a finite range
(q − 10) ≤ m ≤ (q + 10), with all-equal Am’s from the
set {0.001, 0.005, 0.010}R∗, and with quasi-random γm’s
uniformly distributed on interval [0 : 2π).

In case S2 a typical value of the sum is about 5Am
which should be compared to r1 ∼ 0.20R∗. So, Am =
0.001R∗ gives a nearly perfect torus knot, while Am =
0.01R∗ results in significant distortions.

Now to construct the full 3D initial condition we need
to specify all of the vortex cores in the (r, z) plane for a
given φ where there are p vortices, here r > 0. We are
able to construct the phase of the wave function with the
superposition of the phase from each vortex:

Ψ(φ, r, z)/
√
|ρ| = Πp

jψ2D(r − rj , z − zj) (3)

where rj , zj is the position of the j-th vortex core and
ψ2D(r, z) = eiθ with θ = atan2(r, z) where r and z are the
distance to a vortex. Thus, the total phase Φ is simply
the sum of all the vortex core phases.

Additionally, we use a multi-step algorithm to find the
initial or “ground” state of the trapped, knotted BEC.
We arrived at this procedure after trying many differ-
ent methods of obtaining the initial state, such as only
imprinting phase with imaginary time propagation. Af-
ter much trial and error, the best method we found
was to pin the vortex core density and then use imagi-
nary time propagation. Other procedures (including ones
which may work better in homogeneous systems) cre-
ated significant residual excitations in the initial state
of the knot or the BEC’s flow around the knot. To be
more specific: (i) We imprint the phase of the ground
state as found from Eq. (3). (ii) We temporarily in-
troduce an additional pinning potential along the pre-
scribed vortex core. Such potential is defined by the sum
V (φ, r, z) = U

∑
j e
−BΘj where Θj = (z−zj)2 +(r−rj)2,

U and B are suitable coefficients. We concentrate mainly
on the following two choices: (V1) a relatively smooth
pinning with U = 50, B = 15; (V2) a sharp pinning with
U = 600, B = 240. (iii) We have a short, but heav-
ily damped imaginary time propagation corresponding
to a dissipative regime. This step allows a relaxation of
wave function in the trap that eliminates the most un-
desirable large-scale sound-mode perturbations [51]. Es-
pecially important is the relaxation of the spatial phase
distribution to a state where div (ρ∇Φ) ≈ 0. Unlike a
uniform background with ρ being a constant, in our case
ρ depends on r and so we do not have an analytic tool
to determine the equilibrium Φ(r). That is why the dis-
sipative stage is an efficient practical method to reduce
potential modes in the initial state.

It should be noted however that despite the pinning,
the vortex core still retains some small deviation from the
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prescribed shape (2) during the dissipative stage. Mainly
it is a small increase of r1. But with our U and B, the de-
viation is less than vortex core width (the healing length).
Another important point is that the relatively smooth
pinning (V1) potential results in a “fat” vortex core at
the end of stage (iii). As conservative evolution starts,
the core returns quickly to its normal width, thus produc-
ing some short-scale non-stationary ripples on the den-
sity background. The ripples act then as additional per-
turbations and reduce the vortex lifetime comparatively
to more clean backgrounds corresponding to the sharper
pinning potential (V2). However, further sharpening of
the pinning potential is not efficient as it is unable to
trap the vortex.

The time propagation of Eq.(1) takes place with a
third-order operator splitting Fourier spectral method,
with time steps of 5×10−4, with a numerical grid of 2563,
and with a spacing of 0.07lr. This method preserves en-
ergy at the 8th decimal place for all simulations.

Having provided the setup of our numerical experi-
ments, we now turn to a summary of our extensive nu-
merical investigations.

III. RESULTS

The behavior of a knot in free space has been studied,
in particular, in Refs. [37, 41]. The basic motion of a
trefoil is that the knot rolls over in a regular motion.
Eventually the knot will untie as perturbations grow and
the regular rolling motion ends [37, 41]. We will now
examine the behavior of a knot in various geometries,
starting with λ equal to 0, 0.85, and then looking at 1.6
and 1.8. We present results for trefoil knots with a single-
m perturbation S1 and smooth pinning V1.

In Figure 1 we show the evolution of a T23 knot in a
trap with λ = 0. This is just a tube scenario, involving
no confinement in the z direction. The red line is the
3D vortex, i.e., it represents the position of the vortex
core. The vortex positions are extracted by finding the
phase singularity on the computational grid [54]. We
further refine these vortex positions via method used in
Ref. [29, 55]. This method offers a sub-grid resolution on
the position of the vortex core. To be more specific, on
a grid plaquette with a vortex core, the grid vertices will
have a phase profile like: Ψ ∝ eiϕ where ϕ is the unknown
angle measured from the vortex core to the grid points.
The phase can be distorted from this, but it does have a
2π phase wrap. This method then seeks to approximate
the locations on the edges where the real and imaginary
parts of the Ψ go to zero. Then the two points where
<[Ψ] = 0 form a line and the two points where =[Ψ] = 0
form another line. Where these two lines intersect, we
find the vortex core.

Additionally, both the BEC’s density (thin black lines)
and the extracted cores are projected (grey) onto the
back planes: (x, y), (x, z), and (y, z). One can dis-
cern that early on during the evolution for this scenario

Figure 1: For λ = 0 snapshots are shown along the demise
of the knot within the BEC. In each panel the extracted vor-
tex cores are shown in red and then in grey lines they are
projected on the sides of the image. In addition to the vor-
tex cores, the thin black lines show the density of the BEC
on the sides of the image. (a) t=0, the initial configuration,
(b) the knot distorts, (c) portions of the knot further extend
outward, and (d) portions of the vortices leave the volume.
Note this is not a process that leads to a link being formed as
would happen in free space. The axes are in oscillator units,√

~/mωr.

the knot gets distorted due to undulations (the so-called
Kelvin waves [6, 22]). As a result, already at times earlier
than 40 in our dimensionless units, the knot has broken
into individual undulating filaments, losing its coherence
as a trefoil structure. Note this is not a process that leads
to a link being formed as would happen in free space.
This is one way in which the trap alters the dynamics
of the knot. A movie of the simulation is shown in Ref.
[56].

The above unconfined along the z-direction scenario
can be compared/contrasted with the trapped case along
the z-direction. In Fig. 2 we show a system with λ = 0.85.
In this case the knot unties, more like the knot’s evolution
in free space.

The knot is shown at various stages of its evolution
with an m = 4 perturbation. At (a) t=10 we see early
form of the knot, while at t=25 (panel (b)) the knot
has started featuring Kelvin-wave undulations. (c) At
t=32.5 the knot has untied, and (d) later at t=40 a loop
has left the BEC’s volume. For the λ = 0.85 this is fairly
typically behavior. With lower m (1, 2, 3) perturbations,
the knot also tilts like a ring [31] in a trap with λ < 1.
But the knot still unties in a similar fashion. A movie of
the simulation is shown in Ref. [56].
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Figure 2: For λ = 0.85 snapshots showing the decay of the
vortex knot. The evolution already looks very different for
λ = 0. In (a) we see the early form of the knot at t=10; (b)
at t=25 some Kelvin-wave induced undulations arise. (c) At
t=32.5 the knot has untied, and (d) later at t=40 a loop has

left the BEC. The axes are in oscillator units,
√

~/mωr.

Figure 3: For λ = 1.8 snapshots are shown along the demise of
the trefoil knot inside the BEC. (a) t = 202 initial distortions
appear; (b) t = 263 growth of undulations appears. (c) At t =
303 further growth of undulations is shown, while (d) shows
the eventual breakup around at t = 324 when a portion of
the knot leaves the BEC’s volume. The axes are in oscillator
units,

√
~/mωr.

Figure 4: For λ = 1.6 snapshots showing the decay of the vor-
tex knot. At (a) t = 500 and (b)1000 the emergence of non-
trivial undulations can be observed but these remain small.
(c) At t = 1130 the knot has untied into a link, while (d) at
t = 1153 a portion of the link is leaving the volume. The axes
are in oscillator units,

√
~/mωr.

In a trap, it is important to highlight that (in addition
to untying) there is another way for the knot to decay:
perturbations can grow so large that a portion of the
knot can leave the BEC’s Thomas-Fermi ellipsoidal con-
finement region before the knot unties. In Figure 3 we
show the evolution of a T23 knot in a trap with λ = 1.8
with no perturbation, Am=0. Here, it can be seen that
the evolution retains the coherence of the trefoil for times
that are about an order of magnitude longer than λ = 0
and 0.85.

Already in panel (b) at t = 263, the helical, Kelvin-like
undulations have started forming. These Kelvin modes
are the manifestation of small amplitude imperfections in
the initial knot configuration preparation which are am-
plified over time and eventually give rise to the unstable
dynamics observed. These are seen to grow in intensity
at t = 303 (panel (c)) where the knot further distorts but
still has a trefoil structure. Finally in (d) at t = 324 the
structure becomes “untied” not by becoming a link, but
by having a portion leave the volume (i.e., the confine-
ment region discussed above). A movie of the simulation
can be found in Ref. [56].

To illustrate the main point of our work, namely the
dramatic impact of judiciously chosen anisotropy on the
lifetimes of the vortex knots, we now turn to a case in-
volving λ = 1.6. In Figure 4 we show the evolution of
a T2,3 knot in a trap with this λ. The knot lives over
1100 trap units of time before it unties. Just after the
knot unties, it is shown in (c), and then the knot evolves
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Figure 5: For λ = 1.8 (a) rc and (b) zc as a function of φ are
shown at different times 0 (black dash-dot) and 296 (blue).
These data are extracted from the same simulations shown
in Fig. 3 (a) and (b). (c) For the trefoil, there exist two
vortices at each φ. Here the radial position of each is shown
as a function of time. From these data we extract r0, r1, and
z. (d) The average toroidal radius, r0, as a function of time.

The y axes are in oscillator units,
√

~/mωr.

and eventually a portion of the structure leaves the vol-
ume in (d). Remarkably, under similar initialization as in
the cases considered above, we observe a lifetime about
4 times larger than in Fig. 3 and nearly 30 times longer
than for the case of Fig. 1. It is then clear that a suitable
tuning of the anisotropy can endow a knot structure with
very long life times, conceivably enabling its experimen-
tal observability. A movie of the simulation is in Ref.
[56].

To measure the lifetimes of the knot structures, we
analyze the extracted core positions within the (approx-
imate Thomas-Fermi) region 0.9R⊥. (The 0.9 prefactor
is used to avoid ghost vortices from disrupting the knot
analysis [29, 54].) Then, we order the core positions so
that they are a continuous function in ϕ spanning the
interval from 0 to 2pπ; see Fig. 5 (a) for r (b) z of the

extracted vortex core positions.

When the separation of two points anywhere along the
knot exceeds a cutoff distance (larger than the grid spac-
ing) the knot is considered to be broken. This works
also for reconnection events as a knot unties. To further
the analysis we can extract the toroidal r0(t); poloidal
r1(t); and z, labeled z0(t) positions of the vortex in the
knot. Using these quantities, we define 〈z〉 by taking
the average of the z0 coordinate over the entire knot:

〈z〉 = 1/Nc
∑Nc

i zi where Nc is the number of vortex
core positions found on our grid; r0 = 〈r〉 is found in
the same fashion. To obtain r1 at a given time we take

r2
1 = 1/Nc

∑Nc

i (zi − 〈z〉)2 + (ri − 〈r〉)2. In Fig. 5(c) we
show the radial position of the two vortex cores in a knot
for φ = 0 as a function of time. The position of one core
is red while the the other is black. We can see their reg-
ular motion as they tumble over each other. We can see
r0 is the average radial position of the knot and and r1

as the distance the two vortices traverse in their rotation
about each other. In Fig. 5(d) we show the extracted r0,
note the vertical scale difference of (c) and (d).

We contrast the typical evolution of r0, r1 and z0 for
different λ’s in Fig. 6. In (a) and (b) we show the ex-
tracted r0 (top panel), z0 (middle panel) and r1 (bottom
panel) for many different geometries. In (a) we show the
shorter evolution of λ= 0.85 (red), 2.5 (black), and 1.8
(blue). Then in (b) we compare the long evolution of λ=
1.6 (green) and 1.8 (blue). The main observation here,
corroborating the snapshots presented earlier in Figs. 2,
3, 4 is that we have a huge variation in the lifetime of
trapped knots. In particular, while for prolate or highly
oblate condensates the knots are highly unstable [see the
black and red curves for λ = 0.85 and λ = 2.5 in (a)], it is
possible to expand their lifetimes by over a factor of 10,
by judiciously tuning the anisotropy towards somewhat
oblate condensates, most notably in the case of λ = 1.6,
green curve in (b). We observe nearly 100 rotations of the
knot in the λ = 1.6 case. Interestingly (but also perhaps
somewhat intuitively) this also reflects the correspond-
ing earlier observations for the stability in the case of
vortex rings which can be thought of partial constituents
of vortex knots. See, e.g., the theoretical analysis of [23],
as well as the recent numerical confirmation of [31]. In
these works, it was found that for λ < 1 (i.e., for prolate
condensates) the vortex rings are unstable to a tumbling
mode. On the other hand, for 2 < λ ≤ 3 they are un-
stable due to a quadrupolar Kelvin mode, for 3 < λ ≤ 4
further destabilized due to a hexapolar Kelvin mode and
so on. Hence, indeed this tighter trapping of the weakly
oblate condensates seems to prevent the manifestation of
these Kelvin modes for such ring structures. Knots are
genuinely 3-dimensional objects, hence, eventually, the
destabilization due to these modes materializes. How-
ever, the geometry of the condensate apparently delays
this effect within the interval of 1 < λ < 2.

The oscillations in these quantities (r0, r1, and z0) are
related to the excitations of the knot, but also corre-
spond to the knot completing a rotation, see Fig. 5. For
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Figure 6: The extracted effective coordinates r0 (top panel),
z0 (middle panel), and r1 (b) are shown for different λ’s. In
(a) λ=0.85 (black), 1.8 (blue), and 2.5 (red) are shown. In
(b) λ=1.6 (green), 1.8 (blue) are shown. It is important to
note the disparity in the time scales of the breakup of the
different anisotropy knot structures. The same initial knot
and chemical potential were used. When the knots are no
longer complete (untie), the curves are set to zero. The y

axes are in oscillator units,
√

~/mωr.

most cases we have looked at (except the λ=0), the knot
breaks in a fashion where the poloidal (effective) coordi-
nate r1 seems to diverge as a portion of the knot leaves
the volume or unties.

Besides that, to more precisely determine the domains
of maximal lifetime within the parameter space, we per-
formed several series of simulations with initial states
prepared using sharp pinning V2 and multiple-mode per-
turbations S2 for Am = 0.001R∗. Similarly, we have
varied the knot initial conditions to identify the lifetime
dependence on initial conditions, as well as the one on
the chemical potential. In these simulations, the lifetime
was measured till the moment of first reconnection. The
results are shown in the top panel of Fig. 7 as lifetime de-

pendencies over the initial poloidal torus radius r1 with
a fixed, nearly optimal value of the anisotropy parameter
λ, and with a fixed, nearly optimal value of the toroidal
radius r0 (it should be noted here that optimal r0 has
been empirically found as approximately 0.9R∗ at moder-
ately large µ ∼ 30, slightly different from the theoretical
limit 1.0R∗). In the bottom panel of Fig. 7, the lifetimes
are plotted versus the anisotropy parameter λ for fixed
initial r1 and r0. For comparison, analogous results for
smooth pinning V1 and single-m perturbation S1 are also
shown there. Indeed distinct parametric intervals can be
identified where simple vortex knots, unknots, and links
survive over many hundreds of their revolutions. Proto-
typical examples of each class are offered in Fig. 7. For
instance, for 1.4 < λ < 1.8, we observe the significant in-
crease of the structure lifetimes (bottom panel). A simi-
lar feature arises for 0.65 < r1 < 0.8, as a function of the
initial condition parameter r1, for fixed λ.

Here it should be mentioned that a control simulation
with large perturbation corresponding to Am = 0.01R∗
demonstrated decrease of the lifetime in the quasi-stable
domain by a factor of roughly ten (not shown). Moderate
perturbation with Am = 0.005R∗ resulted in roughly two
times shorter lifetime which is still quite long. Thus, even
“less accurately prepared” vortex knots are able to exist
for a long time in suitable parametric regimes, as revealed
by our study.

Finally, in Fig.8 we compare trefoil lifetimes as func-
tions of the ratio r1/R∗, for different values of chemical
potential µ. In this case it is convenient to normalize the
results to R2

∗(µ) in order to separate the overall tendency
Tlife ∼ µ. Thus, the normalized lifetime provides a gen-
eral impression (up to a factor of order 1) about the num-
ber of knot rotations before its destruction. We can ob-
serve an evident tendency towards an enhanced lifetime
for larger values of the chemical potential µ. This result
is intuitively natural since a larger µ implies a weaker
coupling of the vortical pattern to sound modes.

IV. CONCLUSIONS

In this work, we have explored the effects of initial con-
dition preparation (through variations of the poloidal co-
ordinate r1), trap anisotropy (by tuning the confinement
ratio λ) and background density/nonlinearity (varying
the chemical potential µ) to the lifetime of knot struc-
tures in confined atomic Bose-Einstein condensates. Ar-
guably, our most significant finding is that anisotropic
traps with (trapping ratios) λ ≈ 1.6 can essentially sta-
bilize (i.e., lead to enhanced lifetimes by over an order of
magnitude) torus vortex knots and links in Bose-Einstein
condensates with moderate values of the local induction
parameter Λ = ln(R∗/ξ∗) . 3. We similarly identified
optimal values of r1 and illustrated the enhanced lifetime
for larger chemical potentials µ.

Compared to the evolution of a knot in free space, the
life times of a knot in a trap can be many times larger.
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shown. In general, smooth pinning V1 turned out to be less
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Ref. [37] found lifetimes to be about 60 in our trap units.
(They found lifetimes to be about 1200 units of time
corresponding to a system where the healing length is

1. When rescaled to the same units as we use, these
lifetimes are shorter by factor 2µ/3). In the present work
we observe lifetimes of up to 1000 and even 5000 trap
units. Alternatively we observe many hundreds of vortex
turnover times in Fig. 6 (b).

We observed that the dynamics leading to the eventual
demise of the most-long-lived knots and links involves the
sound generation by the rotating vortex structures. This
process gradually increases the parameter r1 “pushing it
out” of a quasi-stable interval. After that Kelvin waves
are produced progressively distorting the knots/links and
ultimately leading to their destruction (via either unty-
ing or leaving the Thomas-Fermi region). For compari-
son, recent results based on the Biot-Savart approxima-
tion indicate that for vortex knots and links of the same
relative sizes in spatially uniform condensates the mech-
anism of knot destruction is an intrinsic linear instability
without stable zones [42, 43].

These results offer, in our view, a systematic under-
standing of the viability of observation of torus knots
in confined atomic condensates. They show how initial
condition, trapping and nonlinear features of the under-
lying problem may enhance the relevant lifetimes render-
ing them potentially experimentally accessible (e.g., by
combination of techniques such as phase imprinting of
elaborate phase patterns as e.g. in [57] coupled with the
painting of suitable pinning potentials as, e.g., in [58]).
Moreover, they offer some intuition of the relevant opti-
mality of slightly oblate condensates in connection with
corresponding results for vortex rings. This finding is
exciting because of recent experimental progress on pro-
ducing knots in BECs [44, 45]. We hope this proposal
will aid future studies and searches for trapped vortex
knots. Among the important open tasks still remaining
are of course the experimental realization of such struc-
tures via phase (or perhaps density) engineering, but also
a realization of these knots as exact solutions of the sys-
tem from a computation/numerical perspective. In par-
ticular, their rotation suggests that they may be exact
periodic orbits of the system, hence computationally de-
manding periodic orbit identification tools may be used
to find such exact solutions and to assess their stability
via, e.g., Floquet theory. Relevant possibilities will be
explored in future studies.
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