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Abstract

We study the process of laser-assisted spontaneous electron bremsstrahlung by running classical

trajectories in a combined Coulomb and laser (ac) fields. Due to chaotic scattering in the combined

Coulomb and ac fields, the radiation probability as a function of the impact parameter and the

constant phase of the laser field exhibits fractal structures. However, these structures are smeared

out when the cross section is integrated over the impact parameter and averaged over the phase.

We analyze the role of different types of orbits, including the trapped orbits, and the dependence

of the radiation probability on the impact parameter and the initial phase of the ac field. We

show for the first time that at low incident electron kinetic energy the Coulomb focusing leads

to a substantial extension of the range of impact parameters contributing to the bremsstrahlung

cross section and results in a substantial increase (by one to two orders of magnitude) of the cross

section as compared to the pure Coulomb case. As examples, we discuss the case of relatively high

ponderomotive energy Ep when we obtain an efficient production of photons with frequencies up

to 2Ep, and the case of low Ep when only infrared photons are produced. Overall accuracy of

the classical approach is estimated as very good, although it does not describe resonant processes

studied previously by quantum-mechanical methods.

PACS numbers:
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I. INTRODUCTION

Laser-assisted spontaneous bremsstrahlung is a process of creation of a photon with fre-

quency Ω due to electron-atom scattering in the presence of an ac field of a lower frequency

ω, i.e. the process

nh̄ω + e+ A→ n′h̄ω + h̄Ω + e+ A.

It is different from the stimulated bremsstrahlung when the emitted photon has the same

frequency as the initial photon. Laser-assisted spontaneous bremsstrahlung is in fact the

same as the harmonic generation in the continuum. We will be interested in the process

when the atomic system A is a bare nucleus or a positive ion, then the bremsstrahlung

process is more efficient. Accordingly, we will model e − A interaction by the Coulomb

potential

V (r) = −Ze
2

r

where Z is the charge of the positive ion.

This process has been studied since 1970s [1–6]. More recent research [7–15] was stimu-

lated by development of intense lasers. Most of these papers, particularly those dealing with

relativistic electrons, were treating the electron-ion interaction in the first order of pertur-

bation theory. Some exceptions [8, 9, 12, 16] were concentrating on the resonance processes

when the frequency of the emitted photon equals an integer times the laser frequency. A

more recent paper [17] analyzed the plateau structure due to rescattering similar to that in

high-order harmonic generation.

Here we investigate another feature of the process relevant to low-energy electron scat-

tering when the Coulomb interaction cannot be treated perturbatively. It is known that

the laser-induced atomic ionization processes can be enhanced by the Coulomb focusing

[18–25]. The action of the Coulomb potential, in combination with multiple electron returns

due to the laser field, focuses parts of the electron wave function, increasing the efficiency of

such processes as multiphoton ionization. Similar effects can occur in continuum-continuum

transitions which are the subject of studies of the present paper.

In contrast to the ionization problem, the bremsstrahlung problem can be treated purely

classically as long as the electron kinetic energy is small compared to its potential energy

at the distances equal to the electron de Broglie wavelength [26] (sec. 49). This leads to

the condition ν � 1 where ν is the Coulomb parameter ν = Ze2/(h̄v) (v is the electron
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velocity). This condition should be modified in the presence of an ac laser field as discussed

below. It will be also shown that the range of validity of the classical approach is even

broader than suggested by the condition ν � 1. Some discrepancies between classical and

quantum results for the laser-assisted bremsstrahlung problem were discussed in [7] and

were shown to be not due to the failure of classical mechanics but due to the difference

in description of electron states (localized wave packet versus the Volkov wave). It should

be also added that, according to the Heisenberg correspondence principle, the quantum-

mechanical matrix element of the electron dipole moment can be replaced by the Fourier

transform of the corresponding classical quantity which leads to the classical result for the

effective cross section for the spontaneous bremsstrahlung.

Classical treatment of electron motion in a combined Coulomb and ac fields was given

by Wiesenfeld [27, 28]. He found that in a certain range of initial parameters this motion

becomes chaotic and exhibits a fractal structure when a final parameter, like the deflection

angle, is plotted as a function of the (initial) impact parameter. The irregular behavior is

associated sometimes with the electron capture in an unstable bound orbits. This kind of

behavior was studied by Leopold and Percival [29] in connection with the classical ionization

problem in a microwave field. From the quantum-mechanical point of view, the electron is

captured into a Rydberg orbital, and then performs a diffusion through a manifold of Ryd-

berg states. The correspondence between classical chaotic behavior and quantum mechanics

was addressed in the past (see, for example Ref. [30, 31]). In the present paper we will

concentrate on the classical aspects of the problem. In particular, for the first time we ana-

lyze in detail the dependence of the radiation probability on the impact parameter and the

initial phase of the ac field.

II. BASIC EQUATIONS

Consider electron beam moving in an external field. For a given trajectory the energy of

radiation emitted in the frequency interval dΩ is ([32], Eq. (67.10))

dEΩ =
2e2

3πc3
|r̈Ω|2dΩ =

2e2Ω4

3πc3
|rΩ|2dΩ

where rΩ is the Fourier transform of the electron trajectory for a given impact parameter b

rΩ(b) =
∫ ∞
−∞

eiΩtr(b, t)dt (1)
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The total effective radiation (energy times cross section) per unit frequency in the case of

cylindrical symmetry is given by

dκΩ

dΩ
= 2π

∫ ∞
0

dEΩ

dΩ
bdb. (2)

In what follows we will be presenting the probability of a photon emission per unit frequency

P (b,Ω) =
1

h̄Ω

dEΩ

dΩ
(3)

and the cross section for emitting one photon per unit frequency

S(Ω) =
1

h̄Ω

dκΩ

dΩ
(4)

In the case of the laser-assisted bremsstrahlung we are interested in the following potential

V (r) = −Ze
2

r
− F0z cos(ωt+ ϕ0) (5)

where the first term is due to the Coulomb field of the nucleus, and the second due to the

external laser field with the linear polarization along the z axis. Generally the incident

beam makes some angle with the z axis, but in the present paper we limit ourselves by the

case when the incident velocity is parallel to the polarization of the laser field. Then the

cylindrical symmetry of the problem is preserved, the conserved z component of angular

momentum is 0, and the motion is planar. Fig. 1 presents a schematic view of a classical

trajectory of an electron which is undergoing spontaneous bremsstrahlung in the potential

given by Eq. (5)

We will concentrate on the case when the electron initially has a relatively low velocity

of about 0.1 a.u. at the distance from the center of few hundred Bohr. Then, depending on

the initial phase ϕ0, field strength F0 and ac field frequency ω, the electron can get close

to the Coulomb center, or be reflected from the interaction region. In the former case the

radiation will be efficient, in the latter, it is negligible. If the ponderomotive energy

Ep =
F 2

0

4mω2

equals a few a.u. the electron speed in the interaction region at the distance of a few Bohr

from the Coulomb center, can reach 2-3 a.u. Therefore we will discuss first major features

of bremsstrahlung in this velocity range. Since these velocities are small compared to the

speed of light, c = 137 a.u., relativistic effects can be safely neglected.
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FIG. 1: A schematic for a classical trajectory of an electron undergoing spontaneous

bremsstrahlung. The electron radiates a photon with frequency Ω as it is being accelerated by

the Coulomb and laser fields.

III. BREMSSTRAHLUNG IN THE COULOMB FIELD

A. Comparison of classical and quantum approaches

In case F0 = 0 the analytical solution is known in both classical and quantum theories.

From now on we will use atomic units and assume that the nucleus is infinitely heavy. Then

in the classical theory, ([32], Eq. (70,18))

P (b,Ω) =
πZ2Ω

6c3E2

{[
H

(1)′

iµ (iµε)
]2
− ε2 − 1

ε2

[
H

(1)
iµ (iµε)

]2}
(6)

where E = v2
0/2 is the initial electron kinetic energy, µ = ZΩ/v3

0, and ε is the eccentricity

of the hyperbolic orbit

ε2 = 1 +
v4

0b
2

Z2
,

H(1)
p (x) is the Hankel’s function, and prime means the derivative with respect to its argu-

ment.

The total cross section per unit frequency ([32], Eq. (70,19)) is

S(Ω) =
4π2Z3

3c3v5
0

|H(1)
iµ (iµ)|H(1)′

iµ (iµ). (7)

For calculations it is convenient to express the Hankel function and its derivative through

the real modified Bessel function of the third kind Kiµ(x)

H
(1)
iµ (iµε) =

2

πi
eπµ/2Kiµ(µε)

5



H
(1)′

iµ (iµε) = − 2

π
eπµ/2K ′iµ(µε)

At large µ corresponding to large frequencies calculation of Kiµ(µε) by either power series

or asymptotic series becomes impossible, and we use uniform Airy function approximation

discussed in Appendix A.

The quantum cross section is given by the equation ([33], Eq. (92,15))

S(Ω) =
64π2Z2

3c3Ω

v

v0(v0 − v)2

1

(1− e−2πν)(e2πν0 − 1)

(
− d

dξ
|F (ξ)|2

)

where v is determined from the conservation of energy

v2
0 = v2 + 2Ω,

ν0 and ν are the Coulomb parameters for the initial and final state, ν0 = Z/v0, ν = Z/v,

and F (ξ) is the hypergeometric function

F (ξ) = F (iν, iν0, 1, ξ), ξ = − 4v0v

(v0 − v)2
.

As apparent from the above equations, the important deficiency of the classical treatment

is in the neglect of the electron energy loss due to radiation. This should become a concern

when the electron incident energy E0 = v2
0/2 is comparable to the energy h̄Ω of the radiated

photon. Moreover, it seems first that for Ω > E0/h̄ radiation is simply not possible, and for

small incident electron velocities of about 0.1 a.u. the range of Ω is limited to infrared and

microwaves. However, two important points relax these restrictions. First, the quantum

bremsstrahlung does not really have the well-defined high-frequency cut-off because of the

possibility of the further loss of electron energy due to capture into Rydberg states [33].

Indeed, the quantum cross section is finite at Ω = E0/h̄. In Fig. 2 we present comparison of

classical and quantum bremsstrahlung cross sections in the Coulomb field for two electron

velocities. Although at v0 = 2 a.u. the formal cut-off frequency is Ω = 2 a.u., the quantum

cross section remains finite at this frequency. Moreover, we see that classical and quantum

cross sections agree very well even for velocities corresponding to a relatively low Coulomb

parameter ν0 = Z/v0. (The classical limit corresponds to large ν0).

Second, and more important, when the ac field is added, the electron, when approaching

the Coulomb center, might have the kinetic energy which is much higher than its initial

kinetic energy if the ponderomotive energy Ep is high. In what follows we choose an illus-

trative case with ponderomotive energy about 3 a.u. In case of a favorable phase ϕ0, the
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FIG. 2: The bremsstrahlung cross section in the Coulomb field (Z=1) without the ac field for two

electron velocities. For each velocity the solid (blue) curve represents the classical result, and the

dash-dotted (red) curve, the quantum result.

electron kinetic energy at a distance of a few a.u. from the Coulomb center typically reaches

2Ep, corresponding to velocity of about 3.5 a.u. For this velocity the classical treatment,

as follows from Fig. 2, is reasonably accurate. Second, at this velocity electron is allowed

to emit photons with energies of up to about 6 a.u. Although the classical theory does

not produce the rigorous cut-off frequency, it will be safe to assume that electron can emit

photons with energies up to 3 a.u.

We conclude that even for small incident velocities the bremsstrahlung process can gen-

erate high-frequency UV radiation in case of favorable initial conditions and high enough

ponderomotive energy, and the quantum effects play a minor role in this case. This agrees

with the remarkable classical-quantum correspondence for the motion in the Coulomb po-

tential. In particularly the Rutherford scattering cross section is the same in both theories.

B. Calculation of electron trajectories in the Coulomb field

The accuracy of numerical methods for calculation of classical trajectories can be verified

in the case F0 = 0. Consider the Coulomb scattering in the zx plane. The equations for a

hyperbolic trajectory are

z = a(ε− cosh ξ), x = b sinh ξ, t =
a

v0

(ε sinh ξ − ξ)
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where a = Ze2/v2
0 is the semimajor axis, and we use a(ε2 − 1)1/2 = b.

At t→ −∞ the trajectory approaches asymptotically the straight line which makes angle

α with the z axis defined as

tanα =
b

a
.

In numerical calculations the velocity of the incident electron is parallel to the z axis. There-

fore we perform the rotation by the angle α.

z′ = z cosα + x sinα, x′ = −z sinα + x cosα

or

z′ =
1

ε

(
z +

b

a
x

)
, x′ =

1

ε

(
− b
a
z + x

)
so that at t→ −∞ z′ → −∞, x′ → −b.

Above equations can be compared with numerical calculations. The results of applica-

tions of numerical algorithms of the Runge-Kutta type exhibit strong instabilities due to

the Coulomb singularities. It is well known that instabilities occur because these methods

generally do not conserve energy and do not satisfy the canonical transformation require-

ment. Although this problem can be resolved by using the symplectic algorithms [34, 35],

we found the method based on the extended Hamiltonian and canonical transformation of

the time coordinate is more efficient for hyperbolic trajectories, see Appendix B.

To avoid numerical difficulties, many classical and quantum calculations of strong-field

ionization and high-order harmonic generation use the soft-Coulomb potential [36–38] which

is finite at the origin. We stress that in the bremsstrahlung problem the full account of the

Coulomb interaction, including the short distances, is necessary, since the most of radiation

occurs at small distances.

IV. BREMSSTRAHLUNG IN THE AC FIELD

For calculation of Fourier transform of Cartesian components of acceleration, we use

alternately acceleration, velocity, and the length form, depending on the distance from the

Coulomb center. Details are presented in Appendix C.

In Fig. 3 we present P (b,Ω) with addition of the ac field with parameters F0 = 0.05338

a.u. (intensity I = 100 TW/cm2), ω = 0.0147 a.u. (wavelength λ = 3.1 µm), ϕ0 = 0. Inte-

gration always starts with z0 = −300 a.u. where the Coulomb field can be safely neglected.
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FIG. 3: (a) P (b,Ω) as a function of the impact parameter b for the case, Z = 1, v0 = 0.1 a.u.

F0 = 0.05338 a.u., ω = 0.0147 a.u., and Ω = 0.2 a.u. Red dashed curve: pure Coulomb case for

v0 = 3.56 a.u.. (b) The same as in panel (a) except Ω = 1.0 a.u.

In this situation averaging of results over z0 is equivalent to averaging over the phase ϕ0 [7].

To compare this probability with the probability of the field-free bremsstrahlung, we have

chosen the electron velocity v = 3.56 a.u. (kinetic energy 6.35 a.u.) corresponding to a typ-

ical velocity of electron in the ac field with the ponderomotive energy Ep = F 2
0 /4ω

2 = 3.30

a.u.

Two striking differences with the pure Coulomb case are immediately noticeable. First,

in the laser-assisted case P (b,Ω) exhibits very sharp quasiperiodic structures. By expanding

the b scale, as shown in Fig. 4, we can see that the structure is a fractal as was observed

before for the deflection angle as a function of the impact parameter b [27, 28] for b below

the quivering length l = F0/ω
2. This fractal structure is caused by chaotic scattering which

was demonstrated by investigation of deflection angle as a function of b for several stationary

problems [39–41]. In our case l = 247 a.u., therefore the condition b < l [27] is satisfied in

the whole range of b where P (b,Ω) is non-negligible.

Second, the range of impact parameters b contributing to the total cross section is much

larger than in the pure Coulomb case. Both features can be explained by the behavior of

trajectories in the combined laser and Coulomb fields.

In Fig. 5 we present two trajectories for impact parameter b = 47.60 and 51.55 a.u. The
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FIG. 4: (a) The same as in Fig. 3b but on an expanded b scale. (b) The b scale is expanded

further.
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FIG. 5: Electron trajectories for two impact parameters, b = 47.60 (solid curve) and 51.55 a.u.

(dotted curve).

first corresponds to a large probability P = 0.14 × 10−4 a.u. and the second to a small

probability P = 0.42 × 10−8 a.u. Both trajectories undergo Coulomb focusing. However,

whereas the first trajectory approaches very close to the Coulomb center (minimum distance
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FIG. 6: P (b,Ω) as a function of the impact parameter b for the case, Z = 1, v = 0.1 a.u.

F0 = 0.05338 a.u. (I = 100 TW/cm2), ω = 0.1 a.u., and Ω = 0.2 a.u. (upper curve) and 1.0 a.u.

(lower curve)

0.0164 a.u.), the second trajectory misses the center (the closest approach is 9.24 a.u.) and

does not exhibit a large acceleration, therefore contributing very little to the radiation.

Therefore the spikes in P as a function of b correspond to the hard-collision trajectories.

Apparently the hard-collision events depend randomly on the impact parameter b and lead

to the fractal structure.

However, two certain features can be noticed. First, in intermediate range of impact

parameters the spikes exhibit a quasiperiodic structure. Second, due to the initial nonzero

velocity in the z direction, trajectories drift in this direction leading to the disappearance

of spikes and the effective cut-off in b. For the given choice of the parameters this occurs at

about 140 a.u.

To give a rough analytical estimate for the cut-off in b, consider the drift of the electron

in the direction perpendicular to the electric field with the starting position x = b, z = 0.

Neglecting z as compared to x during the drift, we obtain for the drift velocity vx

vx =
[
2Z

(
1

x
− 1

b

)]1/2

.
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Integrating the equation
dx

dt
= vx(x)

we obtain the expression for the time during which the electron reaches the Coulomb center

t = π

(
b3

8Z

)1/2

During this time the center of the trajectory in the z direction covers the distance

z0 = v0t = πv0

(
b3

8Z

)1/2

.

In order to obtain a hard collision, this distance should be smaller than the oscillating

amplitude in the z direction F0/ω
2. As a result, we obtain for the impact parameter cut-off

b < (8Z)1/3
(

F0

πv0ω2

)2/3

.

This estimate works well when the quivering amplitude is large compared to the impact

parameter. For example in case F0 = 0.05338, ω = 0.0147, b < 170 a.u. which agrees very

well with data presented in Fig. 3.

According to this estimate, with the growth of ω the cut-off impact parameter should

decrease as ω−4/3. In Fig. 6 we show P (b) for ω = 0.1 a.u. (λ = 456 nm), Ω = 0.2 and

1.0 a.u. The reduction of the impact parameter cut-off value is qualitatively confirmed by

the figure, although it is not as drastic as predicted by the ω−4/3 dependence. Since the

quivering length in this case is 5.34 a.u., the above estimate is not working as well. Another

apparent features in this case are that the spike structure is not as regular, and in the

range of impact parameters where P is substantial, it is larger than in the case ω = 0.0147.

Another interesting feature is that the fractal structure of P (b) dependence extends well

beyond the quivering length l. Apparently the fractal structure in the present problem is a

more general feature than suggested in [27].

To investigate the role of the constant phase shift ϕ0, consider the z-component of the

electron velocity in the absence of the Coulomb interaction

vz = v0 −
F0

ω
sinϕ0 +

F0

ω
sin(ωt+ ϕ0).

To obtain Coulomb focusing, we need a relatively small averaged velocity

v̄z = v0 −
F0

ω
sinϕ0
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FIG. 7: Total bremsstrahlung cross section per unit frequency, Eq. (4), for F0 = 0.0538, Ω = 0.2

a.u. as a function of phase ϕ0 for two values of the laser frequency.

For the case of field parameters F0 = 0.05338, ω = 0.0147 presented in Fig. 3, this occurs in

two narrow ranges of ϕ0 close to 0 and π. For all other phases the electron simply does not

get close to the Coulomb center, and the radiation is weak. This is demonstrated in Fig. 7

for two values of laser frequencies corresponding to v0ω/F0 = 0.0275 and 0.1873 a.u. This

figure also demonstrates the chaotic structure in the dependence of P on the other initial

parameter, ϕ0.

We conclude that the average over ϕ0 strongly reduces the cross section for larger value

of the quiver velocity F0/ω = 3.63 a.u., but not as strongly for a smaller F0/ω = 0.534

a.u. In Fig. 8 we compare the bremsstrahlung cross section for ϕ0 = 0 with the averaged

cross section for the first case. Although the averaging decreases the result by an order

of magnitude, the bremsstrahlung process is still much more efficient than in the F0 = 0

case. To show this, we have calculated the field-free bremsstrahlung cross section for electron

velocity 3.56 a.u. (kinetic energy 6.35 a.u.), the same as chosen for plotting field-free P (b,Ω)

in Fig. 3. The figure shows that the field-free cross section is about two orders of magnitude

lower than the averaged cross section for the laser-assisted process.

To expand the Coulomb focusing to a larger range of ϕ0, the quiver velocity should be

made comparable to v0. This can be achieved by reducing F0 or increasing frequency. To
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FIG. 8: Total bremsstrahlung cross section per unit frequency, Eq. (4), for ϕ0 = 0 and averaged

over ϕ0. The field-free cross section is given for velocity v0 = 3.56 a.u.

demonstrate this, we choose ω = 0.05696 (λ = 800 nm) and F0 = 0.0056 a.u. (I = 1.1

TW/cm2). For these field parameters, however, the ponderomotive energy is small, Ep =

2.4 × 10−3 a.u., therefore, with the initial electron velocity v0 = 0.1 a.u., only infrared

photons (with the wavelength about 5 µm or longer) will be emitted. Instead of the high-

order harmonic generation, we obtain frequencies that are lower than those we are starting

with. To increase the frequency range, we need to increase the initial velocity to a few a.u.,

but then the laser-assisted bremsstrahlung would become indistinguishable from the field-

free bremsstrahlung. Nevertheless, we will investigate the case of low v0 and low Ω since it

is closely connected to the interesting problem of chaos in ionization of Rydberg atoms by

microwave and far infrared radiations.

With these field parameters, in a certain range of impact parameters within the chaotic

regime, we found unstable trajectories which become trapped by the Coulomb field. To

demonstrate this, in Fig. 9 we present the electron distance from the Coulomb center as a

function of time for several impact parameters.

As follows from this figure, the capture event randomly depends on b and can occur for

small b, as well as for large b. Trajectories for these two cases are shown in Fig. 10. Similar

pictures were obtained by Wiesenfeld [28]. For the bremsstrahlung problem, the important
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quantity is the closest approach where the most radiation occurs. To demonstrate the

relevant fractal structure, we plot in Fig. 11 the distance as a function of time in the

vicinity of b = 27.75 a.u. with the successive enlargement of the b scale.

The fractal structure of the radiation probability as a function of b leads to computational

difficulties in calculation of the total bremsstrahlung cross section. Another difficulty is of

the physical origin. Some of the orbits within the chaotic region remain trapped for a long

time, sometimes probably forever corresponding to the invariant tori found by Leopold and

Percival [29] (trajectories of class C1) in the classical ionization problem. In the classical

treatment, the electron in trapped orbits will radiate an infinite energy, even if the electron

energy loss due to radiation is incorporated in the equations of motion, and the cross section

will become infinite. It is apparent that the classical treatment fails at this point, and

quantum effects should be incorporated. Fortunately, however, for a typical calculation

covering an extended range of impact parameters b there are very few trajectories which are

trapped “forever”, and they can be simply neglected in calculation of the radiation cross

section. The error due to this omission is substantially smaller than the error caused by

the fractal structure of the dependencies of P on b and ϕ0. In Fig. 12 we present the

dependence of the radiation cross section on ϕ0. The result of averaging over ϕ0 depends

on the increment ∆ϕ0 used for representing dependence S(ϕ0). In Table I we present the

result of the average using the trapezoidal rule with various ∆ϕ0. This comparison allows

us to claim that the uncertainty in S due to the chaotic behavior of trajectories is about

0.4%

Finally, in Fig. 13 we present the bremsstrahlung cross section for ϕ0 = 0 and the

cross section averaged over ϕ0. A substantial enhancement of radiation as compared to the

F0 = 0 case is observed. This case contrasts with the large quivering length case presented

in Fig. 8 where the averaging over ϕ0 substantially cancels the enhancement effect due to

the Coulomb focusing.

V. LIMITATION OF THE MODEL AND QUANTUM EFFECTS

There are two important features which are not observed in the present calculations, both

related to the resonance effects. The first type of the resonance occurs when the frequency

of the emitted radiation Ω is equal to or close to sω where s is a positive integer. The
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TABLE I: Dependence of the averaged cross section on the increment ∆ϕ0

∆ϕ0 ω = 0.002 ω = 0.01

π/16 0.3476 0.1783

π/32 0.3499 0.1784

π/64 0.3498 0.1780

other type of resonance is related to a temporary capture of the electron by the ion with the

following ionization. In fact the second type includes the first type as well since the number

of absorbed photons before the capture k is related to the energy of the bound state ε and

the frequency of the emitted radiation as [16]

Ω = E0 − ε+ kω.

The total number of absorbed photons is k+m where m is the number of absorbed photons

after the capture.

Both effects were described in the past by quantum-mechanical methods [7–9, 12, 16].

Description of the first effect does not seem to be possible by the pure classical theory

since the dependence r(t) does not contain higher harmonics with frequencies sω. Quantal

description which takes into account electron-laser interaction in higher orders is essential

in this case. It is interesting, however, that the stimulated bremsstrahlung which is the

emission of s photons of frequency ω can be described semiclassically [42] by treating elec-

tron motion classically but the electromagnetic field quantum-mechanically. This suggests

that the classical-trajectory approach used in the present paper can be modified to treat

resonances of the first type. Resonances of the second type can be obtained in the classical

ionization problem [43, 44] when the process starts with the stationary orbit. In the scatter-

ing problem the temporary capture does occur in classical theory. However, the motion in

quasistable orbits occurs usually for a few impact parameters, therefore the sharp enhance-

ments observed in P (b,Ω) do not show up in the S(Ω) dependence. Nevertheless it is useful

to discuss classical-quantum-mechanical correspondence for the resonant scattering.

The quantum-mechanical description of the resonant scattering [16] in the case of

Coulomb potential is particularly challenging because of the large number of Rydberg states.

It was assumed [16] that the capture occurs only in the ground state of the hydrogen atom
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because the field-free radiative recombination cross section is higher for this state. How-

ever, the presence of the ac field may radically change this situation. In fact the classical

quasistable quasiperiodic orbits in which capture occurs, according to the correspondence

principle, represent a superposition of these Rydberg states. The problem with the classical

treatment is that it might result in an infinite radiation in this case, if the orbit is not

ionized classically. There are two quantum effects responsible for the finite radiation prob-

ability. One is the stimulated and spontaneous emission leading to electron transition to a

lower quantum state, typically to the atomic ground state. The other is the multiphoton

or tunneling ionization resulting in electron escape from the orbit. Our simulations have

shown that typically electron is captured either into a high-lying orbit which ionizes quickly

classically (trajectory of class C3 according to Leopold and Percival [29]), or in a lower orbit

with the energy roughly corresponding to that of the n = 2 or n = 3 states. The latter, as

a rule, is an invariant torus, and often never ionizes within the classical mechanics domain

[29]. Its decay should be described quantum-mechanically. The lifetime of the corresponding

n = 2 quantum state with respect to the spontaneous emission to the ground state (6.6×107

a.u.) is too long compared to our typical time scale, and the stimulated emission can be ne-

glected in nonresonant case, that is if sω, s = 1, 2, ... is not close to the transition frequency,

0.375 a.u. Therefore the major contribution to the decay of the intermediate state is due

to the multiphoton or tunneling ionization. Our typical field parameters correspond to the

multiphoton regime (large Keldysh parameter), and the ionization rate can be estimated by

the semiclassical perturbation theory [45], since our intensity is relatively small. At I = 1.1

TW/cm2, λ = 800 nm ionization of the n = 2 manifold is dominated by the three-photon

absorption with the rate 0.6× 10−4 a.u. Although the corresponding lifetime is compatible

with our time scale, the problem remains with quasistable trajectories for which the electron

passes the nucleus many times during the time interval of 104 a.u. In the classical theory

the radiation probability is strongly increased due to these passages whereas the quantum

state corresponding to the quasistable orbit does not radiate at all (or radiates on a much

longer time scale due to the spontaneous emission). Fortunately, as was discussed above, for

each particular value of the initial phase ϕ0 there are very few impact parameters leading

to quasistable trajectories. Therefore these cases are simply ignored when we integrate over

the impact parameter to obtain the cross section. The chaotic behavior of the trajectories,

discussed above, in large extent smears out the uncertainty created by this approach.
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One more deficiency of the classical approach is that it does not provide the high-frequency

cut-off, the cross section is simply monotonically decreasing with Ω. However, from the

discussion above, it can be estimated as v2
0/2+2Ep since this is the maximum kinetic energy

of the electron at the distance of a few Bohr from the Coulomb center. More accurate

quantum-mechanical treatment [16] suggests that the cut-off frequency is greater than the

above estimate by F · v0/ω, or Fv0/ω in case of initial velocity parallel to the ac field.

However, for the cases discussed in the present paper this is an insignificant extension. For

example, if I = 100 TW/cm2, ω = 0.0147 a.u. this estimate extends the cut-off frequency

from 6.6 to 6.96 a.u.

VI. CONCLUSION

We conclude that the Coulomb focusing, leading to a substantial extension of the impact

parameters contributing to the bremsstrahlung cross section, results in a substantial increase

(by one to two orders of magnitude) of the cross section as compared to the pure Coulomb

case. Due to chaotic scattering in the combined Coulomb and ac fields, the emission prob-

ability P (b,Ω,ϕ0) as a function of b and the constant phase of the laser field ϕ0 exhibits

fractal structures. However, these structures are smeared out when the cross section is in-

tegrated over b and averaged over ϕ0. The average over ϕ0 is completely equivalent to the

average over the starting point of trajectory [7]. Although the accuracy of the classical cal-

culations is good, they do not include the resonance regime studied quantum-mechanically

in [7–9, 16]. These studies were concentrating on the regime whereby the initial electron

kinetic energy is high compared to the ponderomotive energy Ep. In contrast, the present

paper is focused on the case of small initial kinetic energy but relatively high Ep when the

Coulomb focusing effects become important.

To address the question about the connection with previous quantum-mechanical cal-

culations, we note that nonperturbative quantal treatments were applied so far only to

short-range potentials. Therefore previous quantal calculations and the present one comple-

ment each other rather than present two approaches to the same problem. Refs. [16,17], for

example, concentrate on the short-range case when quantum-mechanical effects are impor-

tant. Although those calculations include some effects of the Coulomb potential, they are

mostly pertinent to quantities responsible for the resonant capture, for example, radiative
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recombination cross section. In contrast, we are mostly concerned with the effect of the

Coulomb interaction in the continuum, particularly the Coulomb focusing effect, which can

be described classically, as follows, for example, from Refs. [18-25]. It would be unphysical

to apply our approach to a short-range potential, since quantum effects play a crucial role

in scattering of low-energy electrons by a short-range potential.

As has been demonstrated, agreement between classical and quantum approach to the

bremsstrahlung in the Coulomb field is good for electron velocities considered in the present

paper. Relativistic effects and interference of classical trajectories might be nonnegligible,

but we believe that we have demonstrated that the nonrelativistic classical approach captures

the major features of the problem.

The bremsstrahlung process discussed in the present paper can be of interest for the

purpose of generation of UV photons. Whereas the standard HHG process, starting from the

bound state, has an advantage of a more focused electron current, the continuum-continuum

transition might be efficient due to a broad range of impact parameters contributing to the

radiation. The efficiency can be increased further by increasing the ion charge Z. Another

possibility is changing the geometry by choosing a nonzero angle between the direction of the

incident beam and the laser polarization. Changing the polarization from linear to circular

and elliptical can be also explored.
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Appendix A: Modified Bessel function of the third kind

Consider the function Kiµ(x) where µ and x are real. It satisfies the equation

x2y
′′

+ xy′ − (x2 − µ2)y = 0

By substitution

y = x−1/2f(x)
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we obtain

f
′′

+

(
−1 +

µ2 + 1/4

x2

)
f = 0.

We treat this equation in the spirit of the quasiclassical approximation. Since the x interval

is between 0 and ∞, we introduce the Langer correction. Then, what can be called the

square of the momentum, is

k2(x) = −1 +
µ2

x2
.

For x > µ (classically forbidden region) the action, or the phase integral, is

S(x) =
∫ x

µ

(
1− µ2

(x′)2

)1/2

dx′ = (x2 − µ2)1/2 − µ arccos
µ

x
.

Using the uniform Airy function approximation [46], we obtain

Kiµ(x) =
c

(x2 − µ2)1/4

(
3

2
S
)1/6

Ai

[(
3

2
S
)2/3

]
. (A1)

The constant can be determined from the asymptotic expression for Kiµ(x)

Kiµ(x) ∼
(
π

2x

)1/2

e−x.

Using now the asymptotic of the Airy function for x� µ,

S(x) ∼ x− µπ/2,
(

3

2
S
)1/6

Ai

[(
3

2
S
)2/3

]
∼ 1

2π1/2
e−S

we obtain

c = 21/2πe−πµ/2.

For x < µ (classically allowed region) we obtain the same expression (A1) except that now

S(x) =
∫ µ

x

(
−1 +

µ2

(x′)2

)1/2

dx′ = −(µ2 − x2)1/2 + µ ln
µ+ (µ2 − x2)1/2

x

and the argument of the Airy function is negative.

In summary

Kiµ(x) =
π21/2

|µ2 − x2|1/4
e−πµ/2

(
3

2
S
)1/6

Ai

[
±
(

3

2
S
)2/3

]

where the sign of the argument of Airy function is + for x > µ and − for x < µ.

This expression works even at the turning point, when x = µ. Suppose, for example, that

x approaches µ from below so that µ− x is a small number. Then

S(x) =
∫ µ

x

(µ2 − y2)1/2

y
dy =

∫ µ−x

0

[µ2 − (µ− η)2]1/2

µ− η
dη.
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In the limit x→ µ we obtain

S(x) ≈ (2µ)1/2

µ

∫ µ−x

0
η1/2dη =

2

3

(
2

µ

)1/2

(µ− x)3/2

and (
3
2
S
)1/6

(µ2 − x2)1/4
= 2−1/6µ−1/3.

Finally

Kiµ(µ) = π

(
2

µ

)1/3

e−πµ/2Ai(0) (A2)

where Ai(0) = 0.35502805

As an example, consider the cross section S(Ω) in the case of large frequency Ω when

µ� 1. Using Eq. (A2)

eπµ/2Kiµ(µ) = π

(
2

µ

)1/3

Ai(0)

and a similar equation for the derivative

eπµ/2K ′iµ(x) =
π21/2|µ2 − x2|1/4

x

(
3

2
S
)−1/6

Ai′
[
±
(

3

2
S
)2/3

]

eπµ/2K ′iµ(µ) = π

(
2

µ

)2/3

Ai′(0),

we obtain

eπµKiµ(ν)K ′iµ(µ) =
2π2

µ
Ai(0)Ai′(0) = − π

31/2µ

where we have used

Ai(0)Ai′(0) = − 1

2π
√

3
.

Finally

S(Ω) =
16πZ2

33/2(mv0)2c3Ω

meaning that the effective radiation ΩS(Ω) is independent of Ω at high Ω. This equation is

the same as in [32], Eq. (70.22) which was obtained there by other methods.

Appendix B: Regularized Coulomb trajectories

In cylindrical coordinates, consider the following Hamiltonian for the motion of the elec-

tron in Coulomb plus external electric field,

H(ρ, z, pρ, pz, t) =
1

2
[p2
ρ + p2

z] +
L2
z

2ρ2
− Ze2

√
ρ2 + z2

− F0z cos(ωt+ ϕ0), (B1)
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where Lz is the z−component of the electron’s angular momentum and Z is the charge of

the Coulomb center. The numerical solutions for the equations of motion near the Coulomb

center become highly unstable due to the singularity in the potential. In this appendix,

we will show how to remove this singularity from the Hamiltonian and obtain regularized

Coulomb trajectories based on the formalism of extended Hamiltonian.

1. Extended Hamiltonian

The ordinary Hamiltonian H can be extended to a new Hamiltonian Γ by introducing

time as a new mechanical variable [47]. The extended Hamiltonian Γ can be written as

Γ = H + pt, (B2)

where pt is the canonical momentum for time t. In the extended phase space, two additional

Hamilton’s equations are defined according to

dt

dτ
=
∂Γ

∂pt
= 1, (B3)

dpt
dτ

= −∂Γ

∂t
= −∂H

∂t
, (B4)

where τ now works as the independent variable. It can be readily shown that pt(t) = −H(t)

and for a time independent Hamiltonian, pt(t) = −E0, with E0 being the initial energy of

the system. Thus, Γ(τ = t) = 0.

2. Regularization of the extended Hamiltonian

For the purpose of regularization, we will introduce the semi-parabolic coordinates into

the extended Hamiltonian, according to [28]

χ =

√√
ρ2 + z2 + z, η =

√√
ρ2 + z2 − z, χ, η ≥ 0. (B5)

Now the extended Hamiltonian in semi-parabolic coordinates will read,

Γ(χ, η, t, pχ, pη, pt) =
1

2
(χ2 + η2)(p2

χ + p2
η) +

L2
z

2χ2η2
− 2Ze2

χ2 + η2
− 1

2
(χ2 − η2)F0 cos(ωt+ ϕ0) + pt

As the next step towards the regularization, the old extended Hamiltonian is transformed

to a new Hamiltonian K together with a time transformation. This is achieved via the
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following rule

K = g(χ, η)Γ, dt = g(χ, η)dT. (B6)

It can be shown that the canonical nature of the equations of motion is preserved in the new

Hamiltonian K [48]. For the Coulomb problem in semi-parabolic coordinates, the choice of

g(χ, η) = χ2 +η2 will eliminate the singularity at (ρ = 0, z = 0) from the Coulomb potential.

The transformed Hamiltonian K(χ, η, t, pχ, pη, pt) for the extended Hamiltonian Γ is given

by

K =
1

2
(p2
χ + p2

η) +
L2
z

2χ2
+
L2
z

2η2
+ (χ2 + η2)pt − 2Ze2 − 1

2
(χ4 − η4)F0 cos(ωt+ ϕ0). (B7)

Now, the Hamilton’s equations of motion for K are as follows (here we have assumed for

simplicity Lz = 0):

dt

dT
= χ2 + η2 (B8)

dpt
dT

= −1

2
[χ4 − η4]F0ω sin(ωt+ ϕ0) (B9)

d2χ

dT 2
= 2χ3F0 cos(ωt+ ϕ0)− 2χpt (B10)

d2η

dT 2
= −2η3F0 cos(ωt+ ϕ0)− 2ηpt (B11)

And the initial conditions at T = 0 are

t = t0, pt = −H(t0),
dχ0

dT
= η0ρ̇0 + χ0ż0,

dη0

dT
= χ0ρ̇0 − η0ż0,

where (ρ0, z0, t0) and (ρ̇0, ż0) are initial configuration and velocities in the (ρ, z, t) coordinates.

The numerical solutions of Eqs. (B8)-(B11) behave well near the Coulomb center. By

tabulating the solutions χ(T ), η(T ) and t(T ), the trajectory in (ρ, z, t) coordinates can be

numerically obtained.

Appendix C: Calculation of Fourier integrals

For calculation of Fourier transform of Cartesian components of acceleration, Eq. (1), we

use the grid points obtained from the regularized Coulomb trajectories method, Appendix
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B. Assuming that the values of a function f(t) is varying slowly between two successive grid

points t1, t2, we can approximate it by a linear function

f(t) = f0 + βt

where

β =
f2 − f1

t2 − t1
, f0 = f1 − βt1.

then ∫ t2

t1
f(t)eiΩtdt =

(
f0

iΩ
+

β

Ω2

)
(eiΩt2 − eiΩt1) +

β

iΩ
(t2e

iΩt2 − t1eiΩt1).

However, close to the nucleus the acceleration varies very rapidly and the linear approx-

imation is insufficient. In this case the integration of acceleration can be reduced to the

integration of velocity. Consider the time interval between t1 and t2 where acceleration

cannot be approximated by a linear function. Then∫ t2

t1

dv

dt
eiΩtdt = v(t2)eiΩt2 − v(t1)eiΩt1 − iΩ

∫ t2

t1
v(t)eiΩtdt. (C1)

If necessary, this can be reduced further to integration of the coordinate∫ t2

t1

dv

dt
eiΩtdt = [v(t2)− iΩx(t2)]eiΩt2 − [v(t1)− iΩx(t1)]eiΩt1 − Ω2

∫ t2

t1
x(t)eiΩtdt. (C2)

Note, however, that for numerical calculations it is not convenient to reduce the whole

integration to the integral of velocity or coordinate (as is done in the analytically-solvable

Coulomb case [32]) because these quantities do not disappear at t → ±∞. Generally even

acceleration does not disappear in this limit because of the ac field. However, since∫ ∞
−∞

eiΩtF0 cos(ωt+ ϕ0)dt = πF0e
−iϕ0δ(Ω− ω)

this contribution can be dropped unless ω = Ω. In numerical calculations the contribution

of the ac field term should be included because it influences the integrals in Eqs. (C1) and

(C2). Therefore we subtract the following expression from the numerical result∫ tf

0
eiΩtF0 cos(ωt+ ϕ0)dt =

F0

2

[
eiϕ0

ei(Ω+ω)tf − 1

i(Ω + ω)
+ e−iϕ0

ei(Ω−ω)tf − 1

i(Ω− ω)

]

where we have assumed that the initial integration time is 0 and the final integration time

is tf .

Fig. 14 demonstrates the importance of the above correction, Eq. (C1). We present here

the probability per unit frequency P (b,Ω), Eq. (3), as a function of the impact parameter
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b for a pure Coulomb field. When we employ Eq. (C1) at the distance of 20 integration

points from the closest approach, we obtain perfect agreement with the exact result, Eq.

(6). Otherwise we observe a divergence at low impact parameters.
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FIG. 11: Electron distance from the Coulomb center as a function of time for several impact

parameters b given at the top of each panel (in a.u.). The field parameters are the same as in Fig.

9. Panels (a)-(c) shows the fractal structure as the step in b decreases.
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FIG. 13: The bremsstrahlung cross section S(Ω,ϕ0) for radiation of infrared photons in the range

λ = 4.56 to 22.8 µm.The field parameters are F0 = 0.0056 a.u. ω = 0.05696 a.u (λ = 0.8 µm.)

Field-free cross section is compared to the case ϕ0 = 0 and ϕ0-averaged cross section.
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FIG. 14: Probability of spontaneous emission per unit frequency as a function of the impact

parameter for the pure Coulomb case, Z = 1, v = 0.1 a.u. for frequencies Ω = 0.4 and 1.0 a.u.
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correction, Eq. (C1).
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