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An important physical process unique to neutral-ion systems is the charge-transfer (CT) reaction.
Here, we present measurements of and models for CT processes between co-trapped ultracold Ca
atoms and Yb ions under well-controlled conditions. The theoretical analysis suggests the existence
of three reaction mechanisms when lasers from a magneto-optical trap (MOT) and an additional
catalyst laser are present. We show that the near degeneracy of the excited Ca(1P1)+Yb+(2S)
and Ca+(2S)+Yb(3D2) asymptotic limits leads to large charge-transfer rate coefficients that can
be controlled by changing the frequency of the catalyst laser and the ion temperature. Our model
agrees with experimental rate-coefficient measurements between 50 mK and 1 K, with and without
the catalyst laser, using just a single free parameter.

I. INTRODUCTION

Over the last few decades the study of individual quan-
tum systems decoupled from external perturbations has
become a reality. Combining quantum-degenerate gases
of fermionic or bosonic atoms, held in electro-magnetic
traps with a wide range of geometries, with cooled and
trapped ions is an exciting and dynamic area in physics.
Cold and trapped atom-ion mixtures can be engineered
with a high level of control, detected state selectively,
and even constructed at the single-ion level. The major-
ity of experimental and theoretical research into charge-
transfer (CT) with ultracold atoms and ions has fo-
cused on their collisions when prepared in their elec-
tronic ground state [1–18]. Often, however, cold atom-
ion experiments involve holding the neutral atoms in a
magneto-optical trap (MOT), providing opportunities for
scattering of electronically-excited atoms with the co-
trapped ions. Although the first steps towards under-
standing these collisions have been reported [9, 19, 20],
theoretical details are still poorly understood.

Charge-transfer can only be realized through tran-
sitions between two or more potential energy surfaces
(PESs) that are characterized by electron transfer from
the neutral atom to the ion, i.e. A+ + B → A + B+.
In the conventional Born-Oppenheimer (BO) adiabatic
picture, such transitions occur due to non-adiabatic cou-
pling induced by the nuclear motion in the initial and
final electronic states [21]. Usually, this coupling occurs
in a small localized range of inter-particle separations
R, when electronic BO potentials of the same symmetry
have a so-called avoided crossing following the Wigner-
Witmer non-crossing rule.

When an avoided crossing between entrance and exit
BO potentials is broad like the cases for many heteronu-
clear atom-ion pairs in their electronic ground states, the
charge-transfer rate coefficients are very small, in most
cases of the order on 10−14 cm3/s or below [7, 18, 22, 23].
On the other hand, in a region where molecular struc-
ture is complex and potential curves are dense, there

is large probability of having narrower avoided crossings
that will lead to much higher charge-transfer rate coef-
ficients, sometimes approaching values of universal mod-
els [20, 24]. Our study provides clear evidence of such
a situation when a number of excited states with closely
lying potentials, populated through excitation laser, cou-
ple strongly via non-adiabatic couplings leading to signif-
icant charge-transfer reactions. Even though the atoms
in the MOT spend most of their time in the ground elec-
tronic state, the rate coefficients can still reach four or-
ders of magnitude higher than that of pure ground-state
CT reactions.

Here, we study collisions between Ca atoms in a MOT
and Yb+ ions in a co-located linear-quadrupole ion trap.
In this system, CT reactions involve excited 4s4p 1P Ca
atoms and ground-state Yb+ ions. Experimental and
theoretical CT rate coefficients are obtained and com-
pared for temperatures 0.01 K < T < 1 K.

We use a coupled-channels model of atom-ion scatter-
ing based on ground- and excited-state diabatic poten-
tials, their couplings, and the infinite-order sudden ap-
proximation. The Hamiltonian is the sum of a kinetic
and a potential energy operator. The relative kinetic
energy operator is inversely proportional to the reduced
mass of the dimer based on the masses of the atom and
ion (rather than the masses of the nuclei) and captures
the dominant non-adiabatic corrections. In principle, the
coordinate depends on which of the two atoms is ionized,
either Ca+Yb+ or Ca++Yb. These correspond to the
separations R1 and R2 between the centers of mass of
the neutral atom and the ion, respectively. Similarly, the
reduced masses of the two collisional complexes, µ1 and
µ2, are different. However, the differences in R1 and R2

and µ1 and µ2 are small, on the order of the electron-to-
reduced-dimer mass ratio (∼ 1/2000). Therefore, given
other approximations within our coupled-channels calcu-
lations, we chose R and µ as those of the entrance channel
Ca+Yb+ throughout the paper.

At each R, the separation between the center-of-mass
of Ca and Yb+, the potential energy operator can be
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written in a matrix representation with dimensions given
by the number of channels or states (defined in detail
in the next two sections). The diabatic potentials corre-
spond to the diagonal matrix elements and couplings are
off diagonal matrix elements. Special attention has been
given to the long-range induction and dispersion interac-
tions as the dissociation limits of excited-state potentials
are in close proximity and non-negligible couplings be-
tween the potentials are present at relatively large sepa-
rations.

We incorporate spontaneous emission from excited-
state potentials and include survival probabilities as an
important element in our model. To further elucidate
the role of excited states in CT an additional catalyst
laser with a frequency that is red detuned from that of
the MOT laser is applied. As we will show, the effect of
spontaneous emission on the reaction path is then sup-
pressed.

We will show that up to three mechanisms or pathways
contribute to the reaction outcome. Only the third path-
way involves the additional catalyst laser. In the first, an
atom in the excited state collides and reacts with the ion.
In the second, a ground-state atom in the presence of the
long-range interaction from a ground-state ion is reso-
nantly excited by absorption of a photon from the MOT
lasers and then reacts with the ion. Finally, for the third
pathway a colliding ground-state atom-ion pair absorbs
a photon from the tunable catalyst laser and then reacts.
In all pathways the long-range interaction potentials be-
tween the cold atom and ion together with spontaneous
emission from the electronically-excited atom-ion com-
plex determine the rate coefficients.

II. MODELING CHARGE-TRANSFER
PATHWAYS

A. Molecular complex and pathways

We start our analysis with the potential energy
landscape for the excited-state CT reaction. Fig-
ure 1(a) shows the relevant long-range diabatic |Ω| =
1/2, 3/2 and 5/2 potentials, derived from the mul-
tipole expansion of the molecular forces, dissociating
to the Ca(4s4p 1P1)+Yb+(6s 2S) limit as well as to
the nearly-degenerate Ca+(4s 2S)+Yb(5d6s 3D2) limit.
Their asymptotic splitting is only ∆ = hc × 37.7 cm−1,
where h is the Planck constant and c is the speed of
light in vacuum. Moreover, the molecular electronic
state of each diabatic potential is a unique element of
the separation-independent “atomic basis” of products
of the relevant atomic or ionic Ca and Yb states. The
projection of the total electron angular momentum on
the internuclear axis, Ω, is a good quantum number.
Charge-transfer only occurs between states with the same
Ω, which for our system occurs for |Ω| = 1/2 potentials
near the two crossings at R ≈ 40a0, where a0 is the
Bohr radius. Spin-orbit couplings are included which

are essential for the exit channels dissociating to the
Ca+(4s 2S)+Yb(5d6s 3D2) limit. Details of our calcula-
tion of the potentials and, in particular, the evaluation
of the strength of the coupling near the crossing points
can be found below as well as in Appendix A.

In a MOT, Ca is present in both its ground 4s2 1S0 and
excited 4s4p 1P1 state. We then define charge-transfer
pathway I as

Ca(1P1) + Yb+(2S1/2)→ Ca+(2S1/2) + Yb(3D2) ,

where the initial state is indicated by the arrow in
Fig. 1(a) and pathway II as

Ca(1S0)+Yb+(2S1/2)+~ωMOT → Ca+(2S1/2)+Yb(3D2) .

This second pathway is assisted or dressed by a MOT
photon with energy ~ωMOT and the |Ω| = 1/2 Ca(4s4p
1P1)+Yb+(6s 2S1/2) state is populated as an intermedi-

ate state, which then has CT to Ca++Yb as in the first
pathway. Here, ~ is the reduced Planck constant. The
MOT photon is detuned one natural linewidth, Γ, to the
red of the Ca 1S0 →1 P1 transition leading to an avoided
crossing at separations of more than a thousand Bohr
radii. The repulsive excited |Ω| = 1/2 and 3/2 channels
are also populated due to the laser coupling, but do not
lead to significant CT reaction.

The third (III) pathway

Ca(1S0) + Yb+(2S1/2) + ~ωC → Ca+(2S1/2) + Yb(3D2)

is also photon assisted. In this case a tunable catalyst
laser with frequency ωC is introduced with the goal to
enhance the charge-transfer rate coefficient. The dressed
ground-state potential is shown in Fig. 1(c) and crosses
the same intermediate potential as in the second path-
way. Here, the diabatic crossing and coupling occur at
separation R of 200a0 to 500a0. The laser is detuned
to the red of the Ca 1S0 →1 P1 transition by tens to
hundreds of Γ.

B. Model ingredients

Conventionally one would compute CT rate coefficients
for scattering from the potentials shown in Fig. 1(a), their
Ω-conserving electronic couplings, as well as Ω-changing
(and conserving) couplings induced by the relative atom-
ion rotational interaction using a coupled-channels (CC)
model. For the relevant collision energies E = kB×1 mK
to kB × 10 K and the long-range 1/R3 charge-quaduple
nature of the potentials, however, contributions to the
rate coefficients from a large number of total molecular

angular momenta ~J need to be included. Here, kB is the

Boltzmann constant and ~J is the vector sum of the atom-
ion total angular momenta and the relative mechanical

orbital angular momentum ~l, which is conserved in the
absence of radiation.

To keep the computational effort tractable we employ
the infinite-order sudden approximation (IOSA) [25–28],
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FIG. 1. a) Long-range diabatic potential energy curves
in the atomic basis as functions of atom-ion separa-
tion R on a logarithmic scale. Blue and orange
curves dissociate to the Ca(4s4p 1P1)+ Yb+(6s 2S1/2) and

Ca+(4s 2S1/2)+Yb(5d6s 3D2) limits, respectively. Curves are
labeled by |Ω| and the zero of energy is located at the top-
most dissociation limit. The two crossings between poten-
tials relevant for charge-transfer are indicated with circu-
lar markers. b) Photon-dressed potential energies as func-
tions of R for pathway II as defined in the text. The
black curve is the dressed-state potential dissociating to
Ca(4s2 1S0)+Yb+(6s 2S1/2) plus one MOT photon. The
blue curve is for the attractive potential dissociating to the
Ca(4s4p 1P1)+Yb+(6s 2S1/2) limit. c) Photon-dressed poten-
tial energy curves as functions of R for pathway III. The
dark red curve is the dressed-state potential dissociating to
Ca(4s2 1S0)+Yb+(6s 2S1/2) plus one catalyst photon. The
blue curve is as in panel b). Black arrows in panels a), b),
and c) indicate the entrance channel for pathway I, II, and
III, respectively. The zero of energy in panels b) and c) is
located at the dressed ground-state dissociation limit.

in which Coriolis couplings between different Ω states are
neglected and, for a given J , uses a centrifugal potential
~2[L(L + 1)]/(2µR2) for each diagonal matrix element
of the potential matrix. Here the integer-valued L is an
“average” orbital angular momentum quantum number
and µ is the reduced mass. We choose L = J − 1/2

justified by the observation that for our entrance channels
the sum of the atom-ion total angular momenta is 1/2
(in units of ~). The resulting potential matrix is block

diagonal in Ω, J , and the projection M of ~J along the
space-fixed laboratory axis. In fact, the matrix and thus
rate coefficients are independent of M . Consequently, we
only need to solve for a small set of coupled Schrödinger
or coupled-channels (CC) equations for each J with M =
0 and Ω = 1/2 using standard methods [29].

Moreover, collisions on the four degenerate repulsive
|Ω| = 1/2 and 3/2 Ca(4s4p 1P1)+Yb+(6s 2S1/2) poten-
tials will not lead to significant charge-transfer as the
reactants for our small relative collision energies are un-
likely to tunnel through the ≈ hc × 20 cm−1 barrier of
these repulsive potentials. Nevertheless, these potentials
will play an important role in the rate coefficient as pop-
ulation in the corresponding states is inevitable.

C. Diabatic coupling

Coupling between the diabatic channels is a second in-
gredient in setting up our CC model. Its strength is most
important where potentials cross. Figure 1 shows three
such points, but only two, located at Rc = 40.7a0 and
42.3a0, respectively, lead to charge-transfer. Their cou-
pling, in the diabatic basis which stipulates that the elec-
tronic wavefunctions barely change with R, comes from
the overlap between the wavefunctions of the transfer-
ring electron on either the Ca nucleus or the Yb nucleus.
Such interaction is Coulombic in nature and conserves
the body-fixed projection Ω. Hence, only crossings be-
tween |Ω| = 1/2 potentials are relevant. The equivalent
model in the adiabatic picture would include an avoided
crossing between BO potentials and a non-adiabatic cou-
pling between them that mostly comes from the d/dR
term in the Hamiltonian acting on the overlapping adia-
batic electronic wavefunctions.

We construct a diabatic two-channel model [21] near
each |Ω| = 1/2 crossing. Since the two diabatic basis
functions have different electronic character, the corre-
sponding non-adiabatic coupling in the adiabatic pic-
ture is localized and well approximated by a Lorentzian
centered at the crossing point [30]. After transform-
ing into the diabatic picture, we can write V12(R) =
[V11(R)−V22(R)] tan[2ϑ(R)]/2, where V11(R) and V22(R)
are the two diabatic potentials and mixing angle ϑ(R) =
arctan[(Rc − R)/R0]/2 + π/4 with crossing location
Rc and coupling width R0. (With these definitions
V12(Rc) ∝ R0.) The coupling width R0 is taken to be the
same for our two crossings and will be adjusted to lead to
theoretical rate coefficients that agree with experimental
values in cases where only the first two pathways are in-
volved. The resulting coupling width is used later for all
three pathways.
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D. Laser-induced coupling

The MOT and catalyst lasers couple the initial photon-
dressed Ca(4s2 1S0) + Yb+(6s 2S1/2) +~ωMOT,C and ex-

cited Ca(4s4p 1P1) + Yb+(6s 2S1/2) channels. Using a
dressed-state approach [31] and in the IOSA we find cou-

pling matrix element −(1/
√

3) d
√
I/(2cε0) in SI units

between the initial Ω = ±1/2 channel and the attractive
Ω = ±1/2 excited channel with the same J .

Here, I is the MOT or catalyst laser intensity, ε0 is the
electric constant, dipole moment d =

√
S/3 = 2.85ea0,

using line strength S of the 4s2 1S0 to 4s4p 1P1 transition
of Ca [32], and e is the electron charge. The factor 1/

√
3

accounts for the polarization of the laser projected onto
the body-fixed coordinate frame. Direct laser-induced
couplings between the ground Ω = ±1/2 and the attrac-
tive excited ∓1/2 channels do not occur. This is because
in the body-fixed frame, the attractive excited channels
has ΩCa = 0 and the transition preserves the projection
quantum number of Yb due to the fact that the transi-
tion dipole moment in the long-range (where the transi-
tion most likely to happen) originates from the excitation
of outer electrons of the Ca atom. The lasers also couple
the ground-state channel to repulsive excited |Ω| = 1/2
and 3/2 channels. The repulsive channels, however, do
not significantly contribute to the charge-transfer process
and their laser-induced coupling matrix elements are not
required.

Laser-induced couplings persist to R → ∞ and for
pathways II and III we must diagonalize the asymptotic
potential matrix and use its eigenvectors and the average
partial wave quantum number L to define a dressed scat-
tering basis. For pathway I, where light does not dress
states, the original atomic basis states can be used. For
each of the three pathways we can then solve the coupled-
channels equation for |Ω| = 1/2 and each L (or equiva-
lently J) and compute the charge-transfer cross section
σi(E,L) for i=I, II, and III and relative kinetic energy E
of the corresponding initial state. The multiplicity factor
of (2L+ 1) is included in obtaining the cross section.

E. Spontaneous decay

Charge-transfer involving the excited Ca(4s4p1P1)
state is affected by spontaneous emission [33–35], which
limits the probability of colliding particles to remain in
the excited channel and reach the diabatic crossing re-
gion near R ≈ 40a0, where CT is most likely to occur.
For our first pathway, Ca(4s4p 1P1) and Yb+(6s2S1/2)
start at very large R. For the second and third pathways
the excitation to the intermediate Ca(4s4p1P1)+Yb+(6s
2S1/2) state is resonant at separations where the energy
of the |Ω| = 1/2 ground-state potential plus the energy
of a laser photon equals the attractive |Ω| = 1/2 of the
intermediate channel as shown in Figs. 1(b) and (c). This
occurs at R ≈ 1200a0 for pathway II and between 200a0

and 500a0 for pathway III depending on detuning. The

classical time for the atom and ion to be pulled together
to separations near Rc by the attractive excited poten-
tials at ultra-cold collision energies can approach or ex-
ceed the τ = 4.59 ns Ca(4s4p 1P1) lifetime.

We account for this spontaneous decay by computing
the survival probability pi(E,L) to reach crossing points
Rc for initial collision energy E and average partial wave
L for each pathway i [36]. In essence, the probability
is based on computing the collision time along classi-
cal trajectories on the attractive excited Ca(4s4p 1P1)
+ Yb+(6s 2S1/2) |Ω| = 1/2 potential. More details are
given in Appendix A. The cross section obtained from
the CC calculation and the survival probability are com-
bined to define total CT rate coefficient

ki(E) = fi

∞∑
L=0

pi(E,L) vrelσi(E,L) (1)

for i=I, II, and III, where vrel =
√

2E/µ is the absolute
value of the relative velocity ~vrel. The factor fi = η/3,
1−η, and 1−η for i=I, II, and III, respectively. For path-
way I it accounts for the fact that in a MOT a fraction η
of the Ca atoms is in the exited state and that only the
two (degenerate) attractive |Ω| = 1/2 Ca(4s4p 1P1) +
Yb+(6s 2S1/2) channels out of the six excited states lead
to charge-transfer. For pathway II and III fi is simply the
fraction of Ca atoms in the ground state as both initial
states, Ω = ±1/2, equally contribute to the CT rate co-
efficient. We use the MOT parameter in Ref. [37], which
leads to η = 0.092, in our calculations. As the ion tem-
perature Ti is much larger than that of the atoms, the rel-
ative velocity distribution in the center-of-mass frame can
be described by the three-dimensional Gaussian probabil-
ity distribution P (~vrel) ∝ exp(−µv2

rel/[2kBTeff ]) with ef-
fective temperature Teff = mCaTi/M , M = mCa + mYb,
and Ca and Yb+ masses mCa and mYb, respectively. We
use this distribution to thermally average the charge-
transfer rate coefficient.

III. RESULTS

A. Pathway I and II: MOT-induced charge-transfer

Figure 2 compares our total charge-transfer rate coef-
ficients as measured in the MOT with the thermalized
theoretical 〈kI(E) + kII(E)〉 for several values of R0 as a
function of effective temperature Teff between 0.01 K and
2 K. The data shows a significant decrease of the rate co-
efficient due to the suppression from spontaneous decays
as the temperature lowers by over an order of magnitude.
Additional analysis shows that about 40% of the theoreti-
cal rate coefficient is due to the first pathway. The figure
also shows that at a fixed temperature the rate coeffi-
cient increases monotonically when the coupling width
R0 increases from 0.35a0 to 0.39a0. The theoretical val-
ues agree well with the experimental data. The coupling
strength V12(R = Rc) for these R0 at the crossing points
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FIG. 2. Total thermalized charge-transfer rate coefficient in
a Ca MOT as a function of effective temperature Teff in the
center-of-mass frame. Filled black circles with one-standard
deviation error bars are our experimental data points. Solid
lines are theoretical predictions with coupling width R0 rang-
ing from 0.35a0 to 0.39a0. The MOT laser has an intensity
of 78 mW/cm2 and is red detuned from the Ca 1S0 to 1P1

transition by one natural linewidth, such that 9.2% of the Ca
atoms are in the 1P1 state.

is approximately hc× 0.5 cm−1. In support of the theo-
retical model, we obtained comparable coupling strength
near Rc and thus comparable R0 with a Heitler-London
type of estimate [38], discussed in detail in Appendix A,
using the overlap integral of Hartree-Fock atomic orbitals
and the electron-nuclei Coulomb interaction potential.

B. Pathway III: Photoassociation-enhanced
charge-transfer

In the experiment described in Ref. [37] the addition of
a tunable laser with intensity IC and (angular) frequency
ωC enhances the charge-transfer processes as the third
pathway is added. This laser is detuned to the red of the
Ca 1S0 to 1P1 transition by tens to hundreds of natural
linewidths. In fact, the laser excites rovibrational levels
of the attractive |Ω| = 1/2 Ca(4s4p 1P1)+Yb+(6s 2S1/2)
potential. Since the MOT cooling lasers in the experi-
ment are always on, the third pathway coexists with the
other two.

In this paper we want to highlight and focus on the
effect of the catalyst laser. The relevant diabatic poten-
tials are shown in Figs. 1(a) and (c). The potential ma-
trix including the R-independent laser-induced couplings
is diagonalized at large R for each L. Its eigenvectors are
the appropriate scattering basis states under the IOSA
with which to calculate scattering amplitudes and cross
sections. By solving the CC equations, we obtain the par-
tial cross sections for the third pathway, σIII(E,L, ωpa).
The survival probability pIII(E,L, ωC) is larger than for
the second pathway. This is because the crossing be-
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FIG. 3. Charge-transfer rate coefficients from the catalyst
laser and assignment of catalyst resonances as functions of
the detuning from the Ca 1S0 to 1P1 transition for collision
energy E = kB × 1 mK, laser intensity of IC = 5 W/cm2,
and coupling width R0 = 0.37a0. The upper panel of subfig-
ure a) shows rate coefficients for detunings between −6 GHz
and −0.5 GHz, while the upper panel of subfigure b) shows a
blowup near −2 GHz in order to better distinguish the differ-
ent curves. The dashed blue line corresponds to the total rate
coefficient from pathway III, while the various colored solid
lines represent contributions from average partial-wave chan-
nels L = 0 to 12. The lower panel in each subfigure shows
the rovibrational Ω = 1/2 bound states dissociating to the
Ca(4s4p 1P1)+Yb+(6s 2S1/2) threshold. The lowest thirteen
rotational states for each vibrational state are shown and the
colors of the drop lines mimic the colors of the L contribu-
tions in the upper panels. The y-axis of the lower panels is
the expectation value of ~L of the bound states.
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tween the dressed entrance channel and the intermediate
excited channel occurs at R ∼ 200 − 500 a0, depending
on ωC, which is much smaller than for the second path-
way. Thus, the reactants are quickly accelerated along
the excited attractive 1/R3 potential and need much less
time to reach Rc to react.

The addition of pathway III via the catalyst laser en-
hances the charge-transfer reaction by adding kIII(E) to
the total rate coefficient ktot(E), while leaving kI(E) and
kII(E) unchanged to good approximation. Similarly, we
find thermally-averaged rate coefficients ktot(T ). The
theoretical ktot(T ) based on R0 = 0.37(2)a0 is compared
with our experimental rate coefficients as a function of
catalyst laser detuning and intensity in Fig. 4 of the ac-
companying Letter [37]. The agreement is satisfactory
and we conclude that we can predict charge-transfer rate
coefficients with and without catalyst laser as well as its
temperature dependence with a single consistent value
for R0.

In the remainder of this section we present a study
of charge-transfer in the presence of the catalyst laser
in more detail. Figure 3 shows an example of kIII(E)
as a function of the laser detuning at collision energy
E = kB × 1 mK. It is evident that the charge-transfer
reaction occurs in a resonant fashion with a larger num-
ber of narrow peaks. The resonance locations cluster and
correspond to rotational progressions of the vibrational
series of the attractive |Ω| = 1/2 potential dissociating to
the Ca(4s4p 1P1)+Yb+(6s 2S1/2) threshold. The height
of the resonant features decrease with increasing (nega-
tive) detuning as the overlap of resonances decrease due
to increasing ro-vibrational spacing in the excited poten-
tial.

Scattering from thirteen partial waves L contribute sig-
nificantly to the charge-transfer as the 1 mK collision
energy roughly corresponds to the height of the centrifu-
gal barrier for the L = 12 channel. To illustrate this,
we compare the locations of the resonances with the ro-
vibrational bound states of the attractive diabatic po-
tential dissociating to the Ca(4s4p 1P1)+Yb+(6s 2S1/2)
threshold in Fig. 3. The figure also shows the expected
value of L for each resonance. In Fig. 3(a), the locations
of the onset of each group of resonances closely follow the
binding energies of ro-vibrational series.

Figure 3(b) shows a blowup of the spectrum for three
vibrational levels in Fig. 3(a). We see that the location of
rotational states L does not directly follow the location of
the corresponding resonances. The shifts are due to inter-
ferences with the charge-transferred Ca+(2S)+Yb(3D2)
exit channels induced by the non-perturbative short-
range couplings.

Figure 4 shows an example total charge-transfer rate
coefficient ktot(E) as a function of collision energy at
four detunings, δ, of the catalyst laser. The laser in-
tensity is two orders of magnitude larger than IMOT. For
δ = −0.3 GHz, ktot(E) has a smooth behavior, inter-
laced with weak narrow features, and a maximum near
E = kB×0.1 K. For larger detunings sharp features dom-

2

4

2

4

2

4

10-3 10-2 10-1 100
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2
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k to
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0-1
0  c

m
3 /s
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-0.3 GHz

-1.5 GHz
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-6.0 GHz

(a)

(b)

(c)

(d)

FIG. 4. Total charge-transfer rate coefficients in the presence
of the catalyst laser as functions of collision energy E. In
panels a), b), c), and d) the photo-association laser is detuned
0.3 GHz, 1.5 GHz, 3.0 GHz, and 6.0 GHz to the red of Ca
1S0 to 1P1 transition, respectively. In each panel the vertical
dashed green line represents a collision energy equal to the
energy-equivalent of the detuning of the catalyst laser. The
vertical dotted brown line is located at E = hΓ = kB × 1.7
mK, both the energy equivalent of the MOT laser detuning
and the natural linewidth of the Ca 1P1 state. We assume
catalyst laser intensity IC = 6 W/cm2 and coupling width
R0 = 0.39a0.

inate, while above a critical collision energy the rate coef-
ficient rapidly approaches zero. For all detunings strong
resonances are visible for E < kB × 2 mK.

The behavior for large catalyst laser detunings can be
understood from comparison of the collision energy with
hδ, the dashed green lines in Fig. 4. For E < hδ path-
way III contributes resonances to the total rate coefficient
due to the coupling between the entrance channel contin-
uum and the bound states of the attractive intermediate
|Ω| = 1/2 potential. When the collision energy exceeds
hδ, the entrance continuum is only coupled to scatter-
ing states of the intermediate channel. Their coupling
matrix elements are much smaller than those between
continuum-bound states and the rate coefficient becomes
much smaller.

For δ = −0.3 GHz, the total rate coefficient does not
turn off at hδ thanks to pathway III as a consequence
of the fact that for small detunings the energy spacing
between excitable vibrational levels is smaller and res-
onances begin to overlap. In fact, helped by the rela-
tively high-powered catalyst laser, interference between
the broadened resonances becomes important. Hence,
the resonances behave almost like a continuum and the
rate coefficient is a smooth function of E both for en-
ergies smaller and larger than hδ. The same effect is
not obvious for the MOT laser pathway due to the much
smaller laser intensity that couples the continuum and
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the bound states much weakly and does not broaden the
resonances nearly as much despite the smaller detuning.

Finally, pathway II contributes resonances to the to-
tal rate coefficient for collision energies comparable or
smaller than kB × 2 mK, roughly corresponding to the
detuning of the MOT laser hΓ = kB × 1.7 mK labeled
by the brown dashed-lines. These resonances correspond
to bound states with extremely-long-range outer turning
points in the intermediate |Ω| = 1/2 potential.

Currently, our experiments cannot resolve the reso-
nances illustrated in Fig. 3 and 4 due to the relatively
broad velocity distribution of the ions. Once better en-
ergy selectivity can be achieved and resonances resolved
experimentally, the ground and excited potentials can be
theoretically adjusted such that detunings of resonances
from specific excited vibrational manifolds as well as the
corresponding line strength pattern agree with the ex-
perimental data. The energy dependence shown in Fig. 4
could be observed by accelerating clouds of ultracold neu-
tral Ca atoms at the ion cloud of similar temperature[39].

IV. CONCLUSION

In conclusion, we have presented experimental mea-
surements and results from a close-coupling model of
photon-induced charge-transfer in Ca +Yb+ that yielded
insight into three contributing reaction mechanisms. The
model relies on a dense manifold of electronically-excited
long-range induction and dipolar potentials, their non-
adiabatic coupling, and survival probabilities against
spontaneous emission of the excited Ca atom. It leads
to a high charge-transfer rate coefficient of the order of
10−11 - 10−10 cm3/s in agreement with the experimental
results [37].

We have shown that the near degeneracy of the ex-
cited Ca(1P1)+Yb+(2S) and Ca+(2S)+Yb(3D2) asymp-
totic limits leads to large charge-transfer rate coefficients
that can be controlled by changing the frequency of the
catalyst laser. A coupled-channels model, using the long-
range interaction potentials of as well as the couplings
among these states, with just a single adjustable cou-
pling strength, R0, can reproduce all experimental data,
with and without the catalyst laser, as a function of tem-
perature. Our theoretical Heitler-London type estimate
of the coupling strength agrees with the fitted value.

We have also presented predictions for future experi-
ments on charge-transfer in Ca and Yb+ collisions. We
have shown that a complex resonance spectrum can be
observed as the catalyst laser is scanned over just ∆ = 6
GHz to the red of the Ca(1S0) to Ca(1P1) line. Simi-
larly, we predict that changing the collision energy be-
tween the atoms and ions can significantly change the
charge-transfer rate coefficient in a resonant fashion.
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Appendix A: Long-range interaction potentials

We now describe in more detail the long-range diabatic
interaction potentials between excited Ca and Yb+ cou-
pled to Ca+ and excited Yb as shown in Fig. 1(a). The
interaction between an excited atom and an ion has two
contributions. The first arises from the interaction be-
tween the ion charge and the quadrupole moment of the
excited atom and has an anisotropic C3/R

3 dependence

on atom-ion separation ~R, where C3 depends on the ori-

entation of ~R. The second term is an anisotropic C4/R
4

interaction, where C4 also depends on the orientation

of ~R. It originates in second-order perturbation theory
from the interaction between the charge and the induced
dipole moment of the neutral atom. Consequently, both
C3 and C4 only depend on the properties of the neutral
atom.

Our diabatic potentials are the diagonal matrix el-
ements of the molecular interaction in the atomic
basis in the body-fixed frame |qajaΩa, qbjbΩb〉 =
|qa, jaΩa〉|qb, jbΩb〉 labeled by charge state qs = 0,+1 and
body-fixed projection quantum number Ωs of the angular
momentum js of the atom or ion along the internuclear
axis, where s = a and b for Ca and Yb, respectively. This
uniquely labels the atomic states relevant for our sys-
tem. Electronic molecular interactions always conserve
Ω = Ωa + Ωb.

Crucially, for our system both contributions to the
long-range potential are diagonal in this body-fixed ba-
sis [31]. The matrix elements of C3, expressed in two
equivalent ways, are

C3,jsΩs = q
〈jsΩs|js2Ωs0〉
〈jsjs|js2js0〉

Q

2

= q(−1)js−Ωs

(
js 2 js
−Ωs 0 Ωs

)
〈js||Q2||js〉 ,

where the quantum numbers jsΩs always describe the
state of the neutral atom, q = +1 for the corre-
sponding ion, (:::) denotes a Wigner 3-j symbol, and
〈j1m1|j2j3m2m3〉 is a Clebsch-Gordan coefficient. Fi-
nally, Q is the quadrupole moment defined in Refs. [40,
41], while 〈js||Q2||js〉 is the reduced matrix element used
by Refs. [41, 42]. For 1P1 Ca state the quadrupole mo-
ment is positive with |Q| = 11.04ea2

0 [40]. The sign con-
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TABLE I. The C3 and C4 coefficients of the attractive long-
range Ω = 1/2 diabatic potentials in atomic units and quan-
tum numbers for the corresponding Ca+Yb+ or Ca++Yb
channels. Channels are uniquely described by the charge qi,
atomic angular momenta ji, and its body-fixed projection Ωi

on the internuclear axis with i = a and b for Ca and Yb,
respectively. Potentials are degenerate for −Ω and Ω, where
Ω = Ωa + Ωb.

Ca/Ca+ Yb/Yb+

qa ja Ωa qb jb Ωb C3 C4

0 0 0 +1 1/2 1/2 0 −78.55

0 1 0 +1 1/2 1/2 −11.04 −176.74

+1 1/2 1/2 0 2 0 −3.39 −16.5

+1 1/2 −1/2 0 2 1 −1.70 −23.5

vention is derived from Ref. [43]. For the 3D2 state of
Yb, 〈js||Q2||js〉 = +14.2ea2

0 [42].
The diagonal matrix elements of the C4 coefficient

are [44]

C4,jsΩs
= −q

2

2

[
α0,js + α2,js

3Ω2
s − js(js + 1)

js(2js − 1)

]
,

where α0,js is the static scalar polarizability and α2,js

is the static tensor polarizability of the neutral atom in
state |0, jsΩs〉. For the Ca 1P1 state, α0,1 = 242.4a3

0 and
α2,1 = −55.3a3

0 [40]. For the Yb 3D2 state, α0,2 = 61a3
0

and α2,2 = 28a3
0 [42, 45].

Finally, the long-range interaction between a neutral S-
state atom and a S-state ion has an isotropic, attractive
C4/R

4 dependence on R . For Ca+Yb+ it is shown in
Figs.1(b) and (c) as the dressed state potential. The
C4 coefficient equals −α0,0/2, where α0,0 is the static
polarizability of the neutral atom. The C3 coefficient is
zero as S-state atoms have zero quadrupole moment.

Table I gives the relevant C3 and C4 coefficients as well
as lists the quantum numbers of the channels. A negative
sign indicates attractive interactions. At smaller separa-
tions (not shown in Fig. 1) each potential transitions to
a repulsive C12/R

12 potential.
Diabatic potentials with the same Ω cross and cou-

ple near Rc ≈ 40a0. As discussed in the main text, we
have opted to use model coupling function with cou-
pling width R0. The value of R0 is fitted to experi-
mental data and estimated to be between 0.35 and 0.39
a0. In support of our model and fitting result, we can
also estimate the diabatic coupling strength at R = Rc

based on a Heitler-London method. In atomic units,
we can write the coupling matrix element between the
attractive |Ω| = 1/2 Ca(4s4p 1P1)+ Yb+(6s 2S1/2) and

Ca+(4s 2S1/2)+Yb(5d6s 3D2) channels as

V12(R) ∼ 〈Ca(4p)| 1

rCa
+

1

rYb
|Yb(5d)〉 , (A1)

where |Ca(4p)〉 and |Yb(5d)〉 are the Ca 4p and Yb 5d
Hartree-Fock electronic orbitals, respectively, and the

electron coordinate for the two orbitals is ~rCa,Yb with re-
spect to the Ca and Yb nuclei, respectively. At R = 41a0,
the method yields V12,HL(R) ∼ hc × 0.27 cm−1 which
corresponds to the range of R0 = 0.37(2)a0 we obtained.

Appendix B: Survival probabilities

The evaluation of survival probabilities within the
IOSA framework on the attractive excited potential
Ve(R) of the |Ω| = 1/2 Ca(4s4p 1P1)+Yb+(6s 2S1/2)

channel due to spontaneous decay of the Ca 1P1 state
can be treated with rate equations for populations de-
rived from the optical Bloch equations [36, 46]. Here,
the atom pair decays back to the ground-state poten-
tial Vg(R) of the |Ω| = 1/2 Ca(4s2 1S0)+Yb+(6s 2S1/2)
channel. In a MOT we can assume that the coherence
between the Ca 1S0 and 1P1 states decays much faster
than those of the populations. Moreover, at our temper-
atures where a large number of relative orbital angular
momenta L contribute, the relative nuclear motion for
the purpose of estimating the survival probability can
be described by classical evolution R(t) on the poten-
tial Ue(R;L) = Ve(R) + ~2L(L + 1)/(2µR2) from the
excitation region at (very) large separation at t = 0 to
Rc ≈ 40a0, the separation where charge-transfer occurs.
At t = 0 the atom pair has relative kinetic energy E and
is moving towards smaller R.

Under these assumption we have for pathway I

dpe(t)

dt
= −Γpe(t)− Γ′(t) pe(t) +

1

3
Γ′(t) pg(t) (B1)

and pg(t) + 3pe(t) = 1, where pg(t) and pe(t) are the pop-
ulations in the ground- and excited-state channel, respec-
tively. Here, Γ is the natural linewidth of Ca(1P1), and

Γ′(t) = AΓ
γ3

∆E(t)2 + γ2
, (B2)

describes the stimulated absorption and emission rate of
MOT photons, where γ = Γ/2 and the time-dependent
∆E(t) = Ve(R(t))−Vg(R(t))−~ωMOT at separation R(t).
The last term on the right-hand side of Eq. B1 accounts
for processes where, after a spontaneous emission event,
the atom pair is again excited and participates in the
charge-transfer collision. The factor of one third in this
term accounts for the fact that only one third of the pho-
tons are able to excite the system back to the attractive
excited channels.

The constant AΓ is set such that the steady-state so-
lution of Eq. B1 for R→∞ reproduces the experimental
fraction of atom pairs in the |Ω| = 1/2 excited potential
Ve(R), i.e. pe|R→∞ = η/3, where η is the fraction of
Ca atoms in the 1P1 state. For the MOT parameters in
Ref. [37] ∆E → −Γ for R→∞ and η = 0.092.

In practice, we do not solve Eq. B1 directly but
rephrase the equation into one for separation R by not-
ing that dt = dR/v(R;E,L), where velocity v(R;E,L)
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satisfies µv2/2+Ue(R;L) = E for each R. The radial dif-
ferential equation can be integrated from very large R to
crossing point Rc to obtain survival probability pI(E,L)
for pathway I.

Our second pathway is also affected by spontaneous
decay of the excited channels. In this case the excitation
occurs near Rx ≈ 1200a0. The stimulated excitation and
decay are already included in the close-coupling calcula-
tions when the light coupling is included and the asymp-
totic basis functions diagonalized, thus do not need to
be included here. We then find the simpler differential
equation

dpe(t)

dt
= −Γpe(t) , (B3)

which is transformed into one for R and solved from R =
Rx with pe(Rx) = 1 to Rc assuming an initial kinetic
energy E and average partial wave L. The final value
at Rc defines the survival probability pII(E,L) for this
pathway. The differential equation for the third pathway
is the same as for pathway II, but now the excitation
separation is even smaller and we find that the pIII(E,L)
are larger than 0.1 for the detunings considered here.
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