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We report measurements of the electric dipole matrix elements of the 133Cs 6s 2S1/2 → 7p 2P1/2

and 6s 2S1/2 → 7p 2P3/2 transitions. Each of these determinations is based on direct, precise com-

parisons of the absorption coefficients between two absorption lines. For the 〈6s 2S1/2||r||7p 2P3/2〉
matrix element, we measure the ratio of the absorption coefficient on this line with that of the
D1 transition, 6s 2S1/2 → 6p 2P1/2. The matrix element of the D1 line has been determined with

high precision previously by many groups. For the 〈6s 2S1/2||r||7p 2P1/2〉 matrix element, we mea-

sure the ratio of the absorption coefficient on this line with that of the 6s 2S1/2 → 7p 2P3/2 tran-

sition. Our results for these matrix elements are 〈6s 2S1/2||r||7p 2P3/2〉 = 0.57417 (57) a0 and

〈6s 2S1/2||r||7p 2P1/2〉 = 0.27810 (45) a0. These measurements have implications for the interpreta-
tion of parity nonconservation in atoms.

I. INTRODUCTION

Precise determinations of radial matrix elements of
electric dipole (E1) transitions are essential for advanc-
ing the study of parity-nonconserving (PNC) weak-force-
induced interactions in atoms. These matrix elements are
important for testing calculations of the PNC transition
amplitudes EPNC [1–4], as well as for determining the
scalar and vector transition polarizabilities [1, 5–8]. For
PNC studies based on the 6s 2S1/2 → 7s 2S1/2 transition
in cesium, for example, the most essential E1 matrix el-
ements are 〈ms 2S1/2||r||np 2PJ〉, where m,n = 6 or 7,
and J = 1/2 or 3/2. Over the years, most of these quan-
tities have been measured [9–25] to a precision of 0.15%
or better. The least precise moments, prior to the present
work, were 〈6s 2S1/2||r||7p 2PJ〉. Disagreement between
three recent experimental results [8, 20, 24] at the ∼ 1%
level motivated us to re-examine these transitions. In
this paper, we report new measurements of these ma-
trix elements in 133Cs to a precision of 0.10% and 0.16%,
completing the required set of precise determinations of
E1 dipole matrix elements between the lowest ms 2S1/2

and np 2PJ states.

In order to determine the reduced matrix element for
the 6s 2S1/2 → 7p 2P3/2 transition at λ = 455.7 nm, we
carry out a set of measurements in which we compare
the absorption coefficient on this line to that of the ‘ref-
erence’ D1 line at 894.6 nm. See the simplified energy
level diagram in Fig. 1(a). The matrix element for the
latter is well measured [9–19], with an impressive preci-
sion of 0.035%. The ratio of absorption coefficients for
these two lines therefore allows us to determine the re-
duced matrix element 〈6s 2S1/2||r||7p 2P3/2〉 precisely.
A similar comparison to the D1 line strength for the

6s 2S1/2 → 7p 2P1/2 transition at λ = 459.4 nm, how-
ever, is less fruitful. This is a weaker absorption line, and
the difference between the absorption strength at 459 nm
and at 894 nm is too great. Therefore, we determine the
matrix element at 459 nm through comparison with the
456 nm line strength, which now serves as the reference.
We show the relevant transitions for this measurement in
Fig. 1(b).

In each case, we use a pair of cw tunable single-mode
diode lasers to measure and compare the absorption
strengths of two lines in a cesium vapor cell. We di-

FIG. 1. Energy level diagrams of atomic cesium, showing
the states relevant to these measurements. In (a), atoms are
excited from the 6s 2S1/2 ground state to the 6p 2P1/2 (λ =

894 nm) or the 7p 2P3/2 (λ = 456 nm) excited states, allowing
for a comparison of the absorption coefficients of these two
lines. In (b), we compare the absorption coefficients for the
6s 2S1/2 → 7p 2P1/2 line at 459 nm to that of the 6s 2S1/2 →
7p 2P3/2 line at 456 nm. Wavelengths shown in the figure are
vacuum wavelengths.
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rect the two laser beams through a cesium vapor cell
along overlapping beam paths. Then we block one laser
beam to allow only the other to pass through the cell,
scan the laser frequency through the resonance frequency,
and record the absorption lineshape for this line. We
then block the first laser, and record the absorption line-
shape for the second. We alternate measurements be-
tween lasers several times in quick succession.

These measurements differ from a previous measure-
ment [20] from our group in several important regards.
In that measurement, we used a single blue diode laser
which we could tune to either the 6s 2S1/2 → 7p 2P1/2

transition at 459 nm or the 6s 2S1/2 → 7p 2P3/2 transi-
tion at 456 nm, and compared the absorption coefficient
of each of these lines directly to the absorption coeffi-
cient of the 894 nm line. The precision of the measure-
ment for the 459 nm line suffered from the large differ-
ence in absorption strengths, as described previously. In
the present measurement, we avoid this difficulty by us-
ing two blue diode lasers, and determining the ratio of
absorption coefficients for these two lines directly. Two
additional improvements that we have made are: (1) In
our previous measurement, we fit the absorption curves
assuming a Gaussian Doppler-broadened lineshape. We
have discovered that, to attain a level of precision of less
than 1%, one must use a proper Voigt profile, a convolu-
tion of the homogeneous natural linewidth and the inho-
mogeneous Doppler-broadened linewidth, when the nat-
ural linewidths and/or Doppler widths of the two tran-
sitions differ from one another. (2) For strongly absorb-
ing lines, such as the D1 line at the higher cell densities,
the scan speed of the laser frequency becomes important.
Under these strong absorption conditions, the medium
changes quickly from fully transmitting to fully absorb-
ing, and then back to fully transmitting again, as we tune
the laser through the resonance. If the rise and fall times
of the photodetector are too slow, then one cannot ob-
tain good fits to the data, and the measurement of the
absorption coefficient is not reliable. We have corrected
each of these issues in the current measurements.

II. THEORY

When a low-intensity, narrow-band laser beam is inci-
dent upon a cell containing an absorbing atomic medium,
the laser power transmitted through the cell can be writ-
ten simply as

P (ω) = P0 exp {−2α(ω)`cell}, (1)

where P0 is the transmitted power in the absence of
any absorption by the medium, α(ω) is the frequency-
dependent electric field attenuation coefficient, and `cell
is the cell length. The attenuation coefficient α(ω) for
linearly-polarized light by a Doppler-broadened atomic
gas in terms of the reduced E1 matrix elements 〈J ′||~r||J〉,
as a sum over the various hyperfine components of the

TABLE I. Numerical values of the weights qJ,F→J′,F ′ for each
of the hyperfine components of the 6s 2S1/2 → np 2Pj tran-
sitions, as given in Eq. (3).

F → F ′ 6s 2S1/2 → np 2P1/2 6s 2S1/2 → np 2P3/2

4→ 3′ 7/8 7/48

4→ 4′ 5/8 7/16

4→ 5′ − 11/12

3→ 2′ − 5/12

3→ 3′ 7/24 7/16

3→ 4′ 7/8 5/16

states, is given by Eq. (14) of Ref. [10] as

α(ω) =
2π2nαfsω

(2I + 1) (2J + 1)
|〈J ′||~r||J〉|2 (2)

×
∑
F ′,

∑
F

qJ,F→J′,F ′V (ω),

when the transition frequencies ω are independent of m
and m′. J , I, and F are quantum numbers for the total
electronic, nuclear spin, and total angular momentum,
respectively, and m for the projection of F on the z axis.
We use unprimed (primed) notation to indicate ground
(excited) state quantities. n is the number density of the
cesium atoms in the beam path, αfs is the fine structure
constant, and qJ,F→J′,F ′ are weight factors for the differ-
ent hyperfine components due to the angular momentum
of the states,

qJ,F→J′,F ′ = (−1)2(I+J) (2F ′ + 1) (2F + 1)

×
∑
m,m′

(
F ′ 1 F
−m′ 0 m

)2{
J ′ F ′ I
F J 1

}2

. (3)

The arrays in the parentheses and curly brackets are the
Wigner 3j (for linear polarization) and 6j symbols, re-
spectively. We list the values of qJ,F→J′,F ′ for the tran-
sitions relevant to this work in Table I.
V (ω) is the Voigt lineshape function,

V (ω) =

√
ln 2

π3

1

∆ωD

∫ ∞
−∞

Γ′e−4 ln 2(ωD/∆ωD)2dωD

[ω − ωD − ωF→F ′ ]
2

+ Γ′2/4
,

(4)
the convolution of the Lorentzian homogeneous line-
shape function (of width Γ′) and the Gaussian distri-
bution of width ∆ωD. ωF→F ′ is resonant frequency
of the F → F ′ hyperfine component of the transition.
This lineshape function is normalized such that its in-
tegral across the resonance is unity. In this expres-
sion, ωD is the Doppler shift, equal to ωv/c, where v is
the atomic velocity, and ∆ωD is the Doppler full-width-
at-half-maximum (FWHM) of the transition, equal to

ω
√

8kBT ln 2/(Mc2) . Thus, precise measurements of
the absorption in a cell would allow us to determine the
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radial matrix element for that individual transition, pro-
vided we also measure the vapor density in the cell, and
the length of the cell.

Instead, by alternating transmission measurements be-
tween two spectral lines, we can determine the ratio of
absorption strengths, and eliminate the need for precise
determination of the cell length and vapor density. For
example, to determine 〈6s1/2||r||7p3/2〉 (we abbreviate

the state notation |m` 2LJ〉 using only the quantum num-
bers of the single active electron |m`j〉), we measure the
absorption through the cell on the 6s 2S1/2 → 6p 2P1/2

line at 894 nm, which serves as the reference, and the
absorption on the 6s 2S1/2 → 7p 2P3/2 line at 456 nm.
The ratio of matrix elements is then determined as

R1 ≡
〈6s1/2||r||6p1/2〉
〈6s1/2||r||7p3/2〉

=

√
α894

3→3′(ω0)/(7/24)

α456
F→F ′(ω0)/qF→F ′

. (5)

αλF→F ′(ω0) is the attenuation coefficient at line center at
wavelength λ for the F → F ′ component, and we have
abbreviated the qF→F ′ factor, omitting the J and J ′ for
brevity from Eq. (3). This factor αλF→F ′(ω0)/qF→F ′ is
the same for each of the different hyperfine components
of the transition, so we define a scaled attenuation term

Υλ =
αλF→F ′(ω0)`cell

qF→F ′
(6)

for the line. The term Υλ is the attenuation of the ab-
sorbing vapor on the line at wavelength λ, defined in such
a way as to make Υλ equivalent for each of the hyperfine
components of the transition. In terms of Υ then, the
ratio R1 is

R1 =
〈6s1/2||r||6p1/2〉
〈6s1/2||r||7p3/2〉

=

√
Υ894

Υ456
. (7)

Similarly, we define the ratio

R2 ≡
〈6s1/2||r||7p3/2〉
〈6s1/2||r||7p1/2〉

=

√
Υ456

Υ459
, (8)

which we measure by comparing the attenuation coef-
ficients of the 6s 2S1/2 → 7p 2P3/2 line at 456 nm,
which serves as the reference, and the absorption on the
6s 2S1/2 → 7p 2P1/2 line at 459 nm. We describe our
measurement of R2 in Sec. IV.

There is an important subtlety regarding the role of
the transition frequency ω on the attenuation coefficient.
The frequency ω appears in the numerator of the ex-
pression for the attenuation coefficient, Eq. (2). For a
Doppler broadened medium, the Doppler width ∆ωD,
which is proportional to ω, appears in the denominator
of Eq. (4). Therefore, for a Doppler-broadened transi-
tion, these frequency factors cancel, and the attenuation
coefficients in Eq. (7) are independent of the optical fre-
quencies of the two transitions. Careful attention, how-
ever, must be paid to the proper normalization of the
Voigt function.

FIG. 2. Experimental setup for the two measurements. The
455.7 nm laser stays the same for both measurement. The
894.6 nm or 459.4 nm laser changes depending on the mea-
surement, R1 or R2, respectively, being done. Abbrevia-
tions in this figure are: (AOM1,2) acousto-optic modulators;
(ECDL) external cavity diode laser; (PD1-3) photodiodes;
(FP1,2) Fabry-Pérot cavities; and (W) wedged windows. FP2
(in the dashed box) is used only for the measurement of R1.

III. MEASUREMENT OF R1

We first describe the measurement of the ratio of tran-
sition moments R1, as defined in Eq. (7).

We show the experimental setup in Fig. 2. We use
two home-made external cavity diode lasers (ECDL) in
Littrow configurations, one at λ = 894 nm, the other at
456 nm. The 894 nm laser produces ∼10 mW of out-
put power, while the 456 nm laser produces ∼20 mW.
By ramping the laser diode current and the piezoelectric
transducer (PZT) voltage concurrently, we are able to
achieve mode-hop free scans of 7− 10 GHz, significantly
greater than the widths of the spectra.

We align the laser beams so that they overlap one an-
other in the cesium vapor cell, a sealed glass cell of inside
length `cell = 29.9034 (44) cm fitted with flat windows.
Control of the density of cesium in the cell is achieved
using a cold finger enclosed within a copper block, whose
temperature we control and stabilize to between −8 and
+18◦C with a thermo-electric cooler and feed-back cir-
cuit. We use Kapton heaters to keep the vapor cell above
room temperature at ∼ 25◦C, and enclose the cell in an
aluminum shell inside an insulating styrofoam container
to help maintain a stable and uniform body tempera-
ture. To detect the power of the laser beam transmitted
through the vapor cell, we use a linear silicon photodi-
ode, labeled PD3 in Fig. 2. The photodiode current is
amplified using a transimpedance amplifier with a gain
of 5× 107 V/A, designed for high-gain, low-noise opera-
tion. This amplifier is followed by a second op amp with
a gain of 10. We chose a slow scan rate (∼4 GHz/s) and
wide amplifier bandwidth (60 kHz), to allow fast rise-
and fall-times of the signal.

To improve the precision of the measurements, we sta-
bilize the optical power delivered to the cell. For this
purpose, we diffract a fraction of each individual beam
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FIG. 3. Examples of absorption spectra recorded at a cold finger temperature of −2◦C. These figures show the photodiode
signal versus laser frequency as we scan (a) the 456 nm laser through F = 4→ F ′ = 3′, 4′, 5′ components (not resolved) of the
6s 2S1/2 → 7p 2P3/2 transition, and (c) the 894 nm laser through F = 3→ F ′ = 3′, 4′ components of the 6s 2S1/2 → 6p 2P1/2

transition. In each, the data are shown as the red data points, and the result of a least-squares fit as a black dashed line. We
show the residuals (data−fit) for each in (b) and (d).

in an acousto-optic modulator (AOM1 or AOM2), and
measure the relative power of the undiffracted beams us-
ing photodiodes (PD1 or PD2). We use the photodiode
current to generate an error signal, which controls the r.f.
power applied to the AOMs. In this manner, we are able
to stabilize the power of each laser, and achieve a rela-
tively flat power level for the scan of each laser, with less
than 3% variation in the laser power over a typical scan
of 4 − 6 GHz for the 456 nm laser and 0.5% for the 894
nm laser. To minimize saturation effects, the laser power
incident on the cell from the 456 nm laser is about 40 nW
in a ∼1 mm diameter beam and the 894 nm laser has 8
nW with ∼2 mm diameter. A 15 cm focal length lens
after the vapor cell reduces the laser beam size incident
on PD3 to less than the photocathode size.

We calibrate the frequency scans of the two lasers us-
ing separate Fabry-Pérot (FP) cavities, with free spectral
ranges (FSR) of ∼ 1500 MHz. We record the transmis-
sion through the cavity concurrently with each absorp-
tion spectrum, and fit the frequencies of the transmission
peaks to a 3rd-order polynomial in the laser frequency
ramp voltage.

Before each set of measurements, we record the pho-
todetector background offset voltage, the measured sig-
nal when no light is incident on the photodiode. We also
account for the small amount of laser power in the wings
of the laser power spectrum. For this, we insert a sec-
ond cesium vapor cell, which we heat to∼ 120◦C, into the
beam path at the beginning of each data run. This vapor
cell is labeled ‘Hot Cell’ in Fig. 2. Absorption in this cell
of the on-resonant light is very strong, while off-resonant

light is transmitted. This gives us a good measurement
of the laser power in the wings, typically ∼ 0.1% of the
total power for the 456 nm laser and ∼ 1% for the 894
nm laser. We then determine the total offset level that
comes from the background and laser power in the wings,
to deduct from our data before curve fitting.

For each measurement, we block one of the lasers so
that only one beam passes through the vapor cell, and
record approximately four full absorption curves over a
ten second period. We then block that laser, unblock the
other, and record the absorption curves for the second
laser. We repeat this process for a total of four records
of 894 nm and three for 456 nm. In total, there are
typically sixteen scans at 894 nm and twelve at 456 nm
for each measurement. Rapid reversals between the two
wavelengths help minimize variations in the cesium den-
sity between measurements. We perform multiple runs
at each temperature. Then we change the temperature
of the cold finger, wait for the cold finger temperature to
stabilize, and collect new spectra. Additionally, we re-
move the absorption cell from the beam path and verify
the absence of any spectral feature in the scans.

We show examples of absorption spectra at 456 nm
and 894 nm in Fig. 3. The absorption peak at 456 nm,
shown as the red data points in Fig. 3(a), is made up
of the three hyperfine transitions F = 4 → F ′ = 3′, 4′,
and 5′. These peaks are unresolved since the hyperfine
splitting of the 7p 2P3/2 level [26] is less than the Doppler

width ∆ν456
D ∼ 700 MHz. The slope of the unabsorbed

signal to either side of the absorption dip is due to etalon
effects (the variation of the transmitted power due to the
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interference between the reflections from the two window
surfaces) in the windows of the cell. These windows are
1.2 mm thick, corresponding to a FSR of ∼80 GHz, far
greater than the full 6 GHz scan length. The 894 nm
absorption line shown in Fig. 3(c) consists of two compo-
nents, corresponding to F ′ = 3′ on the left and F ′ = 4′

on the right. The frequency separation between these
two peaks is the 1167.7 MHz hyperfine splitting of the
6p 2P1/2 state [27–30], which is resolved in this spec-

trum since this splitting is greater than the ∆ν894
D ∼ 360

MHz Doppler broadening of the transition. Note that
the F ′ = 3′ peak is weaker than the F ′ = 4′, consistent
with q3→3′ = 7/24 and q3→4′ = 7/8 for J = J ′ = 1/2
listed in Table I. For each of these lines, we have the
choice of exciting from the F = 3 or F = 4 hyperfine
component of the ground state. Since the absorption
strength of the 894 nm line is so much stronger than
that of the 456 nm line, we used the F = 3 ground state
(the weaker component) for the former, and F = 4 (the
stronger component) for the latter. Given the limitations
of our setup, the best case would be if both lines have the
same strength, as we would be able to record data over a
wider range of temperatures or attenuation coefficients.

For each of the spectra, we fit the data to an equation
of the form shown in Eqs. (1)−(4). Our fit equation has
five adjustable parameters: the level of full transmission,
a term to account for the slope in the full-transmission
level, the center frequency of one of the hyperfine compo-
nents of the transition, and terms describing the Doppler-
broadened width (∆νλD) and amplitude (Υλ) of the ab-
sorption dip. The relative heights of the different hy-
perfine components are determined by the qF→F ′ factors
in Table I, and are fixed in our fits. The linewidths in
the Voigt lineshape are Γ′ = 2π(∆νN + 0.2 MHz), where
∆νN = 4.6 MHz [9–19] (1.22 MHz [31–36]) is the natural
linewidth of the 6p2P1/2 line (7p2P3/2 line), and 0.2 MHz
is the intrinsic linewidth of the laser; and a Gaussian of
width ∆ν894

D ∼ 360 MHz or ∆ν456
D ∼ 700 MHz. (We will

return to this laser bandwidth correction later in this
section.) We use measured values for the frequency dif-
ference between the hyperfine components [26–29]. We
show an example of the best fit profile to the absorption
spectra as the black dashed lines in Figs. 3(a) and (c).
In Figs. 3(b) and (d), we show the residuals, the differ-
ence between our data and the fitted spectra. The small
residuals indicate that the fits are very good models of
the absorption profile.

At the higher temperatures used for these measure-
ments (T > 10◦C), we start to observe some departure of
the ratio α894

3→4′(ω0)/α894
3→3′(ω0) from the expected value

of three when we fit the two peaks independently. We
suspect that this is a result of errors in the measurement
of the offset voltage, which become more critical for these
strongly absorbing peaks. At the most extreme temper-
ature used (T = 18◦C), this ratio was as low as 2.946, so
we attempted no measurements at higher temperatures.

To include the effect of the spectral linewidth of the
lasers in our fits to the absorption spectra, we first mea-

sured (1) the beat signal between the output of the 894
nm laser with that of a frequency comb laser (FCL); and
(2) the beat signal between two similar blue diode lasers,
each tuned to 456 nm. In each case, we overlap the two
interfering beams on a fast photodiode and observe the
photocurrent on an r.f. spectrum analyzer. The long-
term bandwidth in both cases was 2−3 MHz. In addition,
we could observe the bandwidth of the signal on a single
sweep of the spectrum analyzer. This shows considerable
variation from sweep to sweep, probably due to acoustic
vibrations of elements within the cavity, but we could ob-
serve lines as narrow as a few hundred kHz. We interpret
these observations as a short-term (intrinsic) line width
of ∆νLi ∼ 200 kHz, with slower fluctuations over a range
of ∆νLs ∼ 3 MHz. We calculate the effect of these laser
frequency fluctuations, and determine that these can be
included in the fits to the absorption spectra by modify-
ing the Voigt lineshape function in two ways. First, we
increase the homogeneous linewidth ∆νN , using the sum
of the natural linewidth of the transition and the intrin-
sic linewidth ∆νLi of the laser. This is a small, but not
negligible, increase. Second, we increase the inhomoge-
neous linewidth in the Voigt function calculation to the
quadrature sum of the Doppler width, ∆νD, and the slow
laser frequency fluctuations, ∆νLs. For the linewidths of
our system, this is a negligible increase.

After fitting each of the sixteen (twelve) absorption
curves at λ = 894 nm (λ = 456 nm) within a set individ-
ually, we compute the mean and standard deviation of
the mean for the fitted values of Υ894 (Υ456). We show
a plot of Υ456 vs. Υ894 in Fig. 4. Each data point repre-
sents the average value of Υ456 and Υ894 at a particular
cold finger temperature. The data point near the ori-
gin was recorded with the vapor cell removed from the
beam path. The error bars on the data points are too
small to observe in Fig. 4(a). The vertical error bars in
the residual plot, Fig. 4(b), represent the combined 1σ
uncertainties in Υ456 and Υ894.

The total uncertainties in the values of Υλ are the sta-
tistical, etalon effects, and offset uncertainties added in
quadrature. The statistical uncertainty comes from the
standard deviation of the mean of the Υλ values from the
fits to the sixteen (or twelve) absorption curves.

The etalon effects are our estimate of the uncertainty of
the attenuation coefficient resulting from the interference
between the reflections at the cell windows. We account
for this effect to first order as a linear variation of the
laser power with frequency, ignoring any curvature. This
simple model is not adequate, however, when the peak or
valley in the sinusoidal variation of the unabsorbed laser
power is close to the frequency of the absorption feature.
In these frequency spaces, we estimate the effect of the
curvature of the unabsorbed laser power on the size of the
absorption peak, which we assign as the uncertainty due
to the etalon effect. In cases of extreme curves, we also
applied a small correction to the absorption height, along
with an uncertainty of twice the size of the correction.
We estimate the effect for each absorption curve depth.
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FIG. 4. Plot of Υ456 against Υ894 showing (a) the datapoints
(circles) and the least squares fit straight line, and (b) the
residuals in the ordinate. In (a), the error bars are smaller
than the size of the markers. The vertical error bars in (b)
represent the combined 1σ uncertainties in Υ456 and Υ894.

A 1 mV change in the height of the signal changes Υ894

(Υ456) by 0.3% (0.1%).
The offset uncertainty is our estimation of the error in

measuring the signal on PD3 resulting from the power
in the wings of the laser spectrum and the background
signal, which we subtract from the signal as an offset.
The offset uncertainty of the 456 nm signal is ∼ 0.05% of
Υ456, while for 894 nm it is more significant at ∼ 0.15%
due to the stronger absorption at 894 nm.

The solid line in Fig. 4 is the result of a least-squares
fit of a straight line to the data, with two adjustable
parameters: the slope and the intercept. We present
the results of this fit in Table II. The intercept is
within one standard deviation of zero, as expected, while
the slope, i.e. the ratio of scaled absorption terms, is
Υ456/Υ894 = 0.016239 (21). (We show 1σ uncertain-
ties in the least significant digits inside the parenthe-
ses following the numerical value.) The reduced χ2

r for
these data is 1.29, indicating that deviations of the data
from the fitted line are slightly larger than the uncer-
tainties would suggest. We expand the uncertainties of
the slope by

√
1.29 to account for this, and quote a fi-

nal slope of 0.016239 (23). Using Eq. (7), the inverse of

TABLE II. Numerical values for the intercept, slope, and re-
duced χ2

r from the fit to the data in Fig. 4. These uncertainties
have not yet been expanded by

√
χ2
r.

Parameter Value

Intercept 3.6 (43)× 10−5

Slope 0.016239 (21)

χ2
r 1.29

the square root of the slope yields the ratio of matrix
elements R1 = 7.8474 (56).

In Sections V and VI, we will consider a few additional
systematic effects that contribute to this measurement,
and use R1 to determine the E1 matrix element for the
6s 2S1/2 → 7p 2P3/2 transition. Before we do this, we de-
scribe parallel measurements of the absorption strength
of the 6s 2S1/2 → 7p 2P1/2 transition.

IV. MEASUREMENT OF R2

We turn now to the measurement of the ratio R2, as
defined in Eq. (8). We carry out this measurement in
a fashion similar to that of the measurement of R1 dis-
cussed in Sec. III, alternating between absorption mea-
surements on the 6s 2S1/2 → 7p 2P3/2 line at 456 nm

and the 6s 2S1/2 → 7p 2P1/2 line at 459 nm. The ex-
perimental setup is very similar to the one discussed in
the previous section, and is shown in Fig. 2. The 894
nm ECDL is replaced with a 459 nm ECDL, and FP2 is
removed, since we can use the same Fabry-Pérot cavity
FP1 for both lasers. Each laser generates approximately
20 mW of laser light, and produces mode-hop free scans
of > 7 GHz.

Other differences in the apparatus or procedure in-
clude: (i) We carry out these measurements in three
separate data sets, which differ in F, the hyperfine level
of the ground state, or the vapor cell used. This is in
contrast to our determination of R1, for which we use
only one F value and one vapor cell. The first two data
sets are performed with a short (of length `cell ∼ 6 cm)
sealed glass cell mounted with 0.5◦ wedged windows. The
shorter cell length requires higher Cs densities for com-
parable absorption, and the wedged windows reduce the
magnitude of the etalon effects. We control the density
of cesium in the cell using a cold finger enclosed within
an aluminum block, whose temperature we control and
stabilize to between 40 − 65◦C using a thermo-electric
module and feed-back circuit. We use heat tape coiled
around the vapor cell to heat the cell body to ∼ 80◦C,
and wrap the cell and heat tape with aluminum foil to
help maintain a stable and uniform body temperature.
For the third data set on these lines, we used the long
(`cell = 29.9 cm) vapor cell described in Sec. III. Observ-
ing similar results in this second cell allows us to rule out
background gas in the cell or collisional effects as possi-
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FIG. 5. Examples of absorption spectra with the cell of length `cell ∼ 6 cm at a cold finger temperature of 56◦C. These figures
show the photodiode signal vs. laser frequency as we scan (a) the 459 nm laser through F = 4→ F ′ = 3′, 4′ components of the
6s 2S1/2 → 7p 2P1/2 transition, and (c) the 456 nm laser through F = 4→ F ′ = 3′, 4′, 5′ components of the 6s 2S1/2 → 7p 2P3/2

transition. In each, the data are shown as the red data points, and the result of a least-squares fit as a black dashed line. The
hyperfine components are not resolved for either transition. We show the residuals for each in (b) and (d).

ble sources of error. (ii) Additionally, the linear silicon
photodiode, labeled PD3 in Fig. 2, had a slower rise/fall
time, as both of the absorption curves were similar in
depth and we could achieve a better signal-to-noise ratio
by filtering out the high-frequency noise. We amplify the
photodiode current using a transimpedance amplifier of
gain 5 × 107 V/A and bandwidth of 2 kHz, followed by
a second amplifier of gain 10, and measure ∼ 1 mV of
noise on a ∼ 2 V signal. The laser power incident on the
cell is about 50 nW in a ∼1 mm diameter beam for both
lasers. (iii) Finally, since the curves were shallower, we
were able to scan the laser frequencies through the ab-
sorption curves more rapidly. When we investigated the
effects of the bandwidth and scan rate as we did for R1,
we found that recording eight full absorption curves over
a two second period allows good fits to the data.

For these data, measurements of the background offset
voltage several times each day, rather than before each
run, were sufficient. The background offset voltage was
small (∼ 1 mV), and variations were minimal, falling
well within the measurement uncertainty. Before every
run we did insert the hot cell to estimate and correct for
the small amount of laser power in the wings of the laser
power spectrum. This gives us a good measurement of
the laser power in the wings, typically ∼ 0.1% of the full
power incident on the photodiode for the 456 nm and
∼ 0.3% for the 459 nm laser. We deduct the total offset
in the signal, the power in the laser wings along with
the background signal, from the data before fitting. We
estimate the uncertainty of the attenuation coefficients
due to the offset to be 0.05% (0.1%) for the 459 nm (456
nm) laser.

We show examples of the measured spectra as the red
data points in Fig. 5(a) (6s 2S1/2 → 7p 2P1/2 line at

459 nm) and 5(c) (6s 2S1/2 → 7p 2P3/2 line at 456 nm).
We fit the data to an equation of the form shown in
Eqs. (1)−(4), using the same five adjustable parameters
as described in Section III. The lineshape of each hyper-
fine component of the transition is a Voigt profile, with
a Lorentzian width ∆νN (1.22 MHz for the 7p2P3/2 line,

or 1.06 MHz for the 7p2P1/2 line [31–36]) added to the
linewidth of the lasers of 0.2 MHz and a Gaussian of
width ∆ν456

D ∼ ∆ν459
D ∼ 750 MHz. We use calculated

values for the relative amplitudes (qF→F ′ of Table I) and
experimental values [26] for the frequency difference of
the hyperfine components. We show the least-squares fit
spectral profiles as the black dashed lines in Figs. 5(a)
and (c). The residuals, the difference between the data
and the fitted profile, are shown in Figs. 5(b) and (d). We
fit each of the twenty-four (thirty-two) scans at 456 nm
(459 nm) within a measurement individually, and com-
pute the mean and standard deviation of the mean of the
fitted values of Υλ.

Finally, we plot Υ459 against Υ456, and determine the
least-squares fit of a straight line to determine the slope.
An example of one such plot (set 2) for the transition
from 6s 2S1/2, F = 4 is shown in Fig. 6(a). Each point
on the graph corresponds to a different cold finger tem-
perature, with the y-coordinate and x-coordinate coming
respectively from the 459 nm and 456 nm average. We de-
termined the uncertainties of each Υλ as the quadrature
sum of the statistical, etalon effect, and offset uncertain-
ties. The etalon effect uncertainty is as described for R1.
We found that a 1 mV change in the offset resulted in a
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FIG. 6. Plot of Υ459 vs. Υ456 for data set 2 showing (a)
the datapoints (circles) and line of best fit, (b) residuals in
the ordinate. In (a), the error bars are smaller than the size
of the markers. The vertical error bars in (b) represent the
combined 1σ uncertainties in Υ459 and Υ456.

TABLE III. Summary of linear fit results from our three data
sets of Υ459 against Υ456. The listed uncertainties for the
slope and intercept have not yet been expanded by

√
χ2
r. Data

sets 1-2 were collected with the shorter ∼ 6 cm cell. Data for
set 3 was recorded using the longer ∼ 30 cm cell.

Data Set Intercept Slope χ2
r

Set 1, F=3 −5.8 (41)× 10−5 0.23380 (29) 1.95

Set 2, F=4 −2.4 (42)× 10−5 0.23477 (32) 1.95

Set 3, F=3 −1.4 (51)× 10−5 0.23593 (48) 1.52

change to Υ456 and Υ459 of 0.1% and 0.05%, respectively.
The error bars shown on the residual plot, Fig. 6(b), rep-
resent the combined errors of Υ459 and Υ456. We perform
separate analyses of the 6s 2S1/2, F = 3 and F = 4 data,
since their sensitivity to systematic effects differs. We
present the intercepts and slopes from individual straight
line fits for the three data sets in Table III. The intercepts
are again all acceptably close to zero. We will derive the
ratio R2 from the square root of the inverse of the slopes
of these plots, as shown in Eq. (8), but first we consider
some additional systematic effects, as discussed in the
following section.

V. ERRORS

We have investigated several potential sources of sys-
tematic effects, listed in Table IV, to estimate their im-
pact on the measurements. We describe each of these
effects in this section. All of these systematic effects are
applied to R1 (R2), after fitting Υ456 (Υ459) against Υ894

(Υ456).

We derive the uncertainties labeled ‘Fit’ from the fitted
values of the slope and their uncertainties, listed in Tables
II and III. We have expanded these uncertainties by

√
χ2
r

to account for excess variation of the data points.

During the course of analyzing the absorption curves,
we noted a sensitivity of the fits to the frequency cal-
ibration of the laser scans. We calibrate these scans,
as discussed earlier, using the transmission peaks of the
lasers through the FP cavities. The FSRs of these cavi-
ties, however, are not known precisely. We experimen-
tally determined the FSR values of both FP cavities
by fitting the absorption data using different values of
the FSR. Using the variation in the residuals, we ob-
tain an estimate for the FSR that fits the absorption
curves the best. (Since the hyperfine splittings of each of
these states are well known, the residuals of the absorp-
tion curves are sensitive to variations in the frequency
calibration of the scans.) We determined the FSR for
the FP cavity used with the 456/459 nm lasers to be
FSRFP1 = 1501.6 (10) MHz, while for the 894 nm laser,
we determine FSRFP2 = 1481.9 (4) MHz. We also use
these fits to estimate the effect that the uncertainty of
the FP FSR has on the measured ratios. We estimate an
uncertainty in the ratio R1 due to frequency calibration,
to be 0.04%. For the ratio R2, we find the uncertainty to
be at most 0.01%.

The magnetic field at the cell location also affects the
measurements of the absorption strength. We measure
a static magnetic field of ∼ 1 G in the vertical direction
(parallel to the laser polarization) at the location of the
6 cm vapor cell, mainly from the optical table. We min-
imize the magnetic field generated by the heat tape by
wrapping the heat tape in alternating directions, ensur-
ing the magnetic field only comes from the surroundings.
A ∼ 1 G field causes a Zeeman splitting on each hy-
perfine component of 2 MHz or less. We approximate

TABLE IV. Sources of error and the percentage uncertainty
resulting from each, for the determinations of R1 and R2. We
add the errors in quadrature to obtain the total uncertainty.

Source σ1/R1(%) σ2/R2(%)

Fit 0.07 0.09-0.13
Freq. scan calibr. 0.04 0.01
Zeeman 0.03 0.02
Beam overlap 0.01 0.01
Saturation 0.02 0.02
Linewidth 0.02 0.02

Total uncertainty 0.09 0.09-0.13
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TABLE V. Summary of the three data sets of R2 values after
correction for the effects of the Zeeman splitting. The un-
certainty in R2 includes the errors due to the fit (increased

by
√
χ2
r of the appropriate data set), frequency calibration,

Zeeman splitting, beam overlap, saturation, and linewidth.
Data sets 1-2 were collected with the shorter (∼ 6 cm) cell.
Data for set 3 was recorded using the longer (∼ 30 cm) cell.
The χ2

r of the weighted mean of the three sets is 4.2 and the
weighted mean’s error has been expanded by

√
4.2. See Fig. 7

for a plot of the results of the individual data sets and the
weighted mean.

Data Set R2

Set 1, F=3 2.0684 (19)

Set 2, F=4 2.0637 (21)

Set 3, F=3 2.0591 (27)

Weighted Mean 2.0646 (26)

the effect of Zeeman splitting on the effective homoge-
neous linewidth of the transition by adding the Zeeman
broadening of each hyperfine component to the natural
linewidth, which we use in the Voigt function for our
analysis. We multiply R2 by the Zeeman correction for
the appropriate starting F state, 0.9999 for F=4 data and
1.0001 for F=3 data. We estimate an uncertainty in R2

due to this correction to be about 0.02%. The height of
the 30 cm cell above the table was greater than that of
the small cell, so the magnetic field for measurements of
R1 was smaller, ∼0.5 G. This led to a Zeeman splitting
of less than 0.7 MHz. We estimate the uncertainty in R1

due to this Zeeman splitting to be 0.03%, and did not
apply any correction to these data.

Smaller systematic errors in the ratios result from
beam overlap errors and saturation effects. We estimate
that each of these effects contribute 0.02% uncertainty
or smaller, as listed in Table IV. We measure that the
two laser beams are parallel to one another to within
0.05 mrad, and overlap each other in the cell to within
0.5 mm. Therefore the effective path lengths for these
two beams are identical to within 0.02%, for an effect on
R1 and R2 of 0.01%. We minimize saturation effects by
reducing the laser intensity of the 456 nm and 459 nm
lasers to less than 2 × 10−4 times the saturation intensity
for the transition [37] using a neutral density filter and
reflections from several uncoated wedged windows. We
attenuated the power of the 894 nm laser more than the
456 nm and 459 nm laser to similarly avoid saturation.
We estimate that saturation effects could have an effect
at the 0.02% level.

Lastly, we include an uncertainty for the correction
that we apply for the linewidth of the lasers used. For
all of the ECDL lasers we estimated a 200 kHz intrin-
sic linewidth with a conservative uncertainty of 200 kHz.
These uncertainties would lead to about a 0.02% uncer-
tainty in each of the ratios.

We add the fit, frequency scan calibration, Zeeman,
beam overlap, saturation, and linewidth errors in quadra-

FIG. 7. Plot of the three sets of R2 results and the weighted
mean. We have expanded the error bars of the weighted mean
by

√
χ2
r = 2.0 to account for the variation among the indi-

vidual results.

ture for our final uncertainties to R1 and R2, and apply
the Zeeman correction to R2 to get our final values. In
the next section, we discuss the results of these measure-
ments.

VI. RESULTS

After adding the uncertainties described in the previ-
ous section, the final result for R1 is R1 = 7.8474 (72).
For R2, after applying the corrections and uncertainties
described in the previous section to the three individual
data sets, we arrive at the results shown in Table V and
plotted in Fig. 7. The weighted average of these results
is R2 = 2.0646(26). We compare these results for R1 and
R2 with a number of prior experimental and theoretical
results in Table VI, and illustrate these in Fig. 8. We note
that the previous results for R1 and R2 by Shabanova et
al. [39] (who reported oscillator strengths, which we con-
verted to matrix elements) and R2 by Borvák [24] are in
reasonable agreement, to within their error bars, of our
results, which are of higher precision. (We derived the
ratio value for Borvák using (R2)2 = (21/22)×4.461(23)
from the table on page 126, where the additional factor
of 21/22 comes from combinations of Clebsch-Gordan co-
efficients.) R1 from Antypas [20] disagrees with our new
results, which we consider to be more reliable due to the
use of the Voigt profile and the addition of the faster pho-
todiode amplifier that we discussed earlier. We derived
the value of R2 for Vasilyev et al. [8] from their matrix
elements, whose measurement was dependent on precise
knowledge of the vapor cell path length and atomic den-
sity in the vapor cell, unlike our method. The scaled
theoretical results of Refs. [1, 7, 38] appear to be in good
agreement with our new results as well. These authors
used the coupled-cluster single-double (SD) all-order ap-
proach for their calculations, and determined scaled val-
ues by scaling the correlation coefficients using experi-
mental state energies.

We use R1 = 7.8474 (72) to determine the matrix ele-
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FIG. 8. Plots showing comparisons of various ex-
perimental and theoretical determinations of (a) R1 ≡
〈6s1/2||r||6p1/2〉/〈6s1/2||r||7p3/2〉 and (b) R2 ≡ 〈6s1/2||r||
7p3/2〉/〈6s1/2||r||7p1/2〉 ratios. See Table VI for references to
these data. For Safronova et al. (Refs. [7, 38]), we plot both
the scaled (sc) and single-double (SD) values for R2.

ment for the 6s 2S1/2 → 7p 2P3/2 transition using

〈6s1/2||r||7p3/2〉 =
〈6s1/2||r||6p1/2〉

R1
(9)

and 〈6s1/2||r||6p1/2〉 = 4.5057 (16) a0, the weighted aver-
age of the transition matrix element for the D1 line from
Refs. [9–19]. Our result is

〈6s1/2||r||7p3/2〉 = 0.57417 (57) a0. (10)

We combine R2 = 2.0646 (26) in Eq. (8) and our new
determination of 〈6s1/2||r||7p3/2〉 to obtain

〈6s1/2||r||7p1/2〉 = 0.27810 (45) a0. (11)

We present a summary of past experimental and theo-
retical results of these dipole matrix elements in Table VI.
We have also plotted the results for 〈6s1/2||r||7p3/2〉 and

FIG. 9. Plots of the experimental and theoretical values of (a)
〈6s1/2||r||7p3/2〉 and (b) 〈6s1/2||r||7p1/2〉, as listed in Table
VI. Experimental values are on the left, while theoretical
values are shown on the right. See Table VI for references
to these data. For Safronova et al. (Refs. [7, 38]), we have
plotted only the scaled (sc) values.

〈6s1/2||r||7p1/2〉 in Figs. 9(a) and (b), respectively. For
Shabanova et al. [39] and Borvák [24], our result is within
their uncertainties for 〈6s1/2||r||7p3/2〉, but in poorer
agreement with the 〈6s1/2||r||7p1/2〉 value. The matrix
element values from Borvák come from a direct determi-
nation, separate from the ratio measurement discussed
above.

In comparison with theory, our value for
〈6s1/2||r||7p3/2〉 is within 0.3% of the scaled values
of [1, 7, 38]. In Ref. [7], the authors noted that scaling
improved agreement of theoretical determinations of
the 〈6s1/2||r||7pj〉 matrix elements with experiment.
In Table VI, we have listed both the SD and scaled
values from the Supplemental Material of Ref. [38]. The
authors of [38] recommended SD values for the relevant
matrix elements, which we have listed as ‘Safronova et
al.-SD’. We observe better agreement of our results with
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TABLE VI. Experimental and theoretical results for the reduced dipole matrix elements of the cesium 6s 2S1/2 → 7p 2PJ

transitions. The matrix elements are given as factors of a0. For Ref. [38], we list both the single-double (-SD) and scaled (-sc)
values.

Group R1 R2 〈6s1/2||r||7p3/2〉 〈6s1/2||r||7p1/2〉
Experimental
Shabanova et al., 1979 [39] 7.76 (14) 2.052 (38) 0.583 (10) 0.2841 (21)
Vasilyev et al., 2002 [8] 2.124 (24) 0.5856 (50) 0.2757 (20)
Antypas and Elliott, 2013 [20] 7.796 (41) 2.072 (12) 0.5780 (7) 0.2789 (16)
Borvák, 2014 [24] 2.0635 (53) 0.5759 (30) 0.2743 (29)
This work 7.8474 (72) 2.0646 (26) 0.57417 (57) 0.27810 (45)

Theoretical
Dzuba et al., 1989 [40] 7.708 2.12 0.583 0.275
Blundell et al., 1992 [1] 7.83 2.057 0.576 0.280
Safronova et al., 1999 [7] 7.873 2.065 0.576 0.279
Derevianko, 2000 [6] 0.281
Porsev et al., 2010 [3] 0.2769
Safronova et al.-SD, 2016 [38] 7.452 2.016 0.601 0.298
Safronova et al.-sc, 2016 [38] 7.873 2.065 0.576 0.279

the scaled values from [38], and have included those
values as ‘Safronova et al.-sc’.

For the 〈6s1/2||r||7p1/2〉 matrix elements, our result is
within the distribution spanned by theory. In particular,
our result is in the middle of the two closest theory values
from Refs. [3, 7].

VII. CONCLUSION

In conclusion, we present measurements of the ratio
of the dipole matrix elements of the cesium 6s 2S1/2 →
6p 2P1/2 and 6s 2S1/2 → 7p 2P3/2 transitions and the ra-

tio of 6s 2S1/2 → 7p 2P1/2 and 6s 2S1/2 → 7p 2P3/2 tran-
sitions. We used a ratio measurement of the two transi-
tions to eliminate the need for precise knowledge of the

path length of the laser within the vapor cell, or of the
density of cesium, which helped to eliminate potential
systematic errors. From these measurements, we calcu-
late new, higher precision results of the dipole matrix el-
ements of cesium with precision ≤ 0.16%. With our new
knowledge of the dipole matrix elements, we are poised
to be able to evaluate the scalar and vector polarizabili-
ties of the cesium 6s 2S1/2 → 7s 2S1/2 transition. A new
value of the vector polarizability has implications on the
interpretation of cesium parity nonconservation measure-
ments, and will allow a new determination of the weak
charge in cesium.
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