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Abstract
In the near-future noisy intermediate-scale quantum (NISQ) era of quantum computing tech-

nology, applications of quantum computing will be limited to calculations of very modest scales

in terms of the number of qubits used. The need to represent numeric quantities using limited

resources leads to digitization errors which must be taken into account. As a first step towards

quantum simulations of realistic high-energy physics problems, we use ensembles of SU(2) lattice

gauge fields generated with standard classical computing to explore the effects of digitizing elements

of the gauge group to a finite set. We consider several methods for digitizing the group, finding the

best performance from an action-preserving projection onto a mesh. Working in (3+1) dimensions,

we find that using ∼ 7 (qu)bits to represent each SU(2) gauge link induces a digitization error on

the order of 10% in short-distance observables and 2% in long-distance observables. Promisingly,

our results indicate that each SU(2) gauge link can be represented by O(10) (qu)bits, from which

we estimate that a 163 SU(2) lattice could be simulated with no more than O(105) (qu)bits. Our

results on digitization are also of interest as a form of lossy compression that could be used in

high-performance classical computing to alleviate communications bottlenecks.

I. INTRODUCTION

Quantum computers offer the promise of
solving problems which are presently in-
tractable. In particular, simulating strongly
interacting gauge theories on a digital quan-
tum computer is an exciting prospect. Many
interesting physics problems in lattice gauge
theory remain intractable even for cutting-
edge classical computers, including real-time
dynamics of hadronization and thermody-
namics at large quark-number density. While
the lattice community has made impressive
progress in studying hadronic physics di-
rectly from QCD [1–3], the heavy nuclear
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physics needed by neutrino experiments, like
the quark-current form factors of Argon, re-
main beyond the limits of current classical
computers. More fundamentally, some simu-
lations are intractable on any classical com-
puter. For example, storing the full wave-
function of a 500-qubit system would require
more classical bits than there are atoms in
the observable Universe1.

Despite the eventual promise of quan-
tum computing, speculation about near-term
prospects for these devices in the “noisy
intermediate-scale quantum” (NISQ) era sug-
gests that qubit and gate resources will be
severely limited [4]. On the other hand, due

1 On an N -bit classical computer, 2N different num-

bers are accessible, but the memory needed to store

m numbers is mN -bits. On a N -qubit quantum

computer, 2N different numbers are also accessible

but these N -qubits can also store the 2N values.
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to their local nature, field theory Hamilto-
nians require less connectivity to implement
than general quantum computing algorithms
and may in fact be among the first realis-
tic problems tractable on large-scale quan-
tum computing devices. Nevertheless, ef-
ficient use of available qubit resources will
be important to simulate a gauge theory on
any near-future quantum computer. This
requires us to confront “digitization error”,
which we define as the error due to represent-
ing continuously-valued quantum fields in fi-
nite numerical precision.

Field theories are physical systems with
infinitely many degrees of freedom, and their
simulation on any digital computer requires
finite approximations. The standard ap-
proach restricts the fields to a discrete space-
time lattice in a finite volume, and the con-
trol and extrapolation of the resulting finite
lattice-spacing error and finite-volume error
is well-known in the literature on lattice field
theory. However, there is a third finite ap-
proximation which is usually not emphasized:
the quantum fields themselves must be re-
stricted to take on discrete numerical values,
limited by floating-point precision. In princi-
ple, this discretization yields a third approx-
imation error, digitization error.

Of course, the use of 64-bit double-
precision floating point numbers guarantees
that such errors will be utterly negligible in
most modern lattice calculations, although
there can be concerns about reversibility of
the hybrid Monte Carlo algorithm in global
sums on large lattices [5]. We refer to the
common use of 64-bit floating point numbers
to represent gauge fields as ultrafine digitiza-
tion.

Even in the early days of computational
lattice field theory, the availability of classi-
cal bits was sufficient to avoid large digitiza-
tion errors compared to other error sources.
However, there was early interest in simulat-
ing with discrete subgroups of SU(N), which
would allow the use of lookup tables to speed
up the computations [6]. These studies found

that the subgroup digitization created an ar-
tifact lattice phase at weak coupling. For the
120-element largest point subgroup of SU(2),
this artifact phase was at sufficiently weak
coupling that some parameters of interest re-
mained accessible [7, 8]. This was not the
case for the largest 1080-element point sub-
group of SU(3) [9]. However, an additional
study [10] found that this phase could be
pushed to weaker coupling in SU(3) by using
a finer digitization generated by interpolating
between SU(3) elements.

In this work, our goal is different: we
study the impact of extreme memory restric-
tions, rather than to improve computational
efficiency. We ask how coarsely the digitiza-
tion of group elements onto a finite set may
be done before inducing large systematic er-
rors. By translating the size of the digitized
group into the number of (qu)bits required to
represent a gauge link, we can estimate the
number of (qu)bits required to avoid digitiza-
tion error at some level. We study several dif-
ferent group-truncated digitization schemes
to gain insight into the features of an opti-
mal scheme.

More specifically, we consider the effect of
digitizing pure SU(2) gauge theory. Although
not directly relevant to QCD, this theory is
computationally less expensive than SU(3),
allowing us to generate large data sets and
thereby avoid statistical errors that might in-
troduce ambiguity in our results otherwise.
Furthermore, SU(2) is isomorphic to the four-
dimensional unit sphere S3, providing an in-
tuitive picture for digitization that would be
lacking for larger gauge groups. Our work
shares some characteristics with a recent pa-
per by Urbach [5], although his focus is on
the hybrid Monte Carlo algorithm while we
focus on the observables, and his study is con-
cerned with a much finer digitization than
our results will explore.

Other work on gauge group digitization in
quantum computing for high-energy physics
has focused on finding few qubit problems
that can be implemented on NISQ technol-
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ogy. For example, [11] examines the (1 + 1)-
D Schwinger model with one and two spatial
sites using a 2-qubit digital quantum com-
puter and shows that the quantum computer
produces observables which agree with ana-
lytic results for a large time range before fi-
delity becomes appreciable. Also, using an
analogue quantum computer, [12] computes
two-body and three-body forces between
heavy-mesons in the Schwinger model. The
authors of [13] formulate the SU(N) Hamilto-
nian with matter fields for an analogue quan-
tum simulation and study the digitization er-
ror in the (2 + 1)-D compact QED ground
state energy for a range of couplings. All
these works digitize the gauge group by im-
posing a cutoff on the allowed energy eigen-
states [13]. This approach has the advantage
of conceptual clarity: keeping only the low-
energy eigenstates should leave low-energy
physical observables unaffected. Moreover,
the eigenstate digitization always enforces
gauge invariance but breaks unitarity at fi-
nite truncation [13]. [13] show the mathe-
matical mapping between the eigenstate- and
group-representations of the infinite dimen-
sional gauge Hilbert space, yet it is also un-
clear how practically the resource require-
ments of the eigenstate-truncation method
compares with the group-truncation schemes
that we study here, especially for short-range
observables. Notably, the group truncation
always enforces unitarity but can break gauge
invariance at finite truncation and is more
natural for lattice gauge theory simulations
on classical computers.

Previous works have examined the eigen-
state truncation methodology in models of
SU(2) within the Hamiltonian approach. Of
these, [14] classically performs exact diag-
onalisation of an (1 + 1)D U(2) Hamilto-
nian in a quantum link model with differ-
ent spatial lattice extents ranging from Ls =
2 − 18. There, they use one rishon-per-link
and study the energy splitting between the
two lowest energy eigenstates and the real-
time evolution of an order parameter. In [15],

the authors classically examine a (1 + 1)D
SU(2) tensor network approximation in a
quantum link model with two rishons-per-
link and study the quantum phase diagram2.
In [16], the authors extensively study (2+1)D
SU(2) with projected entangled pair states
(PEPS) in the tensor network framework.
For this specific construction of PEPS ob-
servables, the physical states are restricted
to the j ≤ 1/2 sector. In this approxima-
tion the observables with a truncated gauge
Hilbert space are exactly identical to the
model results if they were calculated in the
full infinite-dimensional gauge Hilbert space.
Also, the authors of [17] use the physical sub-
space to find an efficient eigenstate trunca-
tion in a (1 + 1)D SU(2) model. Allowing
up to j = 2 eigenstates, and using the ma-
trix product state approximation in the ten-
sor network framework, the authors are able
to compute a large range of physical quanti-
ties in different limits.

The outline of this work is as follows:
in Section II we discuss several different
schemes for digitizing SU(2) as well as the
projections to coarser digitizations. In Sec-
tion III we describe how we generate SU(2)
lattice ensembles and our lattice gauge the-
ory methodology used to compute observ-
ables. In Section IV, we present the main
results of our work: the error induced by our
group-truncated digitization and projection
schemes. Finally, in Section V we discuss our
conclusions.

2 In quantum link models, the continuous gauge op-

erators of SU(N) are embedded into a SU(2N)

algebra which are fermionic, and thus have finite-

dimensional Hilbert spaces. However, here one has

to show how to get the correct continuum physics

out of the embedded simulated SU(2N) model.

This can be done by adding an extra compact di-

mension to the model and then separately taking

this extra dimension correlation length to infinity

in a numerical study.
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II. DIGITIZING SU(2)

In this work we digitize the gauge group
by reducing the infinite set of SU(2) matrices
to a finite set A of size |A|. Each such digi-
tization scheme defines a different surjective
mapping f : SU(2)→ A. The elements of A
may or may not be elements of SU(2). We
write Af to denote the set A associated with
a given digitization f .

There are many different choices for the
digitization scheme f . Our objective is
to compare several reasonable and well-
motivated schemes which reproduce a set of
physical observables to a predetermined level
of accuracy with the smallest set A, thereby
requiring the least resources. In the following
we discuss the different digitization schemes
we will study in this work. We view our list as
a base for future improvement rather than an
exhaustive study of all possible digitizations.

In what follows, we parametrize any SU(2)
element in the fundamental representation as

g =

(
a+ ib −c+ id

c+ id a− ib

)
(1)

where a, b, c, and d are real numbers in
[−1, 1]. As the determinant of any SU(2)
matrix is unity, a2 + b2 + c2 + d2 = 1 and
there are only three independent real degrees
of freedom.

Since SU(2) and the sphere S3 are diffeo-
morphic, any SU(2) matrix may be written
as a (Euclidean) four-dimensional unit vec-
tor (a, b, c, d). In this sense, a digitization of
SU(2) is a finite set of points on or near S3.

A. Fixed-point Digitization

In typical lattice gauge theory simulations,
an SU(N) matrix is typically represented as
N2 complex numbers, with unitarity and the
unit determinant condition enforced by hand.
Real numbers are typically represented as 64-
bit double-precision floating point numbers
(or briefly, doubles). Hereafter, we refer to

this as the “matrix-of-doubles” representa-
tion of SU(Nc) matrices.

In a standard double, one bit s represents
the sign of the number, 11 bits represent the
integer exponent −1024 < e < 1023,3 and
the remaining 52 bits represent the normal-
ized significand. Denoting the bits of the
normalized significand as mi, the significand
1 ≤ S < 2 is a fixed-point number whose
value is given by

S = 1 +
∑
i=1

mi

2i
. (2)

Taken together, the value represented by the
64 bits of the double is (−1)s×S×2e. A dou-
ble can represent values as small as 2−1024 ∼
10−39 and as large as 21024 ∼ 1039, and the
values that a double can represent grow ex-
ponentially denser closer to zero. This rep-
resentation is not optimal. Most glaringly,
the real numbers in an SU(N) matrix are
bounded between −1 and 1, so half of the
values a double can represent (e > −1) are
wasted.

A less wasteful representation for the real
numbers in an SU(N) matrix is the simple
fixed-point numbers, with the most signifi-
cant digit starting at 1/2 [18]. Denoting the
bits of the fixed-point number as fi, with
f0 = s as a sign bit, the value represented
by p-bits of fixed-point precision is

(−1)s
p−1∑
i=1

fi
2i

(3)

which can represent 2p values evenly spaced
between −1 and 1. This distribution of possi-
ble values is better-suited for lattice data: the
distribution of values in typical lattice data
is closer to flat than to exponentially spiked
about zero4.

3 211 = 2048.
4 It is straightforward to plot the distribution of

SU(N) values and check that it is closer to flat

rather than being exponentially spiked at the ori-

gin.
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Our fixed-point truncation scheme is sim-
ply to convert the doubles of an SU(2) matrix
to p-bit fixed-point numbers. More specifi-
cally, we first convert the doubles a, b, and c
to 64-bit fixed-point numbers. To truncate
each number, we cut off the 64 − p least-
significant bits of each number and then, to
avoid having to implement fixed-point arith-
metic, convert them back to doubles. To
maintain the unit determinant condition to
p bits of precision, we compute d2 = 1− a2−
b2 − c2 at full precision (while keeping the
original sign of d) and then apply the same
truncation procedure to the resulting value.
It is important to note that this operation
is only unitary and gauge-invariant to p bits.
We return to this key point in in Section IV.

B. Indexed Mesh Digitization

The above fixed-point digitization scheme
has several drawbacks. First, representing an
SU(N) matrix using fixed-point values is still
wasteful. The independent real degrees of
freedom a, b, c in fixed-point representation
parametrize an even grid of (2p)3 points over
the box (−1, 1)3, but because |d| ≤ 1 and
d2 = 1−a2−b2−c2, all values of a2+b2+c2 > 1
are wasted (∼ 48% of all possible values).
Furthermore, in practice, all of the points lie
slightly off the unit sphere and are thus not
elements of SU(2), leading to violations of
unitarity and gauge invariance. In principle,
this issue is shared by high-precision floating
point numbers.

For a different digitization of the gauge
group, we may consider simply choosing some
finite subset of SU(2) elements as the digiti-
zation. It is easy to visualize SU(2) as a unit
three-sphere and imagine the subset as a dis-
crete “mesh” of v points lying on the sphere.
Each element of the subset may then be rep-
resented by its index in this subset. This re-
quires only ceil log2 v bits per gauge link5.

5 With N bits we can represent v = 2N numbers.

The most obvious choice for a mesh is a
discrete subgroup of SU(2). Abelian sub-
groups are clearly inadequate, since the non-
Abelian nature of the group plays a critical
role in its nonperturbative dynamics. Creutz,
Jacobs, and Rebbi considered this problem
previously from a slightly different perspec-
tive [6]. They found that the finite subgroups
of SU(2) with sufficient non-Abelian struc-
ture to avoid significant distortions of physi-
cal results are

1. the 24-element tetrahedral subgroup T̄ ,

2. the 48-element octahedral subgroup Ō,
and

3. the 120-element icosahedral subgroup Ī
or Ȳ .

Whether these subgroups are large enough
for practical use as a digitization scheme on a
quantum computer is an important question,
which we revisit in Sec. IV.

To get finer digitizations, we can simply
pick a larger subset of elements which are dis-
tributed approximately evenly across the unit
three-sphere. As the three-sphere is generally
not diffeomorphically equivalent to the poly-
tope, one cannot find a general exactly uni-
formly distributed mesh. Geodesic meshes
are the familiar solution to this problem in
three dimensions and generalize straightfor-
wardly to 4D.

We generate geodesic meshes using the
mvmesh R package [19]. To generate the
meshes, we use the “edgewise” algorithm,
which begins with a 4D octohedron then uni-
formly tesselates each simplicial face with
smaller simplices before “inflating” the re-
sulting mesh to an approximate sphere.
The package also offers a “dyadic” algo-
rithm, which also begins with the octohe-
dron, but recursively tesselates each simpli-
cial face with the simplest simplicial tesse-
lation. These dyadic meshes are more even,
but are defined for fewer different values of
mesh size v. For similar mesh sizes, all ob-
servables that we have examined agreed, so
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we only present results for edgewise meshes.
This approach is similar to the one consid-
ered in Ref. [20], but less sophisticated in
that we do not generate our meshes by subdi-
viding polytopes corresponding to the finite
subgroups of SU(2).

Multiplication in meshes must be imple-
mented using a lookup table [10, 20]. If
the mesh is a subgroup of SU(2), then mul-
tiplication is exact. If the mesh is not a
closed subset of SU(2), then the result of
multiplying two elements together must be
projected back onto the mesh. In this ex-
ploratory study we immediately return to the
usual matrix-of-doubles representation after
projecting links to meshes, and do not per-
form any operations in the indexed mesh rep-
resentation. As such, we are unable to quan-
tify the effect of projection after multiplica-
tion. Our approach is equivalent to using
lookup tables to compute traces of multiple
mesh elements exactly, as used in Ref. [20].

In this study, we project SU(2) matrices
from existing lattice gauge fields computed
in the ultrafine digitization to a coarser mesh
digitization. This introduces another poten-
tial source of error which compounds the er-
ror due to digitization alone, thus it is im-
portant to also consider how we perform pro-
jections. To get an idea for how much error
is due to projection rather than digitization,
we tried several different projection schemes,
described below.

1. L2 Norm

One can project into the mesh by replac-
ing the SU(2) matrix by its nearest neigh-
bor in the mesh. This requires a metric
on the group, for which we use the nat-
ural invariant complex matrix normed dis-
tance D(A,B) = ||A − B|| where ||M || =
Tr(M †M). This amounts to the L2 norm
∆a2 + ∆b2 + ∆c2 + ∆d2 between two points
on the three-sphere representation of SU(2).
Consequently, this projection scheme simply
chooses the nearest mesh point on S3.

2. Action-Preserving Rounding

Another idea is to engineer our projection
method to preserve physical quantities. Ide-
ally, we would like to project each link to the
mesh such that all Wilson loops on a lattice
are changed as little as possible. In practice,
measuring longer Wilson loops is computa-
tionally expensive and finding the exact best
projection is intractable, growing combina-
torically with volume V and number of mesh
points v. Instead, we define action-preserving
rounding (APR) as projection which tries to
preserve the local action density. The Wil-
son gauge action is a function of the plaque-
tte operator only (as defined in Eq. (6)), so
this amounts to trying to preserve the value
of individual plaquettes. One may think
of this method as trying to project gauge-
invariantly.

In practice, for each plaquette, we replace
one link at a time with an element from
the mesh, choosing the mesh element which
makes the new value of the plaquette clos-
est to the original undigitized value. There is
freedom in this algorithm to choose the order
in which one replaces the links in each pla-
quette. Computationally, it is most straight-
forward to replace all links in each dimension
before moving onto another. We arbitrarily
choose the order XY ZT and have not exam-
ined the effects of choosing different order-
ings.

III. LATTICE GAUGE THEORY

METHODOLOGY

This work uses standard techniques in the
lattice gauge theory literature; we refer the
reader to [21, 22] for a discussion of this
methodology. For this work, we generate
SU(2) lattice gauge field configurations us-
ing MILC code [23] adapted to run Nc = 2.
We use the Wilson plaquette action for our
discretization of the pure gauge action [24].
In each ensemble, we save a gauge configura-
tion after every 1000 Monte Carlo trajecto-
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µ̂

ν̂

x x+ µ̂

U †
ν(x) Uν(x+ µ̂)

Uµ(x)

U †
µ(x+ ν̂)

FIG. 1. The plaquette �µν(x) constructed from

the gauge links Uµ(x).

ries, where a trajectory is four overrelaxation
steps and one quantum heat bath step. The
typical autocorrelation times in our data set
are such that 1000 trajectories is sufficient to
decorrelate the observables that we consider.

We generated multiple different ensembles
upon which to compute observables. One is a
high-statistics zero-temperature ensemble of
1000 configurations with volume V = 124 at
β = 2. The remaining ensembles contain 100
configurations each. They include 38 finite-
temperature ensembles with V = 123 × 6
and additional 6 zero-temperature ensembles
with V = L4 for L 6= 12.

For this initial investigation we generate
“undigitized” ensembles with the standard
classical Monte Carlo ultrafine digitization,
which uses matrices of 64-bit doubles to rep-
resent gauge links. We do not generate Monte
Carlo ensembles with any other coarsely dig-
itized gauge group.

To study the effects of gauge group digiti-
zation, we take an undigitized ensemble and
project all gauge links to a coarser digitiza-
tion. For computational convenience, after
projecting to the coarser digitization we re-
turn the gauge links to the matrix-of-doubles
representation. On the resulting digitized en-

(a)

(b)

(c)

FIG. 2. The three perimeter six Wilson loops,

the (a) rectangle P1, the (b) parallelogram P2,
and (c) bent rectangle P3. Dashed lines are

drawn to guide the eye.

semble, we measure observables and deter-
mine how they have been affected.

A. Computed Physical Observables

This work focuses on the simplest gauge-
invariant objects, Wilson loops. A Wilson
loop is the trace of a product of gauge links

7



Ux,µ along a closed loop L

WL[U ] = Tr
∏

(x,µ)∈L

Ux,µ̂, (4)

where x denotes the sites in the loop and
µ̂ denotes the direction of the link. Wilson
loops are best understood physically through
their connection to the potential V (r) be-
tween static color charges. Careful discus-
sions of this connection are available in stan-
dard textbooks on lattice gauge theory [21,
22] as well as continuum field theory [25].
The present discussion only needs the fact
that a rectangular Wilson loop W of spatial
length r and temporal length t scales as [24]

W (t, r) ∼ e−tV (r). (5)

To extract the potential in practice, we
construct rectangular Wilson loops for many
different values of t and r. At fixed spatial
separation r′, we fit the lattice data to the
decaying exponential in Eq. (5) in order to
obtain a value for V (r′). Repeating this pro-
cess for all spatial separations yields the po-
tential V (r). These techniques are standard
in the lattice literature [21, 22]. This work
however studies the behavior of the potential
under different gauge group digitizations.

A Wilson loop of particular importance is
the plaquette, the building block of the Wil-
son plaquette gauge action [24]. The plaque-
tte is a 1 × 1 square loop of gauge links, as
depicted in Fig. 1 and is the simplest gauge-
invariant observable that can be measured on
a hypercubic lattice. More quantitatively, the
plaquette at site x on the 4D lattice with ex-
tent in the µ and ν directions is

�x,µν = Re Tr
[
Ux,µ̂Ux+µ,ν̂U

†
x+ν,µ̂U

†
x,ν̂

]
(6)

where Ux,µ̂ is the gauge link in the µ direc-
tion at site x. The three topologically dis-
tinct perimeter-six Wilson loops P1, P2, and
P3, depicted in Fig. 2, are longer cousins
of the plaquette. The ensemble expectation
values of these quantities are their averages

over all orientations, every site on the lat-
tice, and each gauge configuration in the en-
semble. The unimproved Wilson gauge ac-
tion is a function of the plaquette only, while
improved actions are typically functions of
longer Wilson loops, like the perimeter-six
loops. We include perimeter-six Wilson loops
in the study not just as additional observ-
ables, but also because we anticipate im-
proved actions may play a role in simulations
on quantum computers.

The Polyakov loop is the shortest Wilson
loop that winds around the temporal direc-
tion of the lattice once, i.e.,

Ωx = Tr
t=Nt∏
t=1

U(x,t),t̂ (7)

where U(x,t),µ̂ is the gauge link in the µ̂ di-
rection at site (x, t). In SU(Nc) pure gauge
theory, the Polyakov loop is an order parame-
ter for the finite-temperature deconfinement
transition [26]. Unlike for Nc > 2 where it
is generally complex, the Polyakov loop is
real-valued in SU(2). At low temperatures
when the system is in a confined phase, the
Polyakov loop is protected by a symmetry
and therefore vanishes. Increasing the tem-
perature of the system (corresponding to sim-
ulations at larger β or shorter Nt) eventu-
ally results in a phase transition where this
symmetry is spontaneously broken and the
Polyakov loop acquires a nonzero expectation
value, which is interpreted as a sign of decon-
finement.

B. Mesh digitization and importance

sampling

Before showing our results, we discuss
our expectations for how mesh digitization
will affect observables, based on properties of
Monte Carlo simulations of lattice field theo-
ries. A naive approach to simulating gauge
theories would generate SU(N) gauge field
configurations with gauge links randomly dis-
tributed by the Haar measure, and weight
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them by the action term e−S when comput-
ing observables6. Monte Carlo simulations
instead use importance sampling, which in-
cludes the e−S term as part of the mea-
sure when randomly generating configura-
tions. This induces correlations (over an
ensemble of gauge configurations generated
with importance sampling) between all gauge
links.

The Haar measure has the property that∫
dU TrU = 0 (8)

where U is an SU(N) matrix. The integral
Eq. (8) can be thought of as the expecta-
tion value of a Wilson loop in a theory where
e−S = 1. It follows that the correlations be-
tween gauge links due to the e−S term are
what allow for nonzero Wilson loops, and
that the expectation value of any Wilson loop
constructed from completely random SU(N)
matrices is zero. We thus expect that mak-
ing gauge links more random (or equivalently,
less correlated) will suppress the expectation
values of Wilson loops.

To interpret the systematic error seen
in our digitized results below in Sec. IV,
note that projecting an ultrafine-digitized
SU(2) matrix to a coarser digitization can
be thought of as displacing that matrix in
the group manifold. Displacements applied
to different gauge links are completely uncor-
related for fixed-point truncation and projec-
tion to meshes with the L2 scheme, and less
so for APR projection. We can thus think of
the effect of truncation or projection as ran-
dom kicks which add incoherent noise to the
gauge links. This noise washes out correla-
tions between gauge links induced by impor-
tance sampling.

Taken together, this suggests that projec-
tion to coarser meshes will disrupt the cor-
relations between gauge links induced by im-
portance sampling and thereby suppress the

6 This approach is intractably inefficient, as the vast

majority of possible gauge configurations are expo-

nentially suppressed by the action term.

0 5 10 15 20 25
bits per link

0.4

0.6

0.8

1.0

〈�
〉/
〈�
〉 SU

(2
)

SU(2)
L2
APR
Fixed

FIG. 3. The relative error in the plaquette

expectation value (defined in Sec. III A) as a

function of bits-per-link for different digitization

and projection schemes, normalized by its undig-

itized value. These results are computed on an

ensemble of 1000 configurations with V = 124

and β = 2. Representing an SU(2) link as a

mesh element requires log2 v bits, where v is the

number of mesh points. A fixed-point digitiza-

tion of precision p requires 3p bits. In the leg-

end, L2 labels projection to a mesh using the L2

norm, while APR labels projection using the ac-

tion (plaquette) preserving scheme, both defined

in Sec. II B. Circles indicate projections onto the

finite subgroups T̄24, Ō48, and Ī120.

expectation values of Wilson loops. When
projecting to finer meshes the correlations
between gauge links are damped but re-
main significant. However, when project-
ing to increasingly coarser meshes correla-
tions become small and the gauge links ap-
pear random within SU(2). In this case, it
becomes comparable to performing a path
integral with e−S = 1 and restricting the
group integration to those matrices in the
mesh, approximating the integral over SU(2)
in Eq. (8).

As discussed in Sec. IV, our results are
broadly consistent with this narrative. The
values of all Wilson loops that we measure
are increasingly suppressed by projections to
coarser digitizations. Furthermore, correla-
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tions over longer distance scales (i.e., large
scale structure in the gauge fields) should
be more robust against the addition of in-
coherent noise compared to correlations over
short distance scales (i.e., fine structure in
the gauge fields). We observe that for a par-
ticular digitization and projection scheme the
error induced in the static potential V (r) is
less than that induced in any of the shorter-
range observables that we examine. We also
see the error in the static potential V (r)
smoothly decreases as r increases (cf. Fig. 10
below).

IV. RESULTS

Here we empirically quantify the system-
atic error that is introduced by the differ-
ent digitization and projection schemes that
we have studied. We compare the different
schemes based on the number of bits required
to represent a gauge link, or “bits-per-link”.
If p is the number of bits of precision for each
fixed-point number (including the sign bit),
and it takes three fixed-point numbers to rep-
resent an SU(2) matrix parsimoniously, then
the bits-per-link is 3p for a fixed-point digi-
tization. To be explicit, in this scheme there
can be 23p (potentially bad7) different rep-
resentations of SU(2) matrices to p bits of
precision. On the other hand, for a mesh of
size v the number of bits-per-link is the num-
ber of bits required to index the mesh, log2 v.
Again, to give an explicit example, a mesh
with v = 4 SU(2) matrices requires a two-
bit index to provide 22 = 4 unique labels,
with one label for each matrix. In practice
we do not have fractional bits, so log2 v must
be rounded up to the nearest integer. We do
not do this here to keep our curves smooth
so that the reader may interpolate.

We now show our results. First, in
Fig. 3, we show the plaquette expectation

7 See Sec. II A about the wastefulness of the fixed-

point representation.

value against bits-per-link for different dig-
itization and projection schemes. We empir-
ically find that decreasing the bits-per-link
of our digitization schemes reduces the pla-
quette expectation value towards zero, con-
sistent with our arguments in Sec. III B.
The fixed-point scheme performs drastically
worse than the mesh-based schemes, requir-
ing at least twice as many bits to achieve
the same error. In part, this is due to the
wastefulness of the fixed-point representa-
tion as discussed in Sec. II A. Additionally,
each matrix is only unitary to p-bit preci-
sion in this scheme, in contrast to the mesh-
based schemes where each matrix is exactly
in SU(2). For the mesh-based schemes, pro-
jection with APR outperforms projection us-
ing the L2 norm, especially on finer meshes,
where the induced systematic error is less
than half the magnitude. We observe this
discrepancy throughout our data, which sug-
gests that the dominant source of error in our
data is projection, rather than inherent to
digitization. Projections onto discrete sub-
groups induce slightly less error than pro-
jections onto geodesic meshes of equivalent
size. However, projections to sufficiently fine
geodesic meshes outperform even the largest
discrete subgroup of SU(2).

Next, Fig. 4 shows the effects of projection
and digitization on the expectation values of
the three perimeter-six Wilson loops. These
observables are affected by digitization sim-
ilarly to the plaquette (cf. Fig 3). It also
appears that each operator at some specific
bits-per-link is suppressed by the same factor
consistent with the hypothesis of projection
adding incoherent noise to the gauge links, as
discussed in Sec. III B.

Fig. 5 shows the volume dependence of
the effect of projection and digitization on
the plaquette expectation value. We examine
L4 lattices varying L while keeping all other
physical scales (i.e., β) fixed. The L = 12
data of this plot is the same as is used in
Fig. 3. As can be observed, curves for differ-
ent volumes essentially overlap on this y-axis

10
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FIG. 4. The relative systematic error from digitizing the three topologically-distinct perimeter-six

Wilson loops (shown in Fig. 2) as a function of bits-per-link for different digitization schemes, nor-

malized to its undigitized value. These results are computed on an ensemble of 1000 configurations

with V = 124 and β = 2. Refer to Fig. 3 for more details.
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FIG. 5. The plaquette expectation value (defined in Sec. III A) as a function of bits-per-link for

different lattice volumes, normalized to the undigitized value for 164. These results are computed

on ensembles of 100 configurations with V = L4 and β = 2 (except for the V = 124, which has

1000 configurations). Refer to Fig. 3 for more details.

scale, indicating that the volume dependence
of the error is much smaller than the mesh
size dependence (for the range plotted). We
see similar volume independence in the three
perimeter-six Wilson loops. Although we

have not seen any significant volume depen-
dence, this result may be observable-specific
as the plaquette and perimeter-six Wilson
loops are short distance quantities which only
require a small volume in order to saturate.
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FIG. 6. The expectation value of the absolute value of the Polyakov loop (defined in Eqn. (7))

as a function of bare gauge coupling β = 2N/g2 for different mesh-based digitization schemes.

These results are computed on ensembles of 100 configurations with V = 123×6 and with β values

interpolated across the deconfinement transition. The data points are indicated by the presence of

error bars, and interpolated between for the readers convenience. Refer to Fig. 3 for more details.

In Fig. 6, we examine how different mesh
digitizations affect the Polyakov loop expec-
tation value as a function of the bare gauge
coupling β = 2N/g2. As with the other
observables, digitization and projection sup-
presses the Polyakov loop expectation value
at all β values. Figure 7 plots the relative
systematic error induced by the different dig-
itization schemes for the data shown in Fig. 6.
The Polyakov loop is close to zero in the
confined phase, and so we see predominantly
noise at lower βs. However, in the deconfined
phase, the curves in Fig. 7 appear to be flat,
indicating that the effect of the digitization
for each β value is simply an overall multipli-
cation by a constant smaller than one. Fig-
ure 8 shows the relative error averaged over
the range 2.4 ≤ β ≤ 2.6 as a function of bits-
per-link, making it clear that this multiplica-
tive constant approaches zero as the bits-per-
link are reduced, again consistent with our
arguments in Sec. III B. Figure 8 also shows
convergence to the undigitized result explic-
itly. Projection with APR produces less error

than with the L2 norm and appears to con-
verge to the undigitized value quicker, but
our data are unable to determine whether
any systematic error survives in the limit of
large bits-per-link for either scheme. We see
no error due to digitization and projection in
the critical value of β where the system de-
confines, a positive indication as projection
should not change the phase dynamics.

Finally, we turn to the static potential.
Fig. 9 shows the static potential aV (r) as
a function of distance r/a, computed in the
usual lattice QCD ultrafine digitization. Due
to the large lattice spacing of this ensemble
(i.e., the strong bare coupling), the potential
is dominantly linear in all distance scales in
our simulation. Above r/a ≈ 6, the data be-
come unreliable due to the exponentially de-
creasing signal in the Wilson loop as shown
in Eq. (5). We restrict our subsequent dis-
cussion and figures to the region r/a . 6.

Fig. 10 shows the digitization error in the
static potential as a function of distance. The
most interesting feature of this figure is the
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distance dependence. For any given mesh
size, within our statistical precision, the error
induced by digitizing V (r) decreases with dis-
tance until saturating around r/a ≈ 3 where
our statistical error becomes appreciable. It
is also worth noting that the static potential
gets larger as the bits-per-link gets smaller, a
consequence of the expectation values of Wil-
son loops approaching zero for projections to
coarser digitizations. The APR projection
outperforms the L2 projection at short dis-
tances. At longer distances r/a & 3 the situ-
ation is not as clear: APR appears to perform
slightly better, but this is not statistically sig-
nificant for finer meshes.

Fig. 11 gives the digitization error in the
static potential as a function of bits-per-link.
There are several interesting features of this
data. For a fixed number of bits-per-link,
the systematic error from digitizing the static
potential is much smaller than the system-
atic error in the plaquette, Wilson loops, or
Polyakov loop. For example, with six bits-
per-link the systematic error in the static
potential at r/a = 2.0 can be as low as
6%, while the other quantities have at least
15% error. As expected, the digitized po-
tential converges to the usual lattice QCD
ultrafine-digitized result as the mesh becomes
sufficiently large, with as few as 10 bits-per-
link being indistinguishable from the ultra-
fine digitization. As expected from Fig. 10,
we observe less systematic error at larger dis-
tances.

Figures 10 and 11 convey that long-
distance physics is, evidently, less sensitive
to digitization. In Sec. III B we argue that
projecting to a coarse digitization is roughly
akin to adding uncorrelated random noise to
all the gauge links. The large effect at short
length scales, approaching the Coulombic re-
gion of the potential, is consistent with what
we have already observed in the plaquette
and perimeter-six Wilson loops. At longer
distances, we see a much smaller effect. It
appears that correlations over longer length
scales are less susceptible to the addition of

incoherent noise, consistent with our argu-
ments in Sec. III B. The statistically insignif-
icant difference between APR and L2 projec-
tions at long distances suggests that projec-
tion is no longer the dominant source of error
at long distances. If this is the case, then the
error purely due to digitization is already at
the sub-percent level at 9 bits-per-link.

In our finite-temperature data, we find
that the induced error does not depend signif-
icantly on β. However, the coupling depen-
dence of digitization effects could be quali-
tatively different for zero-temperature data.
To check this, we use an ensemble with β =
3 and V = 164, and repeat our examina-
tion of the effects of digitization and pro-
jection on the plaquette, the perimeter six
Wilson loops, and the static potential. As
shown in Appendix A, the results indicate
that there is no significant β dependence for
zero-temperature data either.

V. DISCUSSION AND CONCLU-

SIONS

In this work we have empirically quanti-
fied the systematic error associated with dig-
itizing the SU(2) gauge group in different
ways using lattice gauge theory on classical
computers. Section IV contains the main re-
sults of this work. Figs. 3, 4, 8, and 11 show
the relative systematic error in the plaquette,
the perimeter-six Wilson loops, the Polyakov
loop, and the static potential as a function
of the (qu)bit requirements, for each digi-
tization and projection scheme, in units of
bits-per-link. Across all observables, we ob-
serve several behaviors consistently. Projec-
tion to a coarser digitization suppresses the
values of Wilson loops, consistent with our
arguments in Section III B. For a given mesh,
action-preserving rounding induces less error
and asymptotes more quickly to the undigi-
tized result than L2 norm projection. Pro-
jecting to a subgroup mesh appears to in-
duce less error than projecting to a geodesic
mesh of similar size, but the finer geodesic
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FIG. 7. The relative systematic error from digitizing the absolute value of the Polyakov loop as a

function of β = 2N/g2 for different mesh-based digitization schemes. Note that the denominator

of the y-axis is the undigitized value for each ensemble. This data is the same as in Fig. 6. Refer

to Fig. 6 for further details.

meshes outperform the largest discrete sub-
group of SU(2). Finally, we also observe that
long-distance physics is less sensitive to dig-
itization and projection than short-distance
physics.

Taken together, our results indicate that
O(10) bits per link suffice to capture the es-
sential physics of SU(2) gauge theory. Com-
pared to modern lattice simulations, which
default to 512 bits-per-link using double-
precision floating-point numbers, this is an
improvement of nearly two orders of magni-
tude. This observation has important impli-
cations for the types of physics that will be
accessible to NISQ era quantum computers.

Moreover, the digitization and projection
schemes discussed above amounts to forms of
lossy compression for gauge links. The dig-
itization error shown in this work is smaller
than other dominant sources of error in many
current classical lattice gauge theory calcu-
lations, and mesh-based schemes offer more
than an order of magnitude compression over
the commonly-used floating point representa-
tions. Thus, this work may have applications

in modern classical lattice calculations if link
compression can be used to overcome band-
width bottlenecks.

We found that mesh-based schemes dra-
matically outperform the truncated fixed-
point scheme, achieving similar accuracies
with less than half the bits-per-link. Some
of this may be attributed to the wastefulness
of the fixed-point representation as discussed
in Sec. II B, but this only accounts for a sin-
gle bit of the difference. More importantly,
each fixed-point representation matrix is only
unitary to p bits of precision, and unitar-
ity is a key building block of gauge theories.
This emphasizes an important lesson: dif-
ferent digitization schemes are possible, but
standard principles of quantum physics re-
main a guiding light for constructing optimal
digitizations as new technology is explored.8

8 It was also necessary to enforce gauge invariance

and locality when applying machine learning tech-

niques to lattice QCD in order to produce results

[27].

14



4 6 8 10
bits per link

0.2

0.4

0.6

0.8

1.0
A

ve
ra

ge
〈|Ω
|〉/
〈|Ω
|〉 S

U
(2

)

SU(2)
L2
APR

FIG. 8. The relative systematic error from

digitizing the absolute value of the Polyakov loop

as plotted in Fig. 7, here averaged over β in the

range from 2.4 to 2.6, as a function of bits-per-
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If gauge links are represented in an in-
dexed mesh representation, multiplication
must be implemented using lookup tables.
There is existing work which considers how
to do this efficiently on classical computers
[10, 20]. An important question for future
research is whether this can be easily and effi-
ciently implemented on a quantum computer.

In this study, we examined SU(2) pure
gauge theory. However, we are obviously
more interested in QCD, whose gauge group
is SU(3). Repeating this study for SU(3) pure
gauge theory and for theories with dynami-
cal fermions are obvious next steps. We note
that previous work which used indexed mesh
digitizations to simulate SU(3) pure gauge
theory found that a mesh with 1080 elements
was too coarse to avoid artifact phases near
interesting values of β, but a mesh with 38880
elements was viable [9]. Translating these
numbers to our bits-per-link metric, this sug-
gests that∼ 10 bits is insufficient to represent
an SU(3) gauge link, but ∼ 15 bits may be
enough.

As noted above, we do not generate
coarsely digitized ensembles. Systematically

2 4 6 8 10
r/a

1

2

3

4

a 
V(

r)
FIG. 9. The lattice static potential (defined

in Eq. (5)) as a function of distance in lattice

units. The data in this plot was generated using

an ensemble of 1000 configurations with V = 124

and β = 2.0. We refer readers to the text for

further details.

studying the error induced when simulating
using a coarse digitization is an interesting
and complementary direction for future work.
In this study, we generate ensembles in the
standard lattice ultrafine digitization, then
project to coarser digitizations. This intro-
duces error specific to projection, which is
difficult to disambiguate from error due to
digitization alone. Generating data directly
in a coarse digitization does not require pro-
jection, and thus would allow estimation of
digitization error without this confounding
factor. However, simulating with coarse digi-
tizations would introduce new errors that our
method is immune to, and it may be that
these errors are large (cf. the lattice artifact
phases seen by Refs. [7–9]). Thus, coarsely
digitized simulation and our approach of pro-
jection can provide independent probes of
digitization error.

Our results are already very promising,
but it is likely possible to reduce (qu)bit
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requirements even further. One possible
method is by using better meshes and projec-
tion schemes. We observed that projecting to
discrete subgroups of SU(2) induced less er-
ror than projecting to geodesic meshes. This
suggests that meshes made by interpolat-
ing between points in discrete subgroups (as
proposed in Ref. [20]) might perform better
than geodesic meshes. Our action-preserving
rounding method for projecting onto meshes
performs substantially better than projection
using the L2 norm, even on fine meshes where
one might expect the projection method to
matter less. Pushing further and develop-
ing more sophisticated action-preserving or
gauge-invariant projection schemes would be
an interesting direction for future work. This
is a particularly interesting direction for fur-
ther thought when considered in the context
of using lattice simulations on classical com-
puters to prepare states for quantum comput-
ers, and for gauge link compression for high-
performance computing.

Another way of reducing (qu)bit resource
requirements is by removing non-physical de-
grees of freedom from the theory. The au-
thors of [28] show that when using an eigen-
state truncation method the vast majority of

states in the naive finite-dimensional Hilbert
space are unphysical. There they explore how
to construct the theory on the physical sub-
space alone. It would be worthwhile to ex-
plore if such techniques could also be applied
to mesh digitizations. Similarly, implement-
ing a digitization scheme which uses gauge-
fixing could also reduce (qu)bit resource re-
quirements. Exploring the mapping between
the eigenstate truncation method described
in Refs. [11–13] and the group-value digitiza-
tion scheme explored in this work may pro-
vide further insights.

Our work is particularly applicable to the
quantum link formulation of SU(N) gauge
theories (with matter fields) on quantum
computers [29, 30]. In these formulations,
the SU(N) link matrices build the quantum-
link Hamiltonian. Our results for four-
dimensional pure gauge SU(2) indicate that
only a small number of (qu)bits per link may
be needed to achieve accurate results in these
theories. If QCD is formulated on a quantum
computer in this way, future work is needed
to empirically quantify the (qu)bit require-
ments of these SU(N) implementations.
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We refer the reader to Fig. 9 for further details on the ensemble data used to generate this plot.

Fig. 3 contains additional details on terminology.
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FIG. 12. Caption identical to Fig. 3 except that

these results are computed on an ensemble of 100

configurations with V = 164 and β = 3.

Appendix A: Digitization at β = 3

In this appendix we present the results of
digitizing a weaker coupling ensemble (com-
pared to the β = 2 ensembles in Sec. IV)
which contains 100 configurations with β = 3
and V = 164. Digitizing the plaquette with
β = 3 is shown in Fig. 12. In Fig. 13, the
digitization of the perimeter six Wilson loops
is given. Figs. 14−16 show how digitization
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effects the β = 3 static potential. Unlike in
Fig. 9, the Coulombic part of the static po-
tential is clearly visible in Fig. 14, indicating
that the lattice spacing is shorter for this en-

semble. All plots are qualitatively and quan-
titatively similar to those shown in Sec. IV
with β = 2.
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FIG. 13. Caption identical to Fig. 4 except that these results are computed on an ensemble of 100

configurations with V = 164 and β = 3.
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FIG. 14. Caption identical to Fig. 9 except

that these results are computed on an ensemble

of 100 configurations with V = 164 and β = 3.
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FIG. 15. Caption identical to Fig. 10 except that these results are computed on an ensemble of

100 configurations with V = 164 and β = 3.
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FIG. 16. Caption identical to Fig. 11 except that these results are computed on an ensemble of

100 configurations with V = 164 and β = 3.
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