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Quantum annealing in a real device is necessarily susceptible to errors due to diabatic transitions
and thermal noise. Nested quantum annealing correction is a method to suppress errors by using
an all-to-all penalty coupling among a set of physical qubits representing a logical qubit. We show
analytically that nested quantum annealing correction can suppress errors effectively in ferromag-
netic and antiferromagnetic Ising models with infinite-range interactions. Our analysis reveals that
the nesting structure can significantly weaken or even remove first-order phase transitions, in which
the energy gap closes exponentially. The nesting structure also suppresses thermal fluctuations by
reducing the effective temperature.

I. INTRODUCTION

There has been much interest in developing methods
based on quantum mechanics to solve classically hard
problems. Among such methods, quantum annealing
(QA) emerged as a quantum metaheuristic to solve hard
optimization problems [1–7]. The algorithm attempts to
find a configuration of variables that minimize a cost
function, or a problem Hamiltonian, by carefully ex-
ploiting the effects of quantum fluctuations. As such,
a physical implementation of the algorithm in quantum
hardware is of particular interest, since it might lead
to quantum speedups over algorithms running on clas-
sical hardware. Following pioneering QA experiments in
naturally occurring disordered magnets [4, 5], theoretical
proposals [8, 9] inspired the construction of commercial,
programmable quantum annealing processors using su-
perconducting flux qubits by D-Wave Systems Inc. [10–
17]. These processors implement the transverse field Ising
model and have been the subject of intense independent
scrutiny [18–25], as the search for examples of quantum
speedup using them continues [26–38]. They have also
inspired alternative approaches to QA with more coher-
ent but far less numerous flux qubits [39, 40]. Alterna-
tive approaches that implement the transverse field Ising
model using atomic systems such as ion traps [41, 42],
quantum gas microscopes [43, 44], and Rydberg atoms
[45, 46] are also being actively pursued, primarily for the
purpose of quantum simulation of interacting quantum
spin systems, but such systems are likely to be flexible
enough to also be used eventually for solving combinato-
rial optimization problems [47, 48].

The idea of using quantum hardware to realize algo-
rithmic speedups of course has deep roots in quantum
computation [49, 50], which provided the first theoret-

ical examples of quantum speedups [51–54]. Adiabatic
quantum computing (AQC), or the quantum adiabatic
algorithm [3, 55], is a QA-inspired idea that formalizes
the requirements for a quantum speedup using the quan-
tum adiabatic theorem [56, 57]. This theorem (or set
of theorems [58–65]) guarantees that the minimum of a
problem Hamiltonian can be found by an adiabatic pro-
cess in a closed system, provided the computational time
grows inversely with a small power (typically 2 or 3) of
the minimum gap encountered during the adiabatic evo-
lution. If this gap closes more slowly with the problem
size than the best classical algorithm for the same prob-
lem, then the adiabatic algorithm provides a quantum
speedup; otherwise it may result in a slowdown (the adi-
abatic theorem only provides a sufficient condition). Ex-
amples of both types of scenarios are known and have
been reviewed in Ref. [66].

Just like any other quantum information processing
method, the performance of real quantum annealers is
hindered by decoherence and control errors. The former
are due to the presence of the omnipresent (thermal) bath
interacting with the physical device, and the latter are
due to the analog nature of the computation. Therefore,
the development of error correction techniques is crucial
for the scalability and ultimate usefulness of QA hard-
ware. Various error suppression methods for AQC have
been proposed and studied theoretically [67–78]. An er-
ror correction approach that can be directly implemented
on the current generations of quantum annealers, called
quantum annealing correction (QAC), has been devel-
oped and tested experimentally [79–84].

In QAC, logical qubits are redundantly encoded into
a larger number of physical qubits. Energy penalties
which commute with the problem Hamiltonian but anti-
commute with undesired spin-flips occurring late in the
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computation (errors) are then introduced in order to in-
duce the physical qubits representing each logical vari-
able to represent it consistently throughout the anneal.
At the end of the anneal a decoding procedure is per-
formed, which enables the recovery of logical ground-
state candidates even if errors did accumulate during the
anneal and the final state is not in the code space. Three
types of QAC have been introduced and studied. The
first uses designated penalty qubits to impose the en-
ergy penalty [79–81] [which we refer to as “penalty QAC”
(PQAC)], while the other two use no designated penalty
qubits but connect physical qubits to impose penalties
against excitations [82–84]. Of these, one uses a two-level
grid structure to connect physical qubits [82], while the
other uses a nesting of complete graphs for this purpose.
Here we are primarily interested in the latter, known as
“nested QAC” (NQAC). Experiments using four differ-
ent generations of the D-Wave quantum annealing de-
vices show that all three methods increase the success
probability of QA significantly [79–84]. In one case the
scaling of the time-to-solution in the case of random Ising
problems was shown to improve using PQAC [80], which
to date is the only demonstration of error correction im-
proving the algorithmic performance of a quantum infor-
mation processing device.

Previously, we used a mean field analysis to study the
performance of PQAC for the transverse field Ising model
in both the ferromagnetic and Hopfield model cases, the
latter involving randomness and frustration [85, 86]. We
showed analytically that PQAC can prevent or ‘soften’
a quantum phase transition, depending on its order.
In PQAC, the designated penalty qubits behave as a
source of external fields. At zero temperature, this makes
the paramagnetic phase unstable and induces symmetry
breaking from the paramagnetic phase to the ferromag-
netic or Hopfield phase. At finite temperature, the para-
magnetic phase is not destabilized by the penalty term.
Nevertheless, the effective free energy barrier between the
two phases becomes significantly smaller as the penalty
coupling increases, thus enhancing tunneling. The fact
that PQAC improves computational results including the
zero temperature case suggests that PQAC protect quan-
tum states not only against the thermal noise but also
diabatic transitions which can be a source of errors even
in the absence of noise.

There have been various works relating the order of
phase transitions and the behavior of energy gap closing.
For instance, in the case of uniform infinite range ferro-
magnetic models which we study in this paper, the order
of the interaction p and the behavior of the gap closing
are related: for p = 2 the phase transition is of second or-
der and the energy gap closes polynomially, whereas for
p ≥ 3 the phase transition is of first order and the energy
gap closes exponentially [87]. While this type of relation
between the order of the phase transitions and the behav-
ior of the energy gap closing is common in many systems,
there are some known exceptions in which the energy gap
closes polynomially in a first order phase transition [88–

91].
Here, we use the same approach to analytically study

NQAC at zero and finite temperatures. Because of the
high connectivity in NQAC, the mean field approach is
particularly suitable. We further extend our error cor-
rection method to combine PQAC and NQAC.

The remainder of this paper is organized as follows.
We first review NQAC in Sec. II. In Sec. III and Sec. IV,
we study the phase diagrams of ferromagnetic systems af-
ter NQAC by analyzing the free energy and saddle point
equations. Sec. III focuses on a model of a polynomial
gap closing and Sec. IV focuses on a model of an expo-
nential gap closing without NQAC. We show how NQAC
changes the properties of phase transitions depending on
the type of interactions. In Sec. V, we study the va-
lidity of the mean field analysis in encoded NQAC. We
conclude with a discussion in Sec. VI. Details of vari-
ous calculations and additional results are given in the
Appendix.

II. HAMILTONIAN FOR NESTED QUANTUM
ANNEALING CORRECTION

Many combinatorial optimization problems can be for-
mulated in terms of a classical Ising Hamiltonian [92],

HZ = −
∑
i

hiσ
z
i −

∑
(i,j)

Jijσ
z
i σ

z
j , (1)

where i = 1, 2, . . . , N are site as well as qubit indices,
{hi} the local fields, {Jij} the Ising couplings, and σαi is
the α ∈ {x, y, z}-component of the Pauli matrix acting on
the i-th qubit. The couplings {hi} and {Jij} are chosen
so that the ground state of HZ represents the solution
to the optimization problem we wish to solve. Quantum
fluctuations are induced by a driver Hamiltonian. We
consider the standard form,

HX = −
N∑
i=1

σxi , (2)

whose ground state is easy to prepare, and which has a
small but non-vanishing overlap with any eigenstate of
HZ . The time-dependent Hamiltonian is given by

H = A(t)HX +B(t)HZ ≡ B(t)
(
Γ(t)HX +HZ

)
. (3)

The initial state at t = 0 is the ground state of the driver
Hamiltonian [A(0) = 1, B(0) = 0]. We adiabatically re-
duce quantum fluctuations to reach the problem Hamil-
tonian at the final time t = tf [A(tf ) = 0, B(tf ) = 1].

Fluctuations induced by the driver term are desirable
but are deliberately made less likely towards the end of
the anneal by decreasing the magnitude of the driver
term. However, undesirable bath-induced fluctuations
can cause bit-flip errors at all times, including when
A(t) � B(t), which generally result in transitions out
of the ground state. To reduce the likelihood of such un-
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desirable fluctuations we use NQAC to encode the Hamil-
tonian [83]. The basic idea is to (1) increase the energy
cost of an undesirable bit-flip by creating ferromagneti-
cally coupled physical qubits, (2) decode any bit-flip er-
rors that might have nevertheless taken place.

We label a physical qubit within the i-th logical qubit
by (i, c), with the logical qubit index i = 1, · · · , N and
the nesting index c = 1, · · · , C. The physical prob-
lem Hamiltonian (1) is first promoted to a logical prob-
lem Hamiltonian, whose Pauli matrices σzi represent the
logical binary (±1) variables of the given optimization
problem. All indices in the logical problem Hamiltonian
are then mapped to physical qubit indices as σzi 7→ σzic,
Jij 7→ J(i,c)(j,c′), and hi 7→ h(i,c). Logical qubits i and
j interact with strength Jij . An obvious way to realize
this is to connect all physical qubits (i, c) and (j, c′) with
the same strength, and correspondingly rescale the local
fields:

J(i,c),(j,c′) = Jij , ∀c, c′ ∀i 6= j (4a)

h(i,c) = Chi, ∀c, i . (4b)

The need to rescale the local fields by C can be viewed
to some extent as a deficiency of NQAC since it requires
growing the energy scale; it can of course be avoided by
restricting ourselves to problem instances without local
fields. Reducing the energy scale by rescaling J to J/C
is not necessarily preferable, since in practice, with finite
precision couplers as is the case with the current genera-
tion of commercial quantum annealers, this means a loss
of precision.

Next is the penalty term. In NQAC we couple all C
physical qubits of logical qubit i ferromagnetically with
strength γ,

J(i,c),(i,c′) = γ, ∀c 6= c′ ∀i , (5)

so that bit-flip errors are suppressed by an energy gap.
As long as no more than b(C − 1)/2c of the qubits have
flipped, we can faithfully decode the logical qubit. In
other words, we can equivalently view this procedure
as encoding a logical qubit into a distance-C repetition
code. The N penalty terms (one for each logical qubit)

Hpen,i = −γ

(
C∑

ci=1

σzici

)2

= −γ

[
CI + 2

C∑
c<c′

σzicσ
z
ic′

]
(6)

are added to the total Hamiltonian. Note that this sum
includes C identity terms which merely shift the total
energy, and that we are double-counting the interactions;
the latter means that the physical penalty strength is
actually 2γ. Note further that each σzicσ

z
ic′ term can be

understood as an element of the stabilizer of the distance-
C repetition code; because of the complete graph (KC)
connectivity of the physical qubits, each single-qubit bit-
flips error σxic anticommutes with (is detected by) C −

1 such terms, which is another way to understand the
energy penalty using the ideas of error suppression for
AQC [67–76].

Since current QA devices do not extend control to the
driver Hamiltonian, which is fixed as a simple sum over
single-qubit σx terms, the new driver Hamiltonian re-
placing Eq. (2) is simply

HX = −
N∑
i=1

C∑
ci=1

σxici . (7)

Note that this means that the driver Hamiltonian ap-
pears as an ‘error’ detected by the penalty Hamiltonian.
This is clearly an undesirable aspect of NQAC, but as
we shall see it will fortunately not completely spoil the
method’s error suppression ability. Intuitively, this can
be understood as being due to the fact that the sup-
pression effect is small when fluctuations are deliberate
[i.e., when B(t) � A(t)]. Conversely, the suppression
effect peaks when the deliberate fluctuations are small
[i.e., when B(t)� A(t)], and this is exactly when unde-
sirable fluctuations would be potent if left unsuppressed.
The potentially problematic regime is when B(t) ≈ A(t);
our analysis below reveals that the problem is in fact not
severe. Finally, note that to also encode the driver Hamil-
tonian using the logical operators of the repetition code
(as in the AQC schemes [67–76]) would require mapping
σxi 7→ ⊗Cc=1σ

x
ic, which is unfeasible.

III. SECOND-ORDER TRANSITION IN THE
FERROMAGNETIC MODEL

Section summary: We first consider a mean-field anal-
ysis of an NQAC implementation of a fully ferromagnetic
system with two-body interactions. As we shall see, this
system undergoes a second order phase transition during
the anneal. This means that the energy gap closes poly-
nomially and as a consequence the required annealing
time is polynomial. Our analysis in this section repro-
duces in more detail some of the results first reported in
Ref. [83]. The main result is that while the penalty cou-
pling does not remove polynomial gap closing, it reduces
the effective temperature as T/C2.

A. Problem formulation and the free energy

We choose the logical problem Hamiltonian to be the
infinite-range ferromagnetic Ising model with two-body
interactions,

HZ = − J
N

(∑
i

σzi

)2

. (8)
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The encoded Hamiltonian takes the following form ac-
cording to Eq. (4),

H =− ΓHX − J

N

N∑
i 6=j

C∑
ci,cj=1

σziciσ
z
jcj −

N∑
i=1

Hpen,i (9a)

=− ΓHX −NJ

(
1

N

N∑
i=1

C∑
ci=1

σzici

)2

− λ
N∑
i=1

(
C∑

ci=1

σzici

)2

(9b)

where

λ ≡ γ − J/N (10)

and from now on HX is as given in Eq. (7). We are
interested in the large N limit in this work while keeping
J fixed, so that γ → λ. We shall thus refer to λ as the
effective penalty strength. Note that in Eq. (9a) we have
rescaled the logical couplings, as is customary in mean-
field analyses, to ensure that the total Hamiltonian is
extensive in N . Our goal is to understand the free-energy
landscape and the effects of the nesting level C from the
point of view of mean field theory.

For a given temperature T = 1/β and a Hamiltonian
H, the partition function is given by Z = tr e−βH (we
use units where kB = ~ = 1). The free energy per sin-
gle logical qubit is defined by F = −(T/N) logZ. We
take the following standard steps. First, we apply the
Suzuki-Trotter decomposition [93] to rewrite the parti-
tion function in path integral form. Then we introduce
Hubbard-Stratonovich fields mi for each logical qubit and
m for the total magnetization,

S
z(x)
i =

1

C

C∑
c=1

σ
z(x)
ic , Sz =

1

N

N∑
i=1

Szi (11a)

mi = 〈Szi 〉 , m = 〈Sz〉 =
1

N

N∑
i=1

mi, (11b)

where brackets denote the standard thermal average. We
make the static approximation, i.e., we take the fields mi

and m to be constant along the Euclidean time direction.
This is known to give the exact solution in the case of
without nesting (C = 1) [94, 95]. The path integral is
dominated by its saddle point for m and mi when N and
C are large. A practically interesting case is N � C > 1,
which corresponds to exploring the effects of NQAC on
a computational problem with a large number of logi-
cal variables. We expect the mean field approximation
within each logical qubit to be reasonably good already
for moderately large C. By following the steps outlined
above (see Appendix A for a detailed derivation) we find

that the free energy is given by

F = JC2m2 +
λC2

N

N∑
i=1

m2
i+ (12)

− C

βN

N∑
i=1

log
[
2 cosh

(
β
√

4C2(Jm+ λmi)2 + Γ2
)]

.

We are interested in extracting the effect of nesting on
the physical parameters of the problem. In particular, we
would like to determine how C rescales the temperature
and the transverse field strength. Note that the quantum
effects are captured by the last term in this free energy
expression, since it explicitly contains the transverse field
through its dependence on Γ.

1. The low temperature limit

In the low temperature limit β →∞,

F → JC2m2 +
λC2

N

N∑
i=1

m2
i+

− 1

N

N∑
i=1

√
4(JC2m+ λC2mi)2 + (ΓC)2.

(13)

One can see that, in this low temperature limit, the effect
of C levels of nesting is equivalent to rescaling all the
parameters appearing in the free energy F as follows:

β → β, J → JC2, λ→ λC2, Γ→ ΓC , (14)

which can be interpreted as a boost of the problem cou-
plings by a factor of C2 while the driver term is boosted
by a factor of C only. The fact that the driver term scales
differently than the problem Hamiltonian is due to the
aforementioned fact that, in QAC, the driver term is not
encoded.

Alternatively, since the partition function is Z =
e−NβF , we can interpret the effect of nesting as being
equivalent to the following rescaling

β → βC2 J → J, λ→ λ, Γ→ Γ/C . (15)

This can be understood as an effective temperature re-
duction by a factor of C2, although at the same time the
driver term is reduced by a factor of C, which corresponds
to a suppression of quantum fluctuations; this once again
reflects the price we have to pay for not encoding the
driver Hamiltonian. The problem can be alleviated by
rescaling Γ to CΓ by either increasing A(t) or decreasing
B(t) [recall from Eq. (3) that Γ(t) = A(t)/B(t)], but this
presents a problem similar to the one discussed in relation
to the rescaling of the local field hi following Eq. (4).

The effective temperature reduction was one of the
main conclusions first reported in Ref. [83], and we shall
expand on it here: it is possible to ‘trade’ physical qubits
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in exchange for a lower effective temperature. This pro-
vides an important mechanism for reducing thermal ex-
citations occurring in physical implementations of quan-
tum annealing. The nested structure of NQAC takes
advantage of a more complex encoding to achieve bet-
ter error correction than PQAC, in which the free energy
is only linearly proportional to the number of physical
qubits per logical qubit (the parameter C in NQAC) [86].

2. Arbitrary temperature

We can derive the saddle-point equation for mi directly
from Eq. (12) without taking the low temperature limit.
The result is:

mi =
2(Jm+ λmi)√

4(Jm+ λmi)2 + (Γ/C)2

× tanh
[
(βC)

√
4(Jm+ λmi)2 + (Γ/C)2

]
. (16)

This shows that the effect of nesting is equivalent to
rescaling the temperature and the transverse field as fol-
lows:

β → βC, Γ→ Γ/C. (17)

This rescaling is general and dictates the scaling of the
critical points on the phase diagram as a function of the
nesting level C. We can interpret it as showing that
NQAC suppresses both thermal and quantum fluctua-
tions.

Interestingly, Eq. (17) gives a result that is different
from what we found in the low temperature limit, where
we had β → βC2. This shows that NQAC is more effec-
tive at low temperatures.

How do we reconcile these different results? First, note
that there is in fact no inconsistency, since in the low tem-
perature limit the β dependence in Eq. (16) disappears,
so the saddle point equation makes no statement about
the scaling of the temperature in this limit. Moreover,
the scaling of J , γ, and Λ implied by Eqs. (14) and (15)
agree with their respective scaling from the saddle point
equation (16).

More generally, in a physical system, it is the free en-
ergy (or equivalently the partition function) that deter-
mines the probability of finding certain states. Thus,
Eq. (12) is to be understood as the principal relation.
However, it does not appear to be possible to directly
extract the scaling relations from it, which is why we
must resort to either the low temperature limit or the
saddle point approximation.

It is useful to clarify the validity of the two correspond-
ing scaling relations. The scaling in Eqs. (14) and (15)
is the scaling of the free energy or the partition function
at low temperature. This means that any physical tran-
sition rates, or the probability of finding certain states,
should follow this scaling at low temperature. On the
other hand, Eq. (17) is the scaling of the saddle point so-
lution. While this is valid for any temperature, it is not

valid away from the saddle point and therefore it is not
the scaling of the transition rates. Neither of the scalings
are the exact scaling of the free energy in Eq. (12).

B. Second-order phase transition

As we assume J > 0 and λ > 0, all interactions are fer-
romagnetic, and the configuration that minimizes the free
energy has all mi equal: mi = m ∀i. The saddle point
equation then becomes simply that of the standard mean-
field Ising model in a transverse field. The solutions of
the saddle point equation (16) with mi = m depend on
the scaled temperature βC and the scaled transverse field
Γ/C. At a large temperature or a large transverse field,
thermal or quantum fluctuations becomes large, and the
order parameter vanishes: mi = m = 0. As the temper-
ature and the transverse field decrease, there is a second
order phase transition to the ordered phase with mi = m,
which is doubly degenerate.

Figure 1 shows both sides of Eq. (16) with mi = m for
various values of Γ/C at J = 1, λ = 1.5, T/C = 0.02.
If Γ/C is below the critical value Γ ' 5, there are three
intersections. At and above the critical point, the inter-
section is only at m = 0, representing the paramagnetic
phase. Making C larger at fixed Γ moves the m 6= 0
intersections closer and closer to m = ±1, i.e., favors
correct solution to the (in this case trivial) optimization
problem.

The critical values of βC and Γ/C satisfy

Γ

C
= 2(J + λ) tanh

[
βC

(
Γ

C

)]
. (18)

At zero temperature, the critical Γ is Γc = 2C(J + λ),
with the ferromagnetic (ordered) phase arising when Γ <
Γc. This implies that both a larger penalty γ and a larger
nesting level C favor the ordered phase. However, it is
also clear that the role of the effective penalty is simply
to shift the coupling J to J + λ, which is a consequence
of having set m = mi. We will discuss this in more detail
in Sec. IV.

Clearly, the parameters in Eq. (18) obey a scaling rela-
tion. If {Γ, β, (J +λ)} is a solution, then {Γa, β/a, a(J +
λ)} is also a solution for arbitrary a > 0. Thus it suf-
fices to solve Eq. (18) numerically for one set of values
{Γ, β, (J + λ)}, and then rescale to get the rest. The
solution is shown in Fig. 2 for various values of λ. The
ordered phase mi = m 6= 0 is realized below each critical
line, while the paramagnetic phase mi = m = 0 is real-
ized above each line. Increasing the penalty favors the
ordered phase (pushes the lines out).

IV. FERROMAGNETIC p-BODY
INTERACTIONS WITH q-BODY PENALTY

Section summary: Having studied the two-body case,
we now proceed to the generalization of NQAC to ferro-
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Figure 1. Saddle point equation (16) with m = mi at J = 1,
λ = 1.5, T/C = 0.02 with various values of Γ. For Γ/C < 5
there are three intersections (ferromagnetic phase), and above
Γ/C = 5 there is only one, m = 0 (paramagnetic phase).

FM

PM
λ=���

λ=�

λ=���

� � � � � � �
�

�

�

�

�

�

�

Γ/�

�
/�

Figure 2. The critical line in the (Γ/C, T/C) plane for J = 1
and λ = 0.5, 1.0 and 1.5. The ordered (disordered) phase is
below (above) the lines.

magnetic systems with p-body interactions and q-body
penalties. Without NQAC, the energy gap closes expo-
nentially during the annealing for p ≥ 3. However, the
penalty coupling of NQAC allows us to change the energy
gap from exponentially small to polynomially small. Fur-
thermore, the effective temperature is reduced to T/Cp.

The value of q needs to be even in general. For even
q, both of the logical 0 (all spins up) and 1 (all spins
down) are stabilized by the penalty coupling. However,
for odd q, only the logical 0 is stabilized. This is an
example of a stabilizer code with distance d = 0 and it
does not store a single qubit information. We use this
solvable model to learn about the phase diagram. While
this is not an issue for the ferromagnetic case, this does
not stabilize more general states such as the ground state
of an antiferromagnetic system.

An NQAC Hamiltonian for the p-spin model with q-

body penalty interactions within each logical qubit reads:

H =− Γ
∑
i

∑
ci

σxici − JN

(
1

N

∑
i

∑
ci

σzici

)p

− λ
∑
i

(∑
ci

σzici

)q
. (19)

The first step is to determine the free energy and scaling
relations, which we do next. The p = q = 2 case we
discussed in the previous section exhibits a second-order
phase transition; as we shall see the generalized models
undergo a first-order phase transition for p ≥ 3.

A. Free energy and scaling relations

By using the Suzuki-Trotter decomposition and the
static ansatz, one can compute the free energy per logical
qubit, to find (see Appendix A for the derivation):

F = (p− 1)JCpmp + (q − 1)λCq
1

N

∑
i

mq
i −

C

βN

∑
i

×

log

[
2 coshβ

(
(pJCp−1mp−1 + qλCq−1mq−1

i )2 + Γ2
)1/2

]
(20)

with the same definitions of m and mi as in Eq. (11b).
The saddle-point equations are:

m =
1

N

∑
i

Jpmp−1 + λCq−pqmq−1
i√

(Jpmp−1 + λCq−pqmq−1
i )2 + (Γ/Cp−1)2

× tanhβCp−1
√

(Jpmp−1 + λCq−pqmq−1
i )2 + (Γ/Cp−1)2

mi =
Jpmp−1 + λCq−pqmq−1

i√
(Jpmp−1 + λCq−pqmq−1

i )2 + (Γ/Cp−1)2

× tanhβCp−1
√

(Jpmp−1 + λCq−pqmq−1
i )2 + (Γ/Cp−1)2.

(21)

Each parameter scales with C as

λ→ λCq−p, β → βCp−1,Γ→ Γ/Cp−1. (22)

In the zero temperature limit, the free energy (20) re-
duces to the simple form

F = (p− 1)JCpmp + (q − 1)λCq
1

N

∑
i

mq
i (23)

− Cp

N

∑
i

√
(pJmp−1 + qλCq−pmq−1

i )2 + (Γ/Cp−1)2.

From this expression we see that the parameters appear-
ing in the low-temperature free energy scale as:

β → β, J → JCp, λ→ λCq,Γ→ ΓC , (24)
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or, equivalently, using the partition function Z = e−NβF :

β → βCp, J → J, λ→ λCq−p,Γ→ ΓC1−p . (25)

The same comments as in the previous section apply re-
garding the difference between the saddle point and low
temperature results. An interesting new aspect of the
present analysis is that the effective penalty strength λ
can be affected by the nesting level if p 6= q. Specifically,
choosing q < p causes λ to decrease with increasing nest-
ing after rescaling, as one might expect given that this
choice lowers the degree of penalty interactions relative
to the logical coupling between spins.

We remind the reader that the main focus of this work
is the study the static properties of NQAC in the simul-
taneous large N and C limit. The true dynamics at finite
N and C may or may not be described as the static prop-
erties of the thermodynamic limit, and analyzing them
is outside of the scope of this paper. However, in Ap-
pendix B we demonstrate that our conclusions apply also
when the large N limit is taken, while C is kept finite.

B. First-order phase transition

1. p = q = 4

Let us begin the analysis of phase transitions with the
case p = q = 4. The free energy simplifies to

F = 3C4

(
Jm4 + λ

1

N

∑
i

m4
i

)
(26)

− 2
C4

N

∑
i

√
(Jm3 + λm3

i )
2 + (Γ/C3)2.

Near the end of anneal, Γ ∼ 0, the free energy (26) is
proportional to C4, and thus the effective temperature
decreases as T/C4. If the temperature is very low one
can expect a uniformly ordered state to be realized since
the system is ferromagnetic. I.e., in this limit we expect
m = mi. The free energy at the transition point, exhibit-
ing typical low temperature behavior (T/C4 = 0.01), is
plotted in Fig. 3, as a function of the magnetization m.
The system clearly undergoes a first-order phase tran-
sition. Our numerical results show that the potential
barrier at the first-order phase transition persists at any
value of λ. This means that the potential barrier is not
reduced by increasing λ, so that the penalty term is not
helpful in this case. We can understand this as a con-
sequence of the fact that when p = q, as can be seen
from Eq. (26), the effective penalty λ simply acts to shift
J (i.e., J → J + λ) if mi = m, as we also saw in the
p = q = 2 case discussed in Sec. III B.

We thus consider p 6= q, for which the role of the effec-
tive penalty λ is different from the p = q case, since then
λ cannot be absorbed into the ferromagnetic coupling J .

��� ��� ��� ��� ��� ���
����

����

����

����

����

����

����

�

�
/�
�

Figure 3. Free energy at the transition point normalized by
C4 as a function of m for p = q = 4. Parameters are chosen
to be J = 1, λ = 1,Γ/C3 = 2.37, T/C4 = 0.01.
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Figure 4. Free energy at the transition point, normalized by
C4, as a function of m, for p = 4, q = 2, and J = 1, T/C4 =
0.01. The red dotted line is for λ/C2 = 0.01 and Γ/C3 = 1.2,
the blue dashed line for λ/C2 = 0.1 and Γ/C3 = 1.3, the
green solid line for λ/C2 = 0.6 and Γ/C3 = 2.0, and the
orange dotted line for λ/C2 = 3.3 and Γ/C3 = 6.7.

2. p = 4, q = 2

The free energy at the transition point (where the free
energy become degenerate) is plotted in Fig. 4 for p = 4
and q = 2, for various values of λ. One sees that the
potential barrier becomes smaller as λ increases, and it
disappears for large values of λ.

The height (∆F ) and the width (∆m) of the potential
barrier at the transition point as functions of the effective
penalty strength are shown in Fig. 5. The system is in
the paramagnetic phase for large Γ� 1 while it is in the
ordered phase at Γ = 0. Therefore, the phase transition
exists for all values of λ. However, as λ increases, the
first-order phase transition in the ground state softens, in
the sense of smaller values of the potential barrier height
∆F and width ∆m, as seen in Fig. 5. The order of the
phase transition eventually changes from first to second
when the free energy barrier vanishes at λ/C2 = 4.

In order to study the phase transition in more detail,
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Figure 5. The height of the barrier ∆F and the width ∆m
at the transition point, for the same parameters as in Fig. 4.
The dotted line (red) represents ∆F/C4 and the dashed line
(blue) represents ∆m.

we expand the free energy around m = 0 to quartic order:

F/C4 '
(
λ

C2
− 2λ2 tanh(βΓ)

CΓ

)
m2

+

(
3− 2Cβλ4

Γ2
− 8Cλ tanh(βΓ)

Γ
+

2Cλ4Γ tanh(βΓ)

Γ4

+
2Cβλ tanh2(βΓ)

Γ2

)
m4 , (27)

where we omitted the constant term F (0)/C4 and higher
order terms inm. Let us assume that the phase transition
is dominated by the quadratic and quartic terms in the
expansion. The point m = 0 becomes perturbatively
unstable when the coefficient of m2 is negative, and the
critical point is at Γc2 where the coefficient of them2 term
vanishes. In the following we use the subindices c1 and
c2 to represent critical points potentially associated with
first and second order phase transitions. If the coefficient
of m4 is positive at Γ = Γc2 , m = 0 is a global minimum
for Γ ≥ Γc2 . Therefore, the phase transition will be of
second order. If the coefficient of m4 is negative, then
the global minimum must be at m = mc 6= 0; F (m =
0) > F (mc) at Γ = Γc2 . This means that there must be
a first order phase transition at Γc1 > Γc2 where F (m =
0) = F (mc 6= 0). In Fig. 6, we show the critical value λc,
as a function of temperature, at which the order of the
phase transition changes from first to second: a second
order phase transition for λ > λc and a first order phase
transition for λ < λc.

To understand the impact of an increasing effective
penalty strength λ, consider Fig. 6 at a fixed temperature
T . Starting from small effective penalty in the first order
region, increasing λ has the effect of eventually crossing
the critical line into the second order phase transition re-
gion. From the point of view of successful QA, a second
order phase transition is preferred as — unlike the first
order case — it does not require tunneling through the
free energy barrier, an event that is exponentially sup-
pressed in the barrier width and height. At T = 0 a first

2nd

1st

� � � � � ��
���

���

���

���

�/��

λ
�/
�
�

Figure 6. The critical value λc at which the phase transition
changes from first order to second order for p = 4 and q =
2. The region with λ > λc exhibits a second order phase
transition, while the region with λ < λc exhibits a first order
phase transition. Above T/C4 ' 12.5 the ferromagnetic phase
disappears due to the strong thermal fluctuations.

(second) order quantum phase transition is commonly
associated with gap that closes exponentially (polynomi-
ally) in system size; we corroborate this in Sec. IV D 2
below.

Fig. 6 also shows that the higher the temperature, the
larger λ needs to be in order to affect the transition from
the first order to the second order regime. Since the tem-
perature is rescaled by C4, increasing the nesting level
makes the effective temperature smaller, which has the
same beneficial effect for QA as increasing the effective
penalty.

C. Comparison with the unencoded case

As observed so far, all the couplings and the physi-
cal quantities have certain scalings [Eqs. (24) and (25)]
with respect to the repetition number C. This allows
us to use normalized quantities such as F/Cp. In or-
der to evaluate the advantage of using NQAC, we need
to compare the results with those in the unencoded case
where no repetition or penalty coupling is used. While
NQAC efficiently suppresses thermal noise, it requires
multiple spins, rather than a single spin, to tunnel at the
phase transition from one ground state to the other. In
Figs. 7 and 8 we show the C-dependence of the width
and the height of the potential barrier explicitly at the
phase transition, and compare to the unencoded case
(λ = 0, C = 1).

It can be seen that for a fixed value of λ, both the width
and the height of the potential increase as C increases.
This is expected on the grounds that many-qubit tun-
neling is harder than that of a smaller number of qubits.
However, at fixed C we always find that both the width
and height become smaller than the unencoded case for
sufficiently large penalty values. This is remarkable, since
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Figure 7. C dependence of the potential width at the phase
transition. The same data as in Fig. 5. The red lines (UE)
represents the unencoded case.
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Figure 8. C dependence of the potential height at the phase
transition. The same data as in Fig. 5. UE represents the
unencoded case.

it means that multi-qubit tunneling becomes easier than
single-qubit (unencoded) tunneling if the penalty cou-
pling is chosen to have a large enough value.

D. Penalty strength and first-order phase
transitions at zero temperature for q = 2

In this subsection we consider the T = 0 case, when
all the phase transitions are quantum. We study in more
detail when first order phase transitions disappear for a
sufficiently strong effective penalty. We only consider the
q = 2 case.

The leading order terms of the Taylor expansions of the
free energy (23) with m = mi around the origin m = 0

are then:

p = 3 : (28a)

F

C3
' λ

C

(
1− 2Cλ

Γ

)
m2 + 2J

(
1− 3Cλ

Γ

)
m3

p = 4 : (28b)

F

C4
' λ

C2

(
1− 2Cλ

Γ

)
m2 +

(
3J − 8JCλ

Γ
+

2Cλ4

Γ3

)
m4

p ≥ 5 : (28c)

F

Cp
' λ

Cp−2

(
1− 2Cλ

Γ

)
m2 +

(
2λ4

Γ3

)
m4

We omitted the m-independent term F (0)/Cp as well
as higher order terms in m. As in Sec. IV B, m = 0
becomes perturbatively unstable when the coefficient of
the quadratic term (m2) becomes negative. The critical
point is Γc2 = 2Cλ. For Γ > Γc2 , the coefficient is pos-
itive and m = 0 is perturbatively stable. For Γ < Γc2 ,
m = 0 is perturbatively unstable.

It is important to note that this quadratic term does
not exist if the effective penalty vanishes (λ = 0); in this
case the phase transition is always of first order. It is
the quadratic penalty terms that enable the second order
phase transitions. Whether the first order phase transi-
tions persist or not depends on the higher order terms.
If the coefficient of the next lowest order term beyond
m2 is positive at Γ = Γc2 , then the phase transition will
be of second order, and if it is negative then the phase
transition will be of first order. Of course, this estima-
tion of the first order phase transition is based on the
assumption that the lowest and the second lowest terms
in the Taylor expansion determine the phase transition.
As we will show in this section, this assumption is in fact
not valid for higher p.

1. p = 3

Let us first consider p = 3. From Eq. (28a), both of
the coefficients of m2 and m3 are positive for Γ ≥ 3Cλ,
so that m = 0 is the global minimum. For Γc2 = 2Cλ <
Γ < 3Cλ, the coefficient of m3 becomes negative while
that of m2 is still positive. This suggests that there exists
a critical value Γc2 < Γc1 and for Γ ≤ Γc1 < 3Cλ, the
global minimum shifts from m = 0 to m = mc 6= 0.
The critical value Γc1 is determined by F (0) = F (mc).
This is a first order phase transition since m = 0 and
m = mc are separated by a potential barrier. Since Γc2 <
Γc1 independent of the value of λ, the first order phase
transition is inevitable. We show the difference between
Γc1 and Γc2 in Fig. 9.
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Figure 9. The p = 3 case. The difference of the critical values
of the transverse field (Γc1 − Γc2)/C2 as a function of λ/C.
Since Γc1 > Γc2 , there is only a first order phase transition.

2. p = 4

For p = 4, the coefficient of the subleading term,
namely the coefficient of m4 in Eq. (28b) at the crit-
ical point Γc2 = 2Cλ is λ/C2 − 4. The coefficient is
negative for λ/C2 < 4 which means that there is only a
first order phase transition at Γc2 < Γc1 . It is positive
for λ/C2 > 4 and a second order phase transition takes
place to destabilize m = 0.

While this conclusion is based on a Taylor expansion
analysis, a full numerical analysis shows that there is
no first order phase transition for p = 4 above λ/C2 =
4. Indeed, this is already clear from Fig. 5, which is
for T/C4 = 0.01; the only change at T = 0 is that the
vertical axis scale is somewhat compressed.

Figure 10 shows the free energy as a function of m
near the critical point Γ/C3 = 8 for p = 4 and λ/C2 = 4
where the first-order phase transition disappears. One
can see that the phase transition is of second order even
though the interaction has a higher order power (p > 2).
The point at which λ/C2 = 4 and Γ/C3 = 8 is where
the coefficients of the first two leading terms m2 and m4

vanish simultaneously, and the next order leading term
(m6) has a positive coefficient. Above this value of λ the
phase transition is always of second order, and below it
is of first order.

3. p ≥ 5

The Taylor expansion for p = 5, Eq. (28c), suggests
that the subleading m4 term is always positive. This does
not mean that the phase transition is always of second
order. In fact, since there is a single first order phase
transition for p ≥ 3 in the absence of the effective penalty,
by continuity there must be a first order phase transition
when λ is very small. This suggests that higher order
terms in m become relevant for these first order phase
transitions. In Fig. 11, we plot Γc1 and Γc2 as a function

Γ/��=����

Γ/��=�

Γ/��=����
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Figure 10. Free energy around the critical point for λ/C2 =
4, Γ/C3 = 8 for p = 4.
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Figure 11. The critical values Γc1/C
4 and Γc2/C

4 as a
function of λ/C3 for p = 5. For λ/C4 < 2.078, Γc1 > Γc2 .
Therefore, there is a first order phase transition. For 2.078 <
λ/C4 < 2.5 the first order phase transition and the second
order phase transition coexist. For 2.5 < λ/C4, there is only
a second order phase transition.

of the effective penalty coupling λ/C3. They cross at
λ/C3 ≈ 2.078. When λ/C3 < 2.078, there is a single first
order phase transition between m = 0 and m = mc >
0. For 2.078 < λ/C3, m = 0 becomes perturbatively
unstable and there is a second order phase transition from
m = 0 to m = mc > 0. There are two different cases after
the second order phase transition. For 2.078 < λ/C3 <
2.5, there is a first order phase transition at Γc1 < Γc2
and the order parameter changes discontinuously from
mc to m > mc. On the other hand, for 2.5 < λ/C3 there
is no phase transition other than the second order phase
transition from m = 0 to m = mc.

This behavior is general for p ≥ 5. In Fig. 12, we show
the order of the phase transitions for various values of p
and λ. As we saw earlier, only the first order phase tran-
sition exists for p = 3. For p = 4, the first order phase
transition changes into a second order phase transition
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Figure 12. The order of the phase transitions for various
values of p and q = 2. For p = 3 there is a unique first order
phase transition. For p = 4, there is a critical value of λ above
which the phase transition becomes of second order. For p ≥
5, there is an intermediate region where the first and second
phase transitions coexist. For p ≥ 4, all the phase transitions
turn into second order phase transitions for sufficiently large
λ.

at λ/Cp−2 = 4. For p ≥ 5 there is a parameter region
where the first order and the second order phase transi-
tions coexist. The first order phase transition disappears
above a certain p-dependent value of λ/Cp−2.

E. Energy gap from instanton analysis

While the width and height of the free energy bar-
rier are useful measures for a qualitative inference of the
change of the energy gap [86], one can estimate the en-
ergy gap more accurately in terms of the eigenstates of
the effective Hamiltonian. The energy gap is given by the
instanton solution in the Euclidean path integral which
connects two different minima of the free energy. When a
transition between two minima happens instantaneously,
the energy gap can be approximated by the overlap of
two eigenstates of the effective Hamiltonian at each local
minimum [85, 86, 96].

Let us discuss this viewpoint in some detail. At the
critical point, there are two minima characterized by the
order parameters m = m0 = 0 and m = mc > 0. A first-
order phase transition happens between m0 and mc. The
last term of the free energy (20) , which represents quan-
tum effects as it involves Γ, takes the form of cosh(βε)

with ε =
√

(pJCp−1mp−1 + qλCq−1mq−1)2 + Γ2 after
using m = mi. This contribution to the energy can be re-
produced by the linearized Hamiltonian which is obtained
by replacing every power > 1 of the Pauli matrices σzic
by the expectation value m:

Heff(m) = −(pJCp−1mp−1 + qλCq−1mq−1)σz − Γσx .

(29)
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Figure 13. The overlap of the m = m0 = 0 and m = mc

eigenstates of the effective T = 0 Hamiltonian (29), as a func-
tion of the effective penalty λ for p = 4, q = 2. This overlap
determines the closing of the gap, as per Eq. (30).

Let |m0〉 and |mc〉 be the ground states of Heff(m0) and
Heff(mc), respectively. Then the energy gap ∆ is (for a
detailed justification see Appendix B of Ref. [86]):

∆ ∼ |〈m0|mc〉|NC (30)

Figure 13 shows the wavefunction overlap as a function of
the effective penalty λ. It reaches 1 at the critical penalty
strength λ/C2 = 4, which implies that the gap ceases to
decrease exponentially as a function of the system size.
This agrees with the conclusions we drew above about the
phase transition changing from first order (corresponding
to an exponentially decreasing gap) for λ/C2 < 4 to sec-
ond order for λ/C2 ≥ 4.

Away from the phase transition point, there is a unique
ground state at a certain value of m. In the mean field
theory picture, low lying excitations can be obtained
by solving the eigenstates of the linearized Hamiltonian
around the mean field value. The effective Hamiltonian
(29) has two eigenstates with eigenenergies ±ε. The en-
ergy gap is then 2ε. If the ground state is in the paramag-
netic phase (m = 0), then the energy gap is independent
of C. If it is in the ferromagnetic phase (m 6= 0), then
the energy gap is a monotonically increasing function of
C. As shown in Appendix C [Eqs. (C24) and (C29)], the
increase of the energy gap as a function of C holds in the
p = 2 case as well.

F. C dependence and λ dependence

As can be seen from Eq. (20), the free energy scales
as Cmax(p,q) for large C. Since the occupancy rate of the
excited states is suppressed by the factor e−βNF (m), ther-
mal fluctuations are efficiently suppressed in terms of the
nesting level C. This is an essential feature required for
scalable error correction, and NQAC satisfies this condi-
tion. Note that the free energy in PQAC [79–81] scales
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linearly in C [85, 86]. Therefore, NQAC removes thermal
noise more efficiently than PQAC.

While increasing C is beneficial for suppressing ther-
mal fluctuations, it may enhance Landau-Zener transi-
tions at the critical point in a first order phase transition:
the energy gap is suppressed by a power of C [Eq. (30)].
On the other hand, the wavefunction overlap |〈m0|mc〉|
in Eq. (30) can be increased by increasing the penalty
coupling λ, as shown Fig. 13. Therefore, one can adjust
the parameters {C, λ} so that both thermal fluctuations
and Landau-Zener transitions are efficiently suppressed.

The saddle point approximation used in the analysis
becomes exact in the large C limit. In order to take into
account finite C corrections, we may need to resort to
numerical methods. The dimension of the Hamiltonian
is 2NC . Given that the angular momentum operator of
each logical qubit, i.e., (Sxi )2 + (Syi )2 + (Szi )2, commutes
with the total Hamiltonian, one may be able to reduce
the matrix size to (C + 1) × 2N . We leave this analysis
to future work.

V. FAILURE OF THE MEAN FIELD ANALYSIS
FOR THE FULLY-ENCODED CASE

An important feature of the NQAC scheme is that only
the problem Hamiltonian is encoded, but not the driver
Hamiltonian. This partial encoding is a deliberate as-
pect of the original QAC scheme [79], introduced in light
of practical limitations of quantum annealing hardware,
which only includes controllable σz and σz ⊗ σz terms,
but no controllable σx terms, and no multi-spin σx inter-
actions. The encoded σz operator for a repetition code is

σ̄z =
∑C
c σ

z
c , so the encoded σz⊗σz is a sum of physical

σz ⊗ σz terms, but the encoded σx is σ̄x = ⊗cσxc , and is
thus not realizable. Yet, the standard approach to quan-
tum error suppression for AQC is based on a full encoding
of the entire Hamiltonian (e.g., Refs. [67–78]). When this
is done, the encoded Hamiltonian has a spectrum that
faithfully reproduces the spectrum of the original, unen-
coded Hamiltonian (the spectrum is copied in different
sectors separated by a gap proportional to the imposed
energy penalty, provided the latter is large enough, with
each sector corresponding to a different error syndrome;
the lowest energy sector is the code space, which is error-
free). This means, in particular, that the gap of the
original Hamiltonian is unmodified under the encoding.
However, under the NQAC scheme the gap is modified.
Indeed, this is precisely what we have shown here using a
mean field analysis in terms of a modification of the order
of phase transitions. What happens when we apply our
mean field approach to the fully-encoded case? It turns
out it incorrectly predicts that the gap is modified in the
same manner as for the partly encoded case [97]. To ex-
plain this discrepancy, we show in this section that the
mean field approach fails in the fully-encoded case. Let
us from here on refer to the partly encoded Hamiltonian
we have analyzed in this work as “Z-encoded NQAC”.

In Z-encoded NQAC, we defined order parameters mz
i

for individual logical qubits σzi and applied a saddle point
analysis. One may consider a similar analysis for fully-
encoded NQAC. However, as we show below, the saddle
point analysis is not justified in this case. To simplify the
problem let us focus on the physical Hamiltonians for a
single logical qubit. Changing the couplings Γ and λ to t
for simplicity, the Hamiltonian for Z-encoded NQAC is

HZ-encoded = −(1− t)
C∑
c=1

σxc − t
1

C

(
C∑
c=1

σzc

)2

, (31)

while for fully-encoded NQAC:

Hfully-encoded = −(1− t)
C∏
c=1

σxc − t
1

C

(
C∑
c=1

σzc

)2

.(32)

Eq. (31) is an infinite range model in which a single qubit
interacts with C − 1 qubits. Recalling that a qubit in
the C/2-dimensional square lattice model has C nearest-
neighbor sites, this model can be expected to behave as
a higher dimensional limit of the square lattice model.
Mean field theory is known to become more accurate for
higher dimensions and this justifies its use for Z-encoded
NQAC. On the other hand, the first term in the fully-
encoded Hamiltonian Eq. (32) is maximally non-local.
This puts the validity of mean field theory in doubt, at
least when t is small (when the first term dominates).
Indeed, the purpose of full encoding is to make the system
of C physical qubits act as a logical qubit. Therefore, the
fully-encoded system behaves as a single qubit state even
when C is large, which renders mean-field theory invalid.

To see this explicitly, we consider the correlation func-
tion

Zij = 〈σzciσ
z
cj 〉 − 〈σ

z
ci〉〈σ

z
cj 〉 . (33)

In order for mean field theory to be justified, the corre-
lation function needs to be small (recall that in the limit
where mean field theory is exact, 〈σzciσ

z
cj 〉 = 〈σzci〉〈σ

z
cj 〉).

The ground state of the Z-encoded Hamiltonian at t = 0
is |+ · · ·+〉, where |+〉 = 1√

2
(|0〉+ |1〉), and

〈+ · · ·+ |σzci |+ · · ·+〉 = 〈+ · · ·+ |σzciσ
z
cj |+ · · ·+〉 = 0,

(34)

so that Zij vanishes. On the other hand, the ground
state of the fully-encoded Hamiltonian at t = 0 is |+〉 =
1√
2
(|0〉+ |1〉). In this case

〈+|σzci |+〉 = 0, 〈+|σzciσ
z
cj |+〉 = 1, (35)

and Zij = 1. This is independent of C and suggests that
the mean field theory is not valid.

One can also consider the behavior near t = 1. The
ground state of the problem Hamiltonian is |1̄〉. If

we treat the first term
∏C
c=1 σ

x
c as a perturbation (for

1 − t � t) and do the perturbation expansion from |1̄〉,
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Figure 14. Comparison of 〈σz
ci〉 (green dashed line), 〈σz

ciσ
z
cj 〉 (red dotted line), and the correlation function Zij (blue solid

line) for a single encoded qubit using Z-encoded and fully-encoded NQAC. (a) Z-encoded case [Eq. (31)]: the correlation is
small everywhere, and finite only in a small region. (b) Fully-encoded case [Eq. (32)]: the correlation is large when t is small,
implying that mean field theory is not valid. The result is independent of the number C (not shown). Both (a) and (b) are
for C = 6. (c) Correlation for the Z-encoded case: the correlation decreases as the system size C increases. This is consistent
with the fact that the mean field theory is valid for the Z-encoded case.

it is straightforward that all the states that appear in
the expansion are only |0̄〉 and |1̄〉 at any order. Since
〈σzciσ

z
cj 〉 = 1 for any state that is a superposition of |0̄〉

and |1̄〉, the correlation function is determined by 〈σzci〉,
and mean field theory only becomes valid when 〈σzci〉 be-
comes close to 1.

We confirm these statements numerically. Fig-
ures 14(a) and 14(b) show 〈σzci〉, 〈σ

z
ciσ

z
cj 〉, and the cor-

relation function Zij for the fully-encoded case and the
Z-encoded case, respectively. Figure 14(c) shows how
the correlation function changes as C increases for the Z-
encoded case. It decreases monotonically as C increases,
which justifies the validity of mean field theory for the
Z-encoded case. On the other hand, the observables are
independent of C for the fully-encoded case. This shows
that mean field theory-based conclusions for the fully-
encoded case are invalid.

VI. DISCUSSION AND CONCLUSIONS

We have studied nested quantum annealing correction
(NQAC) [83, 84] in the case of ferromagnetic models
at zero and finite temperatures. The antiferromagnetic
case is analyzed in Appendix D, and a hybrid of NQAC
and penalty quantum annealing correction (PQAC) is
analyzed in Appendix E. While PQAC (studied theo-
retically in Refs. [85, 86]) has designated penalty qubits
which serve to induce a symmetry breaking field, NQAC
does not have designated penalty qubits and therefore the
penalty coupling itself does not induce symmetry break-
ing. Nevertheless, we have shown that first-order phase
transitions can be removed or significantly weakened
when the interaction strength between physical qubits
within a logical qubit is chosen appropriately. Moreover,
the nested structure works to efficiently reduce thermal
fluctuations: for p-body coupling, the temperature T is
reduced effectively to T/Cp. Therefore, NQAC helps to

stabilize the ground state by reducing thermal fluctua-
tions, and serves as a means to address the ‘temperature
scaling law’ problem identified in Ref. [98], that in order
to serve as optimizers, quantum annealer temperatures
must be appropriately scaled down with problem size.

While a larger value of the penalty coefficient is ben-
eficial for keeping the state in the ground state, it may
cause a different problem. A larger value of the penalty
term creates local minima in the free energy for excited
states, as detailed in Appendix F. Once the system state
becomes excited and trapped by one of those metastable
states, it may be difficult to escape to the ground state
if the penalty coupling is too strong. This is a difficult
problem to analyze, and we leave the evaluation of tran-
sitions between metastable states and the ground state
for future investigations.

The success of NQAC sheds some light on the compu-
tational efficiency and the local structure of the problem.
In PQAC, the order parameters are the expectation val-
ues of total spins [85, 86]. On the other hand, NQAC has
an extensive number of order parameters (mi) in addi-
tion to the expectation value of the total spin (m). When
the penalty coupling is strong, the behavior of the free
energy is determined by the local order parameters mi.
Therefore, by tuning the local physics (the strength of
the penalty coupling γ), one can change the structure
of the phase transition of the whole system. In our ex-
amples, even when the original problem has a first-order
phase transition, e.g., for the case of p ≥ 3, by encoding
qubits properly in NQAC with q = 2, one can change
the order of the phase transition into second. It is an
interesting problem how these results generalize beyond
simple mean-field models with uniform interactions, and
we plan to address this in future work.
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Appendix A: Derivation of the free energy of NQAC

In this Appendix, we derive the free energy of NQAC
by using mean field theory. We consider an NQAC
Hamiltonian

H = HX +HZ (A1)

where, as in Eq. (19):

HZ ≡ −JN

(
1

N

N∑
i=1

C∑
ci=1

σzici

)p
− λ

N∑
i=1

(
C∑

ci=1

σzici

)q
(A2a)

HX ≡ −Γ

N∑
i=1

C∑
ci=1

σxici . (A2b)

From now on we replace the double subscript ici by ia to
simplify the notation, and keep in mind that a enumer-
ates the physical qubits within the i-th logical qubit.

Skipping many steps which parallel the calculation in
Appendix A of Ref. [86], the partition function Z =
tr(e−βH) is computed via the Suzuki-Trotter decomposi-
tion:

Z = lim
M→∞

tr
(
e−

β
MHXe−

β
MHX

)M
= lim
M→∞

N∏
i

M∏
α

∫
dmαdm̃αdmiαdm̃iα exp

[
im̃α

(
NCmα −

N∑
i=1

C∑
a=1

σzia(α)

)
+
βJ

M
NCpmp

α +

+
∑
i

(
im̃iα

(
Cmiα −

C∑
a=1

σzia(α)

)
+
βλ

M
Cqmq

iα

)
+
βΓ

M

N∑
i=1

C∑
a=1

σxia(α)

]∏
〈σ|σ〉 , (A3)

where M is the Trotter number and∏
〈σ|σ〉 ≡

C∏
c=1

〈σzic(α)|σxic(α)〉〈σxic(α)|σzic(α+ 1)〉. (A4)

We use the static ansatz where all the variables are Trotter index α independent; mα = m, m̃α = m̃,miα = mi, m̃iα =
m̃i. We also rescale (m̃, m̃i) to 1

M (m̃, m̃i). Then, in the thermodynamic limit N →∞,

Z = exp

(
iNCm̃m+ βJNCpmp + iC

∑
i

m̃imi + Cq
∑
i

βλmq
i

)(
Tr exp

(
−

N∑
i=1

im̃σzia − im̃iσ
z
ia + βΓσxia

))C

= exp

(
iNCm̃m+ βJNCpmp + iC

∑
i

m̃imi + Cq
∑
i

βλmq
i

)(∏
i

(e
√

(−im̃−im̃i)2+(βΓ)2 + e−
√

(−im̃−im̃i)2+(βΓ)2)

)C
(A5)

The saddle point equations for m and mi are

im̃+ βpJCp−1mp−1 = 0 , (A6a)

im̃i + βqλCq−1mq−1
i = 0 . (A6b)

Inserting these into the partition function, we obtain

Z = exp

(
−β(p− 1)JNCpmp − β(q − 1)λCq

∑
i

mq
i

)
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×

(∏
i

(eβ
√

(pJCp−1mp−1+qλCq−1mq−1
i )2+Γ2

+ e−β
√

(pJCp−1mp−1+qλCq−1mq−1
i )2+Γ2

)

)C
. (A7)

The free energy F defined by Z = exp(−βNF ) is

F = (p− 1)JCpmp + (q − 1)λCq
1

N

∑
i

mq
i

− C

βN
log

[∏
i

(
eβ
√

(pJCp−1m+qλCq−1mi)2+Γ2
+ e−β

√
(pJCp−1m+qλCq−1mi)2+Γ2

)]
. (A8)

Appendix B: Limit considerations

In our calculations, there are two limits, N →∞ and C →∞. Suppose we take the thermodynamic limit N →∞
such that C = aN b where a, b > 0 are constants. Since the ground state of the ferromagnetic system satisfies mi = m,
thermal fluctuations are controlled by the factor

βNF = − logZ
= (p− 1)Jmp(βapNpb+1) + (q − 1)λmq(βaqN bq+1)

− aN b+1 log
[(
eβ
√

(pJm(ap−1Nb(p−1))+qλm(aq−1Nb(q−1)))2+Γ2
+ e−β

√
(pJm(ap−1Nb(p−1))+qλm(aq−1Nb(q−1)))2+Γ2

)]
.

(B1)

In the low temperature limit, this becomes

βNF = (p− 1)Jmp(βapN bp+1) + (q − 1)λmq(βaqN bq+1)

− aN b+1β

(√
(pJm(ap−1N b(p−1)) + qλm(aq−1N b(q−1)))2 + Γ2

)
. (B2)

From this expression, one can read off the following scaling behavior

λ→ λaq−pN b(q−p), β → βapN bp+1, Γ→ Γ/(ap−1N b(p−1)) . (B3)

Now we take b→ 0 limit. In this limit, C approaches a constant. The free energy is now

F = (p− 1)Jmpap + (q − 1)λmqaq − a
(√

(pJmap−1 + qλmaq−1)2 + Γ2
)
, (B4)

which is essentially the same as the free energy (23) with C replaced by a. Therefore, the phase structure is the same.
In particular, when p ≥ 4 and q = 2, the energy gap changes to polynomially small from exponentially small as λ
exceeds a critical value. This argument shows our conclusions are not expected to change if C is kept finite while only
N is made large.

1. Energy and degeneracy for p = 2 in the ferromagnetic case

The existence of metastable states can affect the success probability of quantum annealing due to thermal and
quantum fluctuations. At the end of annealing (Γ = 0), after substituting Eqs. (F3) into HZ [Eq. (A2a)], the energy
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Figure 15. (a) w1 and w2 for the ground state k/N = 0, k/N = 0.03 and highly excited state k/N = 0.48, as a function of
Γ/C at T/C = 0.03, λ = 1. (b) Fk for Γ/C = 0.03. The solid purple line represents the ground state free energy contribution
F0/C

2.

levels are:

Ek ' C2
[
J

(
N − k
N

w1 +
k

N
w2

)2

+ λ

(
N − k
N

w2
1 +

k

N
w2

2

)
− N − k

N

N∑
i=1

2

∣∣∣∣J (N − kN
w1 +

k

N
w2

)
+ λw1

∣∣∣∣
− k

N

N∑
i=1

2

∣∣∣∣J (N − kN
w1 +

k

N
w2

)
+ λw2

∣∣∣∣ ] . (B5)

In thermal equilibrium, the probability Pk of finding a state at Ek is

Pk ∼ dke−βEk , (B6)

where dk is the degeneracy. In our case dk = 2
(
N
k

)
. For large N and small k we have dk ' (n/k−1/2)kek√

πk/2
. Note that the

degeneracy increases rapidly as the energy increases. Without this entropy effect, the excited states are suppressed by
the Boltzmann factor. However, the rapid increase of dk for excited states might change this situation and therefore
change the phase transition and the annealing success probability. To analyze this, let us use Eq. (A8) to define an
effective action Fk as the free energy of the k-th excited states:

Fk = JC2m2 +
λC2

N
((N − k)w2

1 + kw2
2)

− C

βN

(
(N − k) log

[
2 cosh

(
β
√

4C2(Jm+ λw1)2 + Γ2
)]

+k log
[
2 cosh

(
β
√

4C2(Jm+ λw2)2 + Γ2
)])

− 1

βN
log

[
2

(
N

k

)]
, (B7)

which takes into account the entropy (degeneracy) through the last term. The partition function is given by Z =∑
k e
−βNFk .

By solving Eq. (F3), we plot in Fig. 15(a) the values of w1 and w2 for the ground state k = 0, a slightly excited
state k/N = 0.03, and a highly excited state k/N = 0.48 at T/C = 0.03. The metastable state w2 ' −1 disappears
quickly when Γ/C increases from zero to finite value and the only true ground state w1 = w2 ' 1 exists. For highly
excited states, w1 > 0 and w2 < 0 approach each other as Γ/C increases (the blue dashed and the purple dot-dashed
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Figure 16. (a) The borders between the existence and the absence of the metastable states for k/N = 0.1 and p = 4. (b)
Penalty coupling λ/C2 as a function of temperature T/C3 for Γ = 0 and a function of Γ for T/C3 = 4× 104 and p = 4.

lines) until Γ/C ∼ 1.25 and then the metastable states disappear above this value. In Fig. 15(b), we plot the free
energy contribution from excited states at different temperatures. Because of the absence of the metastable states
for smaller k/N , the free energy contribution of the excited states starts from a critical value of k/N for a given

temperature. The degeneracy contribution to Eq. (B7) is − 1
βN log

[
2
(
N
k

)]
. There is a unique ground state for k = 0,

for which this term vanishes. The largest degeneracy is realized at k = N/2. For k = aN � 1, (a ∈ (0, 1/2]), this term
scales as T [a log a+ (1− a) log(1− a)]. Figure 15(b) shows that although the number of degenerate states increases
exponentially, the contribution from the higher excited states is still subdominant as long as the effective temperature
T/C is low. Since this term does not depend on C, its effect in the normalized free energy Fk/C

2 is diminished as C
increases. This is another benefit of using NQAC.

2. Excited states and first order phase transitions when p ≥ 3 in the ferromagnetic case

We can extend the p = 2 analysis to p ≥ 3. Figure 16 shows the borders between the existence and absence of the
metastable states for p = 4. The qualitative features are the same as in the p = 2 case: metastable states do not
survive at high temperature and/or quantum fluctuations. Fig. 17(a) shows the potential barrier between local minima
for various values of the penalty coupling. The potential barrier becomes higher as the penalty coupling increases. As
one can see in Fig. 17(a), the local free energy minimum is realized at w2 ' −1 while the local maximum is realized
at −1 < w2 < 0. On the other hand, the difference between the free energy minima at w2 ' −1 and w2 ' 1 does not
change as the penalty λ changes.

To evaluate the height of the potential barrier, in Fig. 17(b) we plot the free energy difference between the local
maximum and the local minimum, as well as the local maximum and the ground state seen in Fig. 17(a). It shows
that increasing the penalty λ prevents the ground state to transit into the metastable state.

Appendix C: Energy gap in the second order phase transition

In this section, we calculate the energy gap following the method described in [94], which is originally from [99]. The
basic idea is to assume C � 1 and treat Szi and Sxi semi-classically. More precisely, we apply the Holstein-Primakoff
transformation to the logical qubit at each site i and treat quantum fluctuations around the classically fixed spin
orientation as small perturbation represented by harmonic oscillators.

It is first necessary to rotate the axes in spin space such that the classical orientation lies along the new z axis in
order to apply the Holstein-Primakoff transformation. We have in mind the state with vanishing total z-magnetization,
Sz = 0, which is naturally expected to be realized at the beginning and the end of annealing. Correspondingly, we
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Figure 17. (a) Normalized free energy F (w1 = 1, w2) − F (w1 = 1, w2 = 1), for k/N = 0.1, T/C3 = 3.7 × 10−4, Γ = 0.1. The
potential barrier between the metastable state (w1, w2) ' (−1, 1) and the true ground state (w1, w2) = (1, 1) becomes larger as
λ/C2 increases. (b) The free energy difference ∆F (MS) = F (1, wmax

2 ) − F (1,−1), ∆F (GS) = F (1, wmax
2 ) − F (1, 1) between

the local maximum (w2 = wmax
2 ), and the local minimum (w2 = −1) or the ground state (w2 = 1) for w1 = 1 seen in Fig. 17(a)

(normalized by C4). Other parameters: k/N = 0.1 T/C3 = 3.7× 10−4, Γ/C3 = 3.7× 10−3.

choose the classical orientation differently for i = 1, 2, · · · , N/2 and i = N/2 + 1, · · · , N ,(
Sxi
Szi

)
=

(
∓ sin θ cos θ
cos θ ± sin θ

)(
S̃xi
S̃zi

)
, (C1)

where the upper sign is chosen for i = 1, · · · , N/2 and the lower sign for i = N/2 + 1, · · · , N . Note that the initial
(Γ → ∞) and final (Γ = 0) orientations are expected to be (Sxi , S

z
i ) = (1, 0) and (Sxi , S

z
i ) = (0,±1), respectively,

because the spins align in the x direction initially and along the ±z direction finally. This is indeed realized by the
above transformation with θ = 0 and θ = π/2, respectively, both with (S̃xi , S̃

z
i ) = (0, 1). We now insert the rotation

(C1)) into each term of the Hamiltonian,

JNC2(Sz)2 =
JC2

N

N/2∑
i=1

(cos θ · S̃xi + sin θ · S̃zi ) +

N∑
i=N/2+1

(cos θ · S̃xi − sin θ · S̃zi )

2

−JC2λ

N∑
i=1

(Szi )2 = −JC2λ

N/2∑
i=1

(cos θ · S̃xi + sin θ · S̃zi )2 +

N∑
i=N/2+1

(cos θ · S̃xi − sin θ · S̃zi )2


−ΓC

N∑
i=1

Sxi = −ΓC

N/2∑
i=1

(− sin θ · S̃xi + cos θ · S̃zi ) +

N∑
i=N/2+1

(sin θ · S̃xi + cos θ · S̃zi )

 . (C2)

Let us apply the Holstein-Primakoff transformation whose general form for spin of magnitude S(� 1)is

Sz = S − a†a,
S+ =

(√
2S − a†a

)
a ≈
√

2S a,

S− = a†
√

2S − a†a ≈
√

2S a† (C3)

Since the largest possible value of CSxi and CSzi is C and also since CS̃zi is supposed to be close to its classically
largest value C, we apply this transformation as

CS̃zi = C − a†iai, CS̃xi =

√
C

2
(ai + a†i ). (C4)
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We plug this transformation into Eqs. (C2))- (C2)) and drop terms beyond harmonic (quadratic) in the boson
operators.

The leading-order term of this semi-classical approximation represents the classical state (S̃zi = 1, S̃xi = 0) with
energy

H0 = −NC
(
JCλ sin2 θ + Γ cos θ

)
. (C5)

Minimization of H0 with respect to θ gives θ = 0 or

cos θ =
Γ

2JCλ
. (C6)

The solution θ = 0 is to be accepted for Γ > Γc = 2JCλ, whereas the solution to Eq. (C6)) is chosen for 0 ≤ Γ ≤ Γc.
The solution for Γ = 0 is θ = π/2 as expected. The next order term is linear in the boson operators, and is expected
to vanish if we choose θ that minimizes H0. The reason is that the stationarity condition of the leading term implies a
vanishing linear term. The next term is quadratic in bosons and represents quantum fluctuations around the classical
state. Diagonalization of this quadratic term gives the energy spectrum, from which we extract the energy gap. We

therefore drop the terms linear in a†i and ai as well as the 0th order terms as

(Sz)2 =
1

N2


N/2∑
i=1

(
cos θ√

2C
(ai + a†i ) + sin θ

(
1− a†iai

C

))
+

N∑
i=N/2+1

(
cos θ√

2C
(ai + a†i )− sin θ

(
1− a†iai

C

))
2

→ 1

N2

cos2 θ

2C

(
N∑
i=1

(ai + a†i )

)2

(C7)

N∑
i=1

(Szi )2 =

N/2∑
i=1

( cos θ√
2C

(ai + a†i ) + sin θ
(
1− a†iai

C

))2

+

N∑
i=N/2+1

( cos θ√
2C

(ai + a†i )− sin θ
(
1− a†iai

C

))2


→

N∑
i=1

(
cos2 θ

2C
(ai + a†i )

2 − 2 sin2 θ

C
a†iai

)
(C8)

−C
N∑
i=1

Sxi = C

N/2∑
i=1

(
sin θ

ai + a†i√
2C

− cos θ
(
1− a†iai

C

))
− C

N∑
i=N/2+1

(
sin θ

ai + a†i√
2C

+ cos θ
(
1− a†iai

C

))

→ cos θ

N∑
i=1

a†iai. (C9)

The quadratic term of the Hamiltonian is therefore

H2 =
JC cos2 θ

2N

(
N∑
i=1

(ai + a†i )

)2

− JCλ cos2 θ

2

N∑
i=1

(ai + a†i )
2 + 2JCλ sin2 θ

N∑
i=1

a†iai + Γ cos θ

N∑
i=1

a†iai. (C10)

For diagonalization, we apply the Fourier transformation

aj =
1√
N

∑
k

eikjbk, a
†
j =

1√
N

∑
k

e−ikjb†k. (C11)
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which gives ∑
j

(aj + a†j) =
√
N(b0 + b†0) (C12)

∑
j

a†jaj =
∑
k

b†kbk (C13)

∑
j

(aj + a†j)
2 =

1

N

∑
k

∑
k′

∑
j

(eikjbk + e−ikjb†k)(eik
′jbk′ + e−ik

′jb†k′)

=
∑
k

(bkb−k + bkb
†
k + b†kbk + b†kb

†
−k). (C14)

The Hamiltonian is rewritten as

H2 =
JC cos2 θ

2N
N(b0 + b†0)2 − JCλ cos2 θ

2

∑
k

(bkb−k + bkb
†
k + b†kbk + b†kb

†
−k)

+ (2JCλ sin2 θ + Γ cos2 θ)
∑
k

b†kbk

=

(
JC cos2 θ

2
− JCλ cos2 θ

2

)
(b0 + b†0)2 + (2JCλ sin2 θ + Γ cos θ)b†0b0

+
∑
k 6=0

{
−JCλ cos2 θ

2
(bkb−k + b†kb

†
−k) + (2JCλ sin2 θ + Γ cos θ − JCλ cos2 θ)b†kbk

}
+ const.

=
JC

2
(1− λ) cos2 θ

(
b20 + (b†0)2

)
+
(
JC(1− λ) cos2 θ + 2JCλ sin2 θ + Γ cos θ

)
b†0b0

+
∑
k 6=0

{
−JCλ cos2 θ

2
(bkb−k + b†kb

†
−k) + (2JCλ sin2 θ + Γ cos θ − JCλ cos2 θ)b†kbk

}

≡ A
{
b†0b0 +

JC(1− λ) cos2 θ

2A

(
b20 + (b†0)2

)}
+B

∑
k 6=0

{
b†kbk −

JCλ cos2 θ

2B
(bkb−k + b†kb

†
−k)

}
, (C15)

where

A = JC(1− λ) cos2 θ + 2JCλ sin2 θ + Γ cos θ (C16a)

B = 2JCλ sin2 θ − JCλ cos2 θ + Γ cos θ. (C16b)

The Hamiltonian (C15) can be diagonalized by the Bo-
goliubov transformation

bk = αk coshφ+ α†−k sinhφ (C17a)

b†k = α†k coshφ+ α−k sinhφ (C17b)

with

tanh 2φ = −λ, (C18)

with λk being defined by

b†kbk +
λ

2
(bkb−k + b†kb

†
−k). (C19)

We thus find

H2 = ω0α
†
0α0 +

∑
k 6=0

ω1α
†
kαk, (C20a)

ω0 = A
√

1− λ2
A, ω1 = B

√
1− λ2

B (C20b)

with

λA =
JC(1− λ) cos2 θ

A
, λB = −JCλ cos2 θ

B
. (C21)

The energy gap is therefore the smaller of ω0 and ω1, the
latter being highly degenerate.

When θ = 0 (Γ > Γc = 2JCλ),

ω2
0 = A2 −A2λ2

A = (JC(1− λ) + Γ)2 − J2C2(1− λ)2

= Γ2 + 2JC(1− λ)Γ > 0 (λ < 1) (C22)

ω2
1 = B2 −B2λ2

B = (Γ− JCλ)2 − (JCλ)2

= Γ(Γ− 2JCλ) . (C23)

Therefore, ω0 does not vanish whereas ω1 behaves around
Γ = Γc as

ω1 =
√

Γ(Γ− 2JCλ) ≈
√

2JCλ
√

Γ− Γc. (C24)
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This is how the gap closes in the thermodynamic limit.
Similarly, for 0 ≤ θ ≤ π/2 (0 ≤ Γ < Γc = 2JCλ), using

cos θ =
Γ

2JCλ
, (C25)

we have

A = JC(1− λ)
Γ2

(2JCλ)2
+ 2JCλ

(
1− Γ2

(2JCλ)2

)
+

Γ2

2JCλ
=

1− λ
4JCλ2

Γ2 + 2JCλ, (C26a)

AλA = JC(1− λ)
Γ2

(2JCλ)2
=

1− λ
4JCλ2

Γ2. (C26b)

Hence,

A2 −A2λ2
A =

(
1− λ

4JCλ2
Γ2 + 2JCλ

)2

−
(

1− λ
4JCλ2

Γ2

)2

= (2JCλ)2 + 2JCλ
1− λ

2JCλ2
Γ2 > 0. (C27)

This means that the zero-mode does not vanish, as was
the case for Γ > Γc. The other mode has

B = 2JCλ

(
1− Γ2

(2JCλ)2

)
− JCλ Γ2

(2JCλ)2

+
Γ2

2JCλ
= 2JCλ− Γ

4JCλ
(C28a)

BλB = −JCλ Γ2

(2JCλ)2
= − Γ2

4JCλ
(C28b)

B2 −B2λ2
B =

(
2JCλ− Γ2

4JCλ
+

Γ2

4JCλ

)
×(

2JCλ− Γ2

4JCλ
− Γ2

4JCλ

)
= 2JCλ

(
2JCλ− Γ2

2JCλ

)
= (2JCλ− Γ)(2JCλ+ Γ) . (C28c)

Then for Γ ≈ Γc,

ω1 ≈
√

4JCλ
√

Γc − Γ. (C29)

The results (C24) and (C29) show that the gap closes
with exponent 1/2(= νz) near the critical point. The
exponent that expresses the rate of gap closing at the
critical point for finite systems is z, with ∆ ∼ L−z

(though it is unclear what L is in the present infinite-
range model). The critical exponent νz is independent
of the non-universal parameter C, as expected, and the
same is expected for z. Therefore, we must accept that
nesting does not qualitatively improve the rate of gap
closing (C-independence of z). Nevertheless, the coeffi-
cients in Eqs. (C24) and (C29) increase proportionally

to
√
C, and hence the gap becomes quantitatively large

for large C.

One of the strengths of this method is that it applies
to arbitrary lattices, not just the mean-field model, in-
cluding Chimera-native problems as long as C � 1. In
such cases, the final gap spectrum ωk will have a k-
dependence. The present results Eqs. (C24) and (C29)
apply directly only to the case C � 1. Nevertheless, the
exponent 1/2 appearing in these expressions should not
depend on C and therefore would be valid for smaller C
such as C = 4. The same would apply to other critical
exponents. The coefficients in these equations,

√
2JCλ

and
√

4JCλ, would be the leading terms of asymptotic
expansions of the relevant coefficient g(C) in the limit
of C � 1. In other words, it is expected that the gap
closes as g(C)

√
|Γ− Γc| for general values of C with g(C)

having the above asymptotic forms for C � 1.

Appendix D: The antiferromagnetic case

In this section we study fully antiferromagnetic sys-
tems, where the coupling satisfies J < 0. As mentioned
in Sec. IV, it is crucial to take q to be even in this case.
Unlike the ferromagnetic case, the long-range antiferro-
magnetic system is frustrated and thus exhibits different
behavior.

The free energy and the saddle point equations are the
same as those in the ferromagnetic case, i.e., Eq. (20), the
only difference being that J is replaced by −J(< 0). The
penalty γ coupling (and hence also the effective penalty
λ) between physical qubits within a logical qubit remains
ferromagnetic as it is designed to introduce resilience
against bit flips in a logical qubit. It tends to induce
a ferromagnetically ordered state for each logical qubit,
i.e., mi 6= 0.

Let us assume that the total number of logical qubits
is even and that the effective penalty strength is large,
i.e., γ � J , so that the logical qubits are ordered. In this
case, there are two possible phases in the model with anti-
ferromagnetic interactions. The first is the paramagnetic
phase, where each logical qubit has a vanishing expecta-
tion value mi = 0 and consequently the total magnetiza-
tion also vanishes: m = 0. This phase is realized when
the temperature and/or the transverse field are large.
The second phase is where each logical qubit is ordered,
i.e., mi = ±n, while the total magnetization again van-
ishes: m = 0. We call this a “locally ordered phase”; it
appears when the effect of λ is stronger than that of the
temperature or the transverse field. In the following we
analyze these phases at or near the ground state, analyt-
ically as well as numerically. In addition, there can be
metastable states as in the ferromagnetic example, which
we analyze in the appendix.

Since both of the phases take m = 0, the value of
p does not determine the order of the phase transition,
which is different from the ferromagnetic case. Instead,
the order of the phase transition is controlled by q. All
the J dependence disappears from the mean field free
energy [Eq. (20)] and the p-dependence appears only in
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Figure 18. Free energy barrier in the antiferromagnetic case
between two phases at a first-order phase transition, at T/C =
0.03 and 3.3, for p = q = 4. Contrast with Fig. 5 for the
ferromagnetic case.

the scaling of parameters in C discussed in Sec. IV A.

Assuming that the total number of spins N is even,
the free energy (20) reduces to:

F =
(q − 1)

2
λCq(nq + (−n)q) + (D1)

− C

β
log

(
2 coshβ

√
(qλCq−1nq−1)2 + Γ2

)
Let us first consider the q = 2 case. The expression
for the free energy is the same as for the ferromagnetic
case with two-body interactions p = 2 [Eq. (12)], with
the local (logical qubit) order parameter n = 1

C 〈
∑
c σ

z
ic〉

replacing the global order parameter m = 1
NC 〈

∑
i,c σ

z
ic〉

appearing in the ferromagnetic case. I.e., the free energy
of the ferromagnetic system with the order parameter m
is the same as that of the antiferromagnetic system with
the different order parameter n. Therefore, the latter has
a second-order phase transition. It should be noted that
the conventional p-body antiferromagnetic Ising model
(C = 1) does not have a phase transition for p even.1

The phase transition point is determined in the
same way as in the ferromagnetic case, where we de-
rived Eq. (18). The critical parameter values satisfy
2λC tanh(βΓ)/Γ = 1, which is p-independent. The para-
magnetic and locally ordered phases exist in the respec-

1 The classical energy of antiferromagnetic interactions
+JN(

∑N
i=1 σ

z
i /N)p (J > 0) becomes smallest when

∑N
i=1 σ

z
i

is 0, the paramagnetic state. This state has the largest entropy
since the number of possible spin configurations is largest. Thus
the free energy is lowest for the paramagnetic state irrespective
of the temperature for the classical model, i.e., no phase
transition. The situation is essentially the same in the quantum
case with a transverse field. For p odd, the antiferromagnetic
model becomes equivalent to a ferromagnetic model under the
spin inversion {σx

i , σ
y
i , σ

z
i } 7→ {σx

i ,−σz
i ,−σ

y
i }.

tive regions

2λC tanh(βΓ)/Γ < 1 : mi = 0 (D2a)

2λC tanh(βΓ)/Γ > 1 : mi ≡ ±n 6= 0 (D2b)

It is clear from these equations that high temperature and
large transverse field favor the paramagnetic phase (all
mi = 0), while large local ferromagnetic coupling λ favors
the locally ordered phase (all mi 6= 0). In addition, we
see that a larger value of C also favors the locally ordered
phase. This is because C aligned spins behave as a single
spin-C vector, thus increasing the effective ferromagnetic
coupling by C2.

It is straightforward to extend the analysis to a general
q. For even q(≥ 4), the phase transition is of first order,
and for odd q(≥ 3) there is no phase transition since the
state with the lowest value of the free energy always has
mi 6= 0.

Figure 18 shows the height of the free energy barrier
at the transition point for q = 4. Clearly, a larger value
of the penalty coefficient λ has a higher barrier height,
in sharp contrast to the ferromagnetic case (Fig. 5). The
T/C-dependence is very weak. The jump in the order pa-
rameter ∆m at the transition does not depend on λ and
T/C within the numerical precision of our simulations.

Appendix E: Hybrid NQAC-PQAC strategy

The penalty term in NQAC prevents transitions from
the code space by imposing ferromagnetic couplings be-
tween physical qubits within a logical qubit. This is not
the only way to impose a penalty. For instance, one can
introduce an independent and designated penalty qubit
for each logical qubit, and connect this penalty qubit and
the physical qubits in the logical qubit ferromagnetically.
We refer to this method as penalty quantum annealing
correction; it was proposed in Ref. [79] and further stud-
ied in Refs. [80, 81]. As shown in Refs. [85, 86], phase
transitions can disappear or be significantly weakened
when the penalty coupling is sufficiently large.

In this section we consider a hybrid penalty-nested
QAC model, and introduce designated penalty qubits
into NQAC.

1. Ferromagnetic case

Let us explicitly write the Hamiltonian for the case of
the p-spin ferromagnetic model,

H = −NJ

(
1

N

N∑
i=1

C∑
ci=1

σzici

)p
− λ

N∑
i=1

(
C∑

ci=1

σzici

)q

−Γ

N∑
i=1

C∑
ci=1

σxici − η
N∑
i=1

(
C∑

ci=1

σzici

)
σzi0 , (E1)
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where each designated penalty qubit (labeled i0) couples
ferromagnetically via σzi0 to the physical qubits within a
logical qubit labeled by i with a coupling strength η. The
corresponding free energy is

F = (p− 1)JCpmp + (q − 1)λ
Cq

N

∑
i

mq
i

− 1

βN
log

∑
ai=±

[∏
i

2 coshβvaii

]C (E2)

where

v±i = Cp−1× (E3)√
[pJmp−1 + qλCq−pmq−1

i ± (η/Cp−1)]2 + (Γ/Cp−1)2 .

The penalty coupling is rescaled as η 7→ η/Cp−1, and
the effective temperature decreases as T/Cp (from the
partition function Z = e−NβF ), which serves to suppress
thermal excitations.

Let us now focus our attention on the ground state
at zero temperature. Since the system is ordered in
the ground state, the local magnetization of each logi-
cal qubit assumes the same value as that of the total
system, i.e., m = mi. Then Eq. (E2) yields:

F = (p− 1)JCpmp + (q − 1)λCqmq − Cp× (E4)√
(pJmp−1 + qλCq−pmq−1 + (η/Cp−1))2 + (Γ/Cp−1)2 .

To study the stability of the paramagnetic state m =
0, we perform a Taylor expansion of F around m = 0
[compare to Eq. (28) for the NQAC case]. For p > q:

F/Cp ' −q(ηλ)Cq−p√
η2 + Γ2

mq−1 +O(mq) (E5)

where we neglected a constant term F (0). For p = q:

F/Cp ' −q(η(J + λ))√
η2 + Γ2

mq−1 +O(mq) (E6)

If there is no nesting penalty coupling (i.e., λ = 0) then:

F/Cp ' − p(Jη)√
η2 + Γ2

mp−1 +O(mp) (E7)

In all cases, we see that the stable state is ferromagnetic,
m 6= 0.

Figure 19 shows the critical line for T = 0, p = 4 and
q = 2. In the parameter region (η, λ) below the line the
system undergoes a first order phase transition, while
above the line it undergoes a second order phase tran-
sition. The critical value of λ decreases rapidly when η
is turned on and then decreases almost linearly above
η/C3 ∼ 0.1. As expected, the critical value of η/C3 at
λ/C2 = 0 reproduces the result for penalty quantum an-
nealing correction found in Ref. [85]. The main point
is that the two types of penalties are complementary, in

1st

2nd
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Figure 19. Critical values of the penalty strength η/C3 and
λ/C2 for T = 0, p = 4, q = 2, J = 1, for the hybrid NQAC-
PQAC strategy and ferromagnetic coupling. The phase tran-
sition is of first order below the blue dotted line and of second
order above it. Since the second order phase transition region
is preferred, increasing η in the hybrid NQAC-PQAC strategy
allows for a lower value of λ than in the pure NQAC case.

the sense that increasing one (say η) allows for a smaller
value of the other (say λ).

2. Antiferromagnetic case

Assuming γ � J as in Sec. D to ensure ordering of the
logical qubits, the ground state of the antiferromagnetic
system has mi = ±n, m = 0. The free energy is

F = (q − 1)λCqnq − 1

βN

log

([
2 coshβ

√
(qλCq−1nq−1 + η)2 + Γ2

]C
+
[
2 coshβ

√
(qλCq−1nq−1 − η)2 + Γ2

]C)N
.(E8)

At zero temperature this becomes:

F = (q − 1)λCqnq−
−
√

(qλCq|n|q−1 + Cη)2 + (CΓ)2 (E9)

The free energy in this case is identical to the free
energy of the ferromagnetic system with a designated
penalty term discussed in Refs. [85, 86], after the rescal-
ing η 7→ Cη, Γ 7→ CΓ.2 This system has a rather re-
markable feature. When η = 0, there is, respectively, a
second and a first order phase transition for q = 2 and
q ≥ 3. At finite η, the second order phase transition for
q = 2 disappears at T = 0. For q ≥ 3 and T = 0, there is

2 Compare Eq. (E9) to Eq. (3b) in Ref. [85] and in addition identify
K 7→ C, mk 7→ n, q 7→ p, γ 7→ η, and set λ = C1−q .
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a first order phase transition for η below a critical value
ηc. However, the strength of the first order phase transi-
tion becomes weaker as η increases and above the critical
value ηc, the first order phase transition disappears. At
finite temperature, the first order phase transition exists
at any value of η. However, the strength of the phase
transition significantly weakens as η increases. More de-
tails can be found in Refs. [85, 86].

To summarize, the penalty coupling λ and the nest-
ing level C reduce or effectively remove the thermal fluc-
tuations. While the energy gap closing associated with
increased nesting level C (recall Sec. IV F) still exists in
NQAC, it can be removed or significantly weakened by
introducing designated penalty qubits and their coupling
η, as illustrated in Fig. 19.

Appendix F: Excited states

In the main text we analyzed ground state phase tran-
sitions, where the main focus was the energy gap between
the ground and first excited states. We demonstrated
that this gap becomes larger at the phase transition as
the penalty strength increases. When this is the case it is
more likely for the system to stay in the ground state, and
errors are suppressed. However, in an open system, ther-
mal fluctuations can cause transitions to excited states
even when there is no phase transition. Therefore it is
important to understand how easily excited states can
relax into the ground state. The aim of this section is to
understand the energy landscape of NQAC in the pres-
ence of a strong penalty coupling.

1. The ferromagnetic case for p = 2

Let us first consider the ferromagnetic case with p =
q = 2. In the ground state, all the spins take the same
expectation value mi ≡ w1. The excited states include
spin flips within a logical qubit. If the number of spin
flips is less than C/2, we obtain a correct answer by ma-
jority vote at the end of annealing. For simplicity, we do
not consider spin flips within a logical qubit and assume
that all the encoded qubits in a logical qubit point in the
same direction (this would be the case when the penalty
coupling is large). In the following, we study when they
become metastable states (local minima of the free en-
ergy).

Without loss of generality, we can assume that w1

is positive and w2 is negative. Substituting this into

Eq. (16), the excited state is determined by:

w1 =
(2Jm+ 2λw1)√

(2Jm+ 2λw1)2 + (Γ/C)2
×

tanh(βC
√

(2Jm+ 2λw1)2 + (Γ/C)2), (F1a)

w2 =
(2Jm+ 2λw2)√

(2Jm+ 2λw2)2 + (Γ/C)2
×

tanh(βC
√

(2Jm+ 2λw2)2 + (Γ/C)2) (F1b)

where

m =
(N − k)w1 + kw2

N
. (F2)

The solutions of these equations are shown in Fig. 20.
The two curves show the individual solutions of
Eqs. (F1a) and (F1b), and the intersections are the
solutions that satisfy both equations. The red dots in
Fig. 20 are local and global minima. When quantum fluc-
tuations are large the only local minimum is the ground
state [Fig. 20(a)]. Each logical spin is in the paramag-
netic state mi = 0. As the fluctuations decrease, there is
a second order phase transition and the local minima are
in the ferromagnetic statesmi 6= 0 [Fig. 20(b)]. The value
of each logical spin approaches ±1 [Fig. 20(c)] and when
the fluctuations become very small, the excited states
start to appear as local minima in the mean field free
energy [Fig. 20(d)].

In the low temperature limit, Eqs. (F1) become

w1 =
(2Jm+ 2λw1)√

(2Jm+ 2λw1)2 + (Γ/C)2
(F3a)

w2 =
(2Jm+ 2λw2)√

(2Jm+ 2λw2)2 + (Γ/C)2
. (F3b)

The necessary condition for the existence of metastable
states is that (w1, w2) = (±1,∓1) is the solution of
Eqs. (F3) at Γ = 0. In this limit, Eqs. (F3) become
sgn(w1,2) = sgn((2Jm + 2λw1,2)). Then (w1, w2) =
(±1,∓1) can be a solution if

2J − 4Jk

N
− 2λ < 0 (F4)

This condition is satisfied for any value of (k,N) if J < λ.
If J > λ, it is satisfied only if the middle term 4Jk

N com-
pensates for the difference between J and λ. Specifically,
the metastable state disappears for small k more easily
than for large k. And for any k, the metastable state
disappears as N increases.

From this observation, we know that there can ex-
ist metastable states when the quantum fluctuations are
small. In Fig. 21(a) we show the transition lines in the
(k/N,Γ/C) plane below which there exist metastable
states and above which there are no metastable states.
This is likewise the case for thermal fluctuations; in
Fig. 21(b), we show the line between the existence and
non-existence of metastable states in the (k/N, T/C)



25

-� � �

-�

�

�

��

�
�

(a)

-� � �

-�

�

�

��

�
�

(b)

-� � �

-�

�

�

��

�
�

(c)

-� � �

-�

�

�

��

�
�

(d)

Figure 20. Solutions to Eqs. (F1a) and (F1b) for k/N = 0.09, J = 1, T/C = 0, γ = 0.9. Red dots are local and global minima.
(a) Γ/C = 3.8; (b) Γ/C = 3.3; (c) Γ/C = 0.07; (d) Γ/C = 0.
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Figure 21. Phase diagrams in the k-Γ plane and k-T planes. (a): k/N vs Γ/C at T = 0. for γ = 0.9 and γ = 1.1, the phase
transition line is determined only by the ratio k/N : k/N = 0.05 is the lowest excited state which can have a metastable state
for γ = 0.9. (b) k/N vs T/C at Γ = 0. for γ = 0.9 and γ = 1.1. the phase transition line is determined only by the ratio k/N .
T/C = 1.28 is the highest temperature which can have a metastable state for γ = 0.9. Above this, metastable state disappears.

plane Remarkably, Fig. 21(b) and Fig. 21(a) are indis-
tinguishable, suggesting that the excited states are sim-
ilarly affected by quantum and thermal fluctuations in
this case.

Fig. 22(a) shows the transition line between the ex-
istence and the absence of metastable excited states in
the (T/C,Γ/C) plane, for various values of k/N and λ.
Fig. 22(b) shows the transition line between the exis-
tence and the absence of metastable excited states in the
(k/N, λ) plane. For a fixed penalty, when only a small
number of spins inside a logical qubit have flipped there
are no metastable states. But a state with many flipped
spins (at fixed penalty) can be metastable. The higher
the penalty, the smaller the range of no metastability,
since in the limit of large penalty the only stable states
are the all-up and all-down states (logical spins must be
completely ordered). This explains the negative slope in
Fig. 22(b).

2. The antiferromagnetic case for p = 2

For simplicity let us assume that N is an even number.
Classically, the ground state of an antiferromagnetic sys-
tem then has half of the spins pointing in the positive z
direction and the rest of the spins pointing in the neg-
ative z direction: the ground state has N/2 spins with
mi = 1 and N/2 spins with mi = −1, and the average is
m = 0. The k-th excited states have N/2± k spins with
mi = 1 and N/2∓ k spins with mi = −1. The average is
m = ± 2k

N . When quantum and thermal fluctuations are
induced (Γ, T 6= 0), the values of mi change. We study
the existence and stability of excited states using a mean
field analysis.

Consider the k-th level excited states in which N/2−k
of the mi are positive and N/2 + k of the mi are nega-
tive (since the system has Z2 spin-flip symmetry we can
make this choice without loss of generality). Similarly
to Eq. (F1), to determine the excited states we need to
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Figure 22. (a) Disappearance of lower excited states for k/N = 0.1, 0.2 in the ferromagnetic case for two values of λ: metastable
states exist only below the transition lines (toward the bottom left). (b) Critical λ as a function of k/N in the ferromagnetic
case. The metastable states are first excited states. Here T/C = 0.03, Γ/C = 0.03, and J = 1.

consider the following set of equations:

w1 =
(−2Jm+ 2λw1)√

(−2Jm+ 2λw1)2 + (Γ/C)2
×

tanh(βC
√

(−2Jm+ 2λw1)2 + (Γ/C)2) (F5a)

w2 =
(−2Jm+ 2λw2)√

(−2Jm+ 2λw2)2 + (Γ/C)2
×

tanh(βC
√

(−2Jm+ 2λw2)2 + (Γ/C)2) (F5b)

w3 =
(−2Jm+ 2λw3)√

(−2Jm+ 2λw3)2 + (Γ/C)2
×

tanh(βC
√

(−2Jm+ 2λw3)2 + (Γ/C)2) , (F5c)

where

m =
(N2 − k − 1)w1 + (N2 + k)w2 + w3

N
. (F6)

Here (N/2−k−1) of themi take a value w1 > 0, (N/2+k)
take a value w2 < 0, and a single spin takes a value w3,
which can be positive or negative. If w3 is positive, then
it is the k-th excited state and if it is negative, then
it is the (k + 1)-th excited state. The reason why w3 is
needed is the following, and stems from the the difference
between the ferromagnetic and antiferromagnetic cases.
In the ferromagnetic case, we considered the transition
between the k-th excited state and the ground state. The
k-th excited state has N −k spins taking a positive value
w1 > 0 and k spins taking a negative value w2 < 0, while
the ground state has all spins taking a positive value.
The reason we consider this transition is that lower en-
ergy states, for instance the (k − 1)-th excited state, are
less stable than higher energy states against the quan-
tum and thermal fluctuations. This feature can be seen
in Fig. 22 as well as Fig. 15(a). Therefore, when the k-th
excited state loses its metastability, the (k−1)-th excited

state has already lost its meta-stability, and the transi-
tion happens collectively with all k spins flipping from
negative to positive. This kind of behavior is captured
by two parameters w1 and w2. On the other hand, in the
antiferromagnetic case, the lower excited states are more
stable; when the k-th excited state loses its metastability,
all the lower energy states are still metastable. Therefore,
the transition from the k-th excited state to the (k−1)-th
excited state happens most likely by flipping a single spin.
This transition requires three parameters w1,2,3; two of
them (w1 and w2) do not change their signs before and
after the transition, and one of them (w3) describes the
single spin that flips under the transition.

At T = 0 and Γ = 0, the saddle point equations are

w1 = sgn(−2Jm+ 2λw1)
w2 = sgn(−2Jm+ 2λw2)
w3 = sgn(−2Jm+ 2λw3) (F7)

In this case, wi can only be ±1. Let us assume w1 = 1
and w2 = −1. For k > 0, w3 = +1 has a lower energy
and w3 = −1 has a higher energy. In order to have
w1 = 1, w2 = −1, w3 = 1 as the solution of Eq. (F7), the
couplings must satisfy

λ >
2kJ

N
(F8)

while for w1 = 1, w2 = −1, w3 = −1, we need

λ >
2(k + 1)J

N
(F9)

As can be seen from Eq. (F8), the ground state k = 0
always satisfies the existence condition. Higher energy
states (k 6= 0) do not exist unless the penalty coupling λ
is large enough.

At finite temperature and finite transverse field (T 6=
0,Γ 6= 0), we solve the saddle point equations (F5) nu-
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Figure 23. Existence of metastable excited states in the antiferromagnetic case. Panel (a): T/C = 0; panel (b): T/C = 0.33.
Red dot-dashed, green dotted, and blue dashed lines represent k/N = 0.1, 0.2 ,and 0.3, respectively. To the right of these lines
the corresponding excited states exist as metastable states (MS), while to the left the corresponding excited states do not exist
as metastable states (No MS). Above the black solid line, only the paramagnetic ground state (PM GS) exists and the free
energy does not have a local minimum.
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Figure 24. Phase diagram in the T -Γ plane between the
phases with m = 0 and m 6= 0, for λ = 1.5 and λ = 1.

merically for various values of the transverse field Γ and
the penalty λ. The dashed lines in Fig. 23 separate
the different phases. The excited states corresponding
to each value of k/N exist as metastable states of the
free energy in the larger λ region of the transition lines,
while there are no corresponding metastable states in the
smaller λ region. The solid line represents a phase transi-
tion line in the ground state. The ground state is locally
paramagnetic (mi = 0) above the line, and mi 6= 0 below
the line. For small excitations k/N � 1 (red dotted lines
in Fig. 23) the critical Γ increases as λ increases, while
for larger k/N (green and blue dotted lines in Fig. 23) the
critical Γ decreases. This means that for a given penalty
coupling λ, the metastable states of higher energy states
disappear at larger values of Γ. Therefore, they are less
stable. This result is the opposite of the ferromagnetic
case, where higher excited states are locally more stable
than lower excited states.

Fig. 24 shows the phase transition lines in the
(T/C,Γ/C) plane for the penalty coupling values λ =
1, 1.5. The phase transition for the ground state between
the local paramagnetic mi 6= 0 and ferromagnetic states
mi 6= 0 are given by Eq. (D2b). The green dotted line is
for the excited states k/N = 0.4. One can see that the
phase transition lines are fairly insensitive to the excita-
tion level k/N .

In the ferromagnetic case, there are two degenerate
ground states for locally ordered phase mi = ±n. In
the antiferromagnetic case, there is an

(
N
N/2

)
-fold degen-

eracy in the ground state for even N and an
(

N
(N−1)/2

)
-

fold degeneracy for odd N . This is in contrast to the
case of the one-dimensional Ising model with nearest-
neighbor coupling H = ±

∑
i σ

z
i σ

z
i+1. In this case, there

are two ground states for both ferromagnetic and antifer-
romagnetic interactions. In the nested configuration, all
spins are coupled. Therefore, any configurations which
have the same number of positive mi and negative mi

have the same energy. This fact may change the thermal
behavior of the ferromagnetic and the antiferromagnetic
cases. In the case of the ferromagnetic model, the num-
ber of excited states (metastable states) increases rapidly
and therefore their contributions to the partition func-
tion and the transition rates between potential wells are
important. On the other hand, in the antiferromagnetic
case, the largest degeneracy happens in the lowest energy
states and the degeneracy of the excited states is smaller.

We study the state in which (N/2−k) spins take values
mi = w1, and (N/2 + k) spins take values mi = w2. The
ground state is k = 0.

In Fig. 25, we show w1 and w2 for the low energy state
k/N = 0.01 and a highly excited state k/N = 0.46 for
T/C = 0.03. Both |w1| and |w2| decrease continuously as
a function of Γ and reach zero at a critical value. This is
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Figure 25. w1 (starts from 1 at Λ = 0) and w2 (starts from −1 at Λ = 0) for a low energy state k/N = 0.01 and highly excited
state k/N = 0.46. Here T/C = 0.03, λ = 1 (b) w1 (ends at 1 at γ = 1.0) and w2 (ends at −1 at γ = 1.0) for Γ/C = 0.67 and
T/C = 0.03.

again a second order phase transition. It is interesting to
note [see Fig. 25(a)] that the positive expectation value
w > 0 (minority of the spins) as a function of Γ/C does
not strongly depend on k/N whereas the negative expec-
tation value w < 0 (majority of the spins) is sensitive
to k/N . Also interesting is the fact that [see Fig. 25(b)]
for small (k/N -dependent) penalty λ, at first the system
tends to become locally disordered (both w1 and w2 de-
crease in absolute value), before settling in the locally
ordered state

Let us compare the above result with the results ob-
tained in Ref. [83]. Let us assume that λ is large enough
and all the physical qubits within a logical qubit are
aligned. Under this assumption,

m =
2
(
N
2 − k

)
N

, mi = ±1 , (F10)

where there are N
2 − k logical qubits with mi = ±1 and

N
2 + k logical qubits with mi = ∓1. The energy at the
end of the anneal (t = tf ,Γ = 0) is then

Ek = C2

[
J

(
1− 2k

N

)2

+ λ

]
. (F11)

Therefore the energy level difference between the ground

state k = N/2 and the ∆k-th excited state k = N/2±∆k
is

EN/2±∆k − EN/2 =
4C2J

N2
(∆k)2 . (F12)

The probability of occupancy of the ground state is then

P (J,C) =
d0e
−βNC2λ∑N/2

i=0 die
−βNC2λ+β 4C2J

N i2

=
1∑N/2

i=0
di
d0
e+β 4C2J

N i2
(F13)

where di is the degeneracy of i-th state. Note that chang-
ing the number of physical qubits C is effectively the
same as changing the antiferromagnetic coupling J

P (J,C) = P (JC2, 1) (F14)

This reproduces the theoretical scaling results reported
in Ref. [83], which were confirmed with empirical data
from experiments using a D-Wave processor, with the
scaling J 7→ JC2 replaced by JCα, with 1 < α < 2 due
to embedding and other overhead.
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[38] Salvatore Mandrà and Helmut G. Katzgraber, “A
deceptive step towards quantum speedup detection,”
arXiv:1711.01368 (2017).

[39] Fei Yan, Simon Gustavsson, Archana Kamal, Jeffrey
Birenbaum, Adam P Sears, David Hover, Ted J. Gud-
mundsen, Danna Rosenberg, Gabriel Samach, S Weber,
Jonilyn L. Yoder, Terry P. Orlando, John Clarke, An-
drew J. Kerman, and William D. Oliver, “The flux qubit
revisited to enhance coherence and reproducibility,” Na-
ture Communications 7, 12964 EP – (2016).

[40] Steven J. Weber, Gabriel O. Samach, David Hover, Si-
mon Gustavsson, David K. Kim, Alexander Melville,
Danna Rosenberg, Adam P. Sears, Fei Yan, Jonilyn L.
Yoder, William D. Oliver, and Andrew J. Kerman, “Co-
herent coupled qubits for quantum annealing,” Physical
Review Applied 8, 014004– (2017).

[41] R. Islam, C. Senko, W. C. Campbell, S. Korenblit,
J. Smith, A. Lee, E. E. Edwards, C. C. J. Wang, J. K.
Freericks, and C. Monroe, “Emergence and frustration
of magnetism with variable-range interactions in a quan-
tum simulator,” Science 340, 583–587 (2013).

[42] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W.
Hess, P. Hauke, M. Heyl, D. A. Huse, and C. Monroe,
“Many-body localization in a quantum simulator with
programmable random disorder,” Nature Physics 12, 907
EP – (2016).

[43] Jonathan Simon, Waseem S. Bakr, Ruichao Ma, M. Eric
Tai, Philipp M. Preiss, and Markus Greiner, “Quantum
simulation of antiferromagnetic spin chains in an optical
lattice,” Nature 472, 307 EP – (2011).

[44] Martin Boll, Timon A. Hilker, Guillaume Salomon,
Ahmed Omran, Jacopo Nespolo, Lode Pollet, Immanuel

Bloch, and Christian Gross, “Spin- and density-resolved
microscopy of antiferromagnetic correlations in fermi-
hubbard chains,” Science 353, 1257 (2016).

[45] Hendrik Weimer, Markus Müller, Igor Lesanovsky, Peter
Zoller, and Hans Peter Büchler, “A rydberg quantum
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