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We analyze the coupling of atoms or atom-like emitters to nanophotonic waveguides in the pres-
ence of propagating acoustic waves. Specifically, we show that strong index modulations induced
by such waves can drastically modify the effective photonic density of states and thereby influence
the strength, the directionality, as well as the overall characteristics of photon emission and ab-
sorption processes. These effects enable a complete dynamical control of light-matter interactions
in waveguide structures, which even in a two dimensional system can be used to efficiently ex-
change individual photons along selected directions and with a very high fidelity. Such a quantum
acousto-optical control provides a versatile tool for various quantum networking applications rang-
ing from the distribution of entanglement via directional emitter-emitter interactions to the routing
of individual photonic quantum states via acoustic conveyor belts.

I. INTRODUCTION

Optical signals can be transmitted through waveguides
and fibers without being significantly degraded by the
presence of acoustic excitations in the material. This
property can be attributed to the vast difference in fre-
quency and propagation speed, which makes a direct cou-
pling of photons and phonons very inefficient. Neverthe-
less, residual Brillouin scattering [1, 2], where photons
are scattered into other orthogonal modes by simultane-
ously emitting or absorbing phonons, still constitutes a
major limitation for optical communication [3, 4], in par-
ticular when operating at higher power. In addition, has
been suggested of using intense acoustic waves for the
control of weak optical fields, for example, for frequency
conversion [5, 6], on-chip phase modulation [7], or non-
reciprocal scattering of optical beams [8, 9]. In particular,
in nanophotonic structures, where photons and phonons
are both strongly confined [10–14], such techniques rep-
resent a promising alternative to Kerr- or electro-optical
modulation techniques for manipulating light [15–22].

In this work we investigate the use of strong running
acoustic waves for the control of nanophotonic quantum
networks, where not only the propagation of single pho-
tons, but also their interaction with stationary emitters
is of paramount importance. The basic idea is illustrated
in Fig. 1(a), which shows a generic waveguide QED set-
ting with multiple atoms, quantum dots or defect cen-
ters that are strongly coupled to a one dimensional (1D)
photonic channel [23–33]. In engineered photonic crys-
tal structures or near the edge of a propagation band,
the group velocity of photons is considerably reduced,
which can enhance and modify the coupling to guided
modes [34–42]. However, in the resulting decay neither
the shape nor the direction of the emitted photon is con-
trolled, which prevents an efficient reabsorption of this
photon by a second emitter. This pictures changes in
the presence of strong index modulations induced by a

propagating acoustic wave, which creates a moving lat-
tice potential for the optical field. If sufficiently strong,
this potential can confine and drag photons along, which
induces a broad-band modification and, in particular, a
left-right asymmetry in the effective photonic density of
states, as experienced by the emitter. As a result, this
method allows one to control both the rate as well as the
direction of the emitted photons by simply adjusting the
amplitude of the applied acoustic wave.

The ability to emit photons along a single direction
and with a specified temporal shape is an essential re-
quirement for the implementation of deterministic quan-
tum communication protocols in scalable photonic net-
works [43, 44]. Our analysis shows that acousto-optical
control of emitter-photon interactions in waveguide QED
systems provides a general method to achieve this tun-
ability, without relying on specific level schemes or near-
field effects [45–49]. Importantly, this technique can be
applied in two dimensional (2D) settings, where usually
the dispersion of emitted photons into random directions
prevents efficient interactions between emitters that are
more than a few wavelengths apart. Acoustic control
can be used to overcome this limitation and to implement
long-range emitter-emitter interactions by channeling the
emitted photons into a directed, strongly focused beam.
Therefore, this method can be applied to extend con-
cepts from non-reciprocal optics [50] and chiral waveg-
uide QED [49] to higher dimensional scenarios, where
quantum networks with a higher degree of connectivity
as well as new types of quantum-optical and many-body
phenomena can be explored.

This paper is structured as follows. In Sec. II we intro-
duce a generic model for emitters coupled to an acousto-
optical waveguide (AOW), which we use in Sec. III to de-
rive a theory of spontaneous emission in the presence of
strong acoustic waves. In Sec. IV we then discuss several
quantum networking applications based on acoustic con-
trol techniques in the weak- and strong-coupling regime.
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FIG. 1. Acousto-optical waveguide.—(a) Sketch of a waveg-
uide QED setup with multiple two-level emitters coupled to
the field of a 1D photonic channel. A propagating acoustic
wave, which is launched into the waveguide, for example, by
an interdigital transducer (IDT), creates a strong modula-
tion of the refractive index and modifies the photon emission
and absorption properties. (b) Dispersion relation ω(k) of
the unperturbed waveguide, which is assumed to be approxi-
mately quadratic above the cutoff frequency ωc. In this case
the emission rates ΓR,L ∼ 1/∣vg(kR,L)∣ into right- and left-
propagating modes are identical. (c) In the presence of the
acoustic wave, the photon emission is instead determined by
the deformed Floquet quasi-energy bands ω̃n(k), which are
plotted for Va/Er = 0.2 and Ω/Ωr = 0.4. For a finite speed
of sound, ω̃n(k) ≠ ω̃n(−k) and photon emission becomes di-
rectional. In (b) and (c) the red circles indicate the reso-
nance conditions given in Eq. (9), which determine the set of
wavevectors kµ that contribute to the overall emission rate.

In Sec. V we extend our model to 2D waveguides and
discuss the emergence of acoustically-induced directional
emitter-emitter interactions in this setting. Finally, in
Sec. VI we discuss potential experimental settings for ob-
serving these effects with atoms or defect centers coupled
to photonic crystal structures. In Sec. VII we summarize
our results and discuss future directions of research.

II. MODEL

We consider a generic setup as depicted in Fig. 1(a),
where N two-level atoms or solid-state emitters with
ground state ∣g⟩ and excited state ∣e⟩ are coupled strongly
to the field of a 1D photonic waveguide. We assume that
the emitters are dominantly coupled to photons of a sin-
gle propagation band with a quadratic dispersion relation
ω(k) ≃ ωc+ h̵k2/(2m∗). For conceptual simplicity we will
primarily focus on homogeneous waveguides. In this case,
ωc is the cutoff frequency of a given transverse mode and
m∗ ≈ ωch̵n

2/c2, where n is the refractive index, is the
effective mass. However, as discussed in more detail in
Sec. VI, our analysis can be readily generalized to pho-

tonic crystal structures, where very strong couplings and
much larger values of m∗, i.e., a further reduction of the
photonic group velocities, can be realized.

The waveguide is subject to a spatial and time-
dependent modulation of the refractive index, n(x, t) =
n+δn(x, t), which creates an effective potential V (x, t) ∼
δn(x, t) for the photons [14, 51, 52]. In this work we
will specifically focus on strong index modulations in-
duced by propagating acoustic waves via acousto-optical
or optomechanical interactions [7–9, 14, 51, 53, 54], but
our findings can be generalized to other electro-optical or
Kerr-modulation schemes as well [17, 18, 20]. The pho-
tons in the waveguide of total length L → ∞ are then
described by the Hamiltonian

Hw(t) = ∫
L

0
dxψ†(x)(h̵ωc −

h̵2∂2

2m∗∂x2
+ V (x, t))ψ(x),

(1)
where ψ(x) and ψ†(x) are bosonic field operators obeying
[ψ(x), ψ†(x′)] = δ(x−x′). The photons interact with the
emitters located at positions xi along the waveguide such
that the Hamiltonian for the full system reads

H =
N

∑
i=1

h̵ωeg ∣e⟩i⟨e∣ + h̵g
N

∑
i=1

[ψ†(xi)σi− + σi+ψ(xi)] +Hw(t).

(2)

Here σ− = (σ+)† = ∣g⟩⟨e∣ and it has been assumed that
the transition frequency, ωeg, as well as the coupling
strength, g(xi) ≃ g, is approximately the same for all
emitters.

III. PHOTON EMISSION IN
ACOUSTO-OPTICAL WAVEGUIDES

Let us first consider the spontaneous emission of pho-
tons from a single emitter at position x1 = 0, which is ini-
tially prepared in the excited state ∣e⟩. Since the Hamilto-
nian (2) preserves the total number of excitations, the re-
sulting system evolution is described by the wavefunction
∣Ψ(t)⟩ = ce(t)∣e⟩∣vac⟩ + ∫ dxφ(x, t)ψ†(x)∣g⟩∣vac⟩. Here
pe(t) = ∣ce(t)∣2 is the excited state probability and φ(x, t)
is the amplitude of the emitted photonic wavepacket in
position space. For V = 0 and ωeg far from the cut-off
frequency we can use a conventional Wigner-Weisskopf
approach to derive an effective equation for the decay of
the excited state amplitude

ċe(t) = −iωegce(t) −
Γ

2
ce(t), (3)

as well as for the right- and left-propagating emitted
fields φR/L(t) = limε→0+ φ(±ε, t),

φR/L(t) = −i
√

ΓR/L/∣vg(kR/L)∣ce(t). (4)

In these equations, Γ = ΓL + ΓR is the total decay rate
and ΓR and ΓL are the rates of photons emitted to the
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right and to the left, respectively. For the unperturbed
waveguide we recover the standard result, ΓR = ΓL =
g2/∣vg(kR/L)∣. Here vg(k) = ∂ω(k)/∂k is the group veloc-
ity and the two wavevectors kR = −kL are determined by
the resonance condition ωeg = ω(kR/L).

A. Bloch-Floquet theory of spontaneous emission

In the presence of the potential V (x, t) = Va cos[ka(x−
vt)] induced by a right-propagating acoustic wave with
a speed of sound v > 0, the photons experience an ad-
ditional periodic modulation in space and time with fre-
quency Ω = vka and wavelength λ = 2π/ka. In this case it
is convenient to change into the interaction picture with
respect to the decoupled Hamiltonian H0 = h̵ωeg ∣e⟩⟨e∣ +
Hw(t). In this new representation, the field operator

ψI(x, t) = U †(t)ψ(x)U(t), where U(t) = T e− ih̵ ∫
t
0 dsH0(s)

and T is the time-ordering operator, can be written in
terms of a Bloch-Floquet expansion as

ψI(x, t) =
1√
L
∑
n,k

eikxunk(x, t)ank. (5)

Here k ∈ [−ka/2, ka/2) lies within the Brillouin zone
(BZ) defined by the acoustic wavevector ka and the ank
(a†
nk) are bosonic annihilation (creation) operators. The

unk(x + λ, t + 2π/Ω) = unk(x, t) are periodic functions,
which satisfy the differential equation

u̇nk = −
i

h̵
[h̵ωc −

h̵2

2m∗ ( ∂

∂x
+ ik)

2

+ V (x, t)]unk, (6)

and can be decomposed as

unk(x, t) = e−iω̃n(k)t
∞
∑
`=−∞

u
(`)
nk e

i(kax−Ωt)`. (7)

From the numerical solution of Eq. (6) we obtain a set
of quasi-energy bands ω̃n(k) [see Fig. 1(c)], which for a
static potential just correspond to the usual Bloch bands.
For Va/Er ≳ 1, where Er = h̵Ωr = h̵2k2

a/(2m∗) is the pho-
tonic recoil energy, the lowest bands become well sepa-
rated and their width decreases. Importantly, for finite
propagation velocity v, we observe an asymmetric dis-
tortion of the quasi-energy bands, i.e., ω̃n(k) ≠ ω̃n(−k).
Therefore, the density of right- and left-propagating pho-
tonic states in an acousto-optical waveguide is no longer
the same, which can give rise to directional emission of
photons, as discussed below.

By using the decomposition (7), the remaining inter-
action Hamiltonian can be written as

HI(t) =
h̵g√
L
∑
kn`

u
(`)
nk e

−i(ω̃n(k)+Ω`−ωeg)tankσ+ +H.c. (8)

This expression shows that resonant interactions between
the emitter and the field can occur at multiple wavevec-
tors kµ, which satisfy the resonance condition

ωeg = ω̃nµ(kµ) +Ω`µ, (9)

for a band index nµ and a Floquet index `µ [see Fig. 1(c)].
The emission rate into modes around kµ will depend on

the coupling ḡµ = gu(`µ)nµkµ
and the quasi group velocity

ṽg,µ = ∂ω̃nµ(k)/∂k∣k=kµ . By summing over all resonant
k-vectors we obtain the total emission rate Γ = ΓR + ΓL.
The corresponding rates for emitting into right- and left-
propagating modes are now given by [see App. A],

ΓR,L = ∑
µ

∣ḡµ∣2

∣ṽg,µ∣
θ[±ṽg,µ], (10)

where θ(x) denotes the Heaviside step function. In the
following we introduce the characteristic decay rate Γ0 =
g2/∣vg(ka/4)∣ = 4πg2

0/Ωr, where g0 = g/
√
λ is the coupling

strength between an emitter and a single photon of extent
λ. This rate corresponds to the rate of emission into the
unperturbed waveguide at a frequency ωeg = ω(ka/4) in
the middle of the first BZ.

B. Acoustically-induced directionality

As compared to the standard setting, the travelling
acoustic wave imposes a preferred direction, thereby
breaking the symmetry of the band structure ω̃n(k). As a
result the emission rates into right- and left-propagating
photons, as defined in Eq. (10), will in general be dif-
ferent. This difference can be quantified in terms of the
directionality parameter D = (ΓR−ΓL)/Γ0, which is plot-
ted in Fig. 2 (a) and (b) for various potential parameters.
We see that for a weak acoustic perturbation and low fre-
quencies, Va < h̵Ω ≪ Er, an asymmetric emission occurs
only at two specific resonances

δ = ωeg − ωc ≃
Ωr
4
∓ Ω

2
, (11)

where D can be both positive (the photons are emit-
ted into the direction of the acoustic wave) or nega-
tive (the photons are emitted into the opposite direc-
tion). As indicated in Fig. 2(c), these resonances arise
from a Brillouin scattering process between modes k and
k′ = k + ka of the unperturbed waveguide. This scat-
tering process is resonant only for wavevectors that sat-
isfy ω(k) + Ω = ω(k′) [indicated by the red arrow in
Fig. 2(c)], which for finite Va leads to an avoided cross-
ing in the vicinity of these modes. When either kR or kL
lies within this avoided crossing, the corresponding left-
or right-propagating emission channel is suppressed and
the emission becomes directional.

This mechanism can also be understood from the open-
ing of a gap in the quasi-energy band-structure, which is
defined within the first BZ associated with the acoustic
wavevector ka. Here one has to keep in mind that the
acoustic modulation ∼ Vae

±i(kax−Ωt) induces Umklapp
processes that connect neighboring Brillouin zones in Flo-
quet sectors that differ by ` = ±1. Therefore, as illus-
trated in Fig. 2(d), when folding the original dispersion



4

(a)

0

0.01 0.1 1

0

-1

10

forward

backward

-0.6

0.6

(b)

0

0.01 0.1 1

0

-1

10

0.6

forward

backward

(c)

-0.4
4

(d)

FIG. 2. Directional photon emission.—The directionality pa-
rameter D = (ΓR − ΓL)/Γ0 is plotted as a function of the
detuning of the emitter from the band edge, δ = ωeg −ωc, and
in (a) for varying Va and fixed Ω/Ωr = 0.2 and in (b) for vary-
ing Ω and fixed Va/Er = 0.2. The dashed black line indicates
the position of the band edge of the unperturbed waveguide.
Note that in both plots we have restricted the maximum value
of the directionality parameter to ∣D∣ ≤ 10 in order to avoid
unphysical divergencies near the band edges, where the as-
sumption of an exponential decay breaks down. In addition,
for frequencies outside the modified photonic band, where the
Wigner-Weisskopf approach is no longer valid, D has been set
to zero. (c) Illustration of a Brillouin scattering process be-
tween two modes k and k′ = k + ka for a quadratic dispersion
relation. For finite Va the coupling of modes in the vicinity
of k and k′ leads to an avoided crossing in the quasi-energy
bandstructure, as shown in (d). Here the main resonances
[see Eq. (9)] are indicated by red circles.

relation into the first BZ, the individual branches must
be simultaneously shifted in frequency by ±Ω,±2Ω, ...,
in order to obtain the correct avoided crossings. This
construction explains the resulting asymmetry of the
quasi-energy bands, which is retained when the poten-
tial strength is increased [see Fig. 1(c)]. Note that in this
quasi-energy picture higher `-resonances must be taken
into account already for small values of Va. For example,
for the backward emission process (which takes place in
the second BZ) the resonances at ` = ±1 are more impor-
tant than the ` = 0 contribution.

C. Photon-dragging regime

As evident from Fig. 2(a) and (b), this simple
Brilluoin-scattering picture no longer applies for stronger
potentials, Va/Er ≳ 0.1. In this regime, the acoustic in-
dex modulation is already sufficiently strong to spatially
confine the photons, meaning that the emitted photons
are dragged along by the moving lattice potential, rather

than just being reflected from it. As a consequence,
the effective photonic density of states of the waveg-
uide changes substantially over a wide range of optical
frequencies and instead of individual resonances, broad
windows of directional emission appear. Importantly,
strong forward emission can now occur even for frequen-
cies ωeg < ωc, where in the absence of the acoustic wave
emission into waveguide modes is completely inhibited.
These features vanish again for Ω ≳ Ωr, where the mod-
ulation is already too fast to significantly influence the
decay process.

The photon-dragging effect not only affects the direc-
tionality, but can also significantly enhance the overall
emission rate due to a strong reduction of the quasi
group velocity ṽg. This enhancement becomes most pro-
nounced, when the reduced photonic group velocity of
the static lattice matches the speed of sound. In this
case the photons reside in the vicinity of the emitter for
a very long time and therefore interact more efficiently.
This effect is closely related to the appearance of non-
perturbative features in the emission of Cherenkov pho-
tons into slow-light waveguides [55], where a similar en-
hancement of the coupling between co-propagating pho-
tons and atoms can occur. Note, however, that the pro-
cess of photons being emitted from a moving emitter and
the emission of photons into a moving photonic lattice are
in general not the same, since the presences of a periodic
structure breaks Galilean invariance [56].

D. Multi-emitter waveguide QED

The Bloch-Floquet theory for spontaneous emission
discussed above can be readily generalized to settings
where multiple emitters are placed along the waveguide.
To account as well for additional external driving fields,
such scenario can be modeled by an effective equation
of motion for the reduced density operator of the emit-
ters, ρ, as obtained after eliminating all the photonic
modes within a standard Born-Markov approximation.
Note that this approximation is valid away from any di-
vergencies in the density of states associated with the
quasi-energy bands, which no longer coincide with the
divergency at the original band edge at δ = 0. As a result
of this derivation detailed in App. B, we obtain a master
equation of the general form

ρ̇ = − i
h̵
[He, ρ] +

N

∑
i,j=1

[Aij (σi−ρσ
j
+ − σ

j
+σ

i
−ρ) +H.c.] . (12)

Here, the first term describes the coherent evolution of
the individual, laser-driven emitters. In a frame rotating
with the laser frequency ωL, it reads

He =
N

∑
i=1

−h̵δL∣e⟩i⟨e∣ +
h̵ΩL

2
(eiϕiσi− + e−iϕiσi+) , (13)

where δL = ωL−ωeg, ΩL is the Rabi-frequency and the ϕi
are locally adjustable laser phases. The second term in
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Eq. (12) accounts for all decay and waveguide-mediated

interaction processes, ∼ Aijσ
j
+σ

i
−, which arise from the

emission and reabsorption of photons between different
emitters i and j. The corresponding amplitudes are given
by

Aij =
Γng

2
δij +∑

µ

∣ḡµ∣2ei(kµ+ka`µ)rij
∣ṽg(kµ)∣

θ [ṽg(kµ)rij] , (14)

where rij = xj − xi and the index µ runs again over all
resonant wavevectors, kµ.

In Eq. (14), the diagonal terms, Aii = (Γ + Γng)/2,
describe the decay of each individual emitter, where we
have included an additional rate Γng to account for all
other decay processes into non-guided modes. The gen-
eral expression for Aij explicitly shows that not only the
decay of each individual emitter, but also their mutual
interactions can be strongly influenced by the applied
acoustic modulation. This allows one, for example, to
switch between a regular (∣Aij ∣ = ∣Aji∣) and a fully chiral
(∣Aji∣ ≪ ∣Aij ∣ for xj > xi) waveguide QED system in a
dynamical and fully tunable way, by simply varying the
amplitude of the acoustic wave.

IV. QUANTUM NETWORKING
APPLICATIONS

In the previous section we have shown that the pres-
ence of strong acoustic waves can influence both the
strength and the directionality of photon emission, or
even open up a decay channel at frequencies where oth-
erwise emission into guided modes would not be possi-
ble. The key feature is that such modification can be
induced dynamically by simply changing the amplitude
or direction of the acoustic modulation. This level of
control becomes an essential ingredient for various quan-
tum communication schemes, where propagating photons
are used to distribute quantum states or generate en-
tanglement between multiple emitters along the waveg-
uide [43, 44, 49, 57–59]. In this context it is not only
important to control the emission of photons, but also
to efficiently reabsorb these photons at a distant site. In
the following we will illustrate some of the possibilities
that are offered by acoustic control schemes for optical
quantum networking applications.

A. Dynamical control of photon emission

As a first example, we illustrate in Fig. 3 the abil-
ity to dynamically control the emission properties of a
single emitter by acoustic wave packets with varying
propagation directions and amplitudes Va(t). Here we
consider an emitter with a frequency well within the
band gap, ωeg < ωc, such that initially emission into the
unperturbed waveguide is strongly suppressed. During
the time interval ∆TR a right-propagating acoustic pulse
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FIG. 3. Acoustic emission control.—(a) Plot of the excited
state probability pe(t) for an emitter with a frequency ωeg
slightly below the band edge. During the time interval ∆TR
a right-propagating acoustic wave passes the emitter and in-
duces a rapid decay. After the acoustic wave has passed the
emission is again inhibited until a second left-propagating
acoustic wave packet induces another decay during the time
interval ∆TL. The solid red line shows the results from a
numerical simulation of the full Hamiltonian and the dashed
line the results obtained from a Markovian theory with time-
dependent decay rates ΓR,L(t) evaluated from Eq. (10). (b)
Plot of the emitted photon wave packet ∣φ(x, t)∣2, which shows
that during the two time intervals the photon is emitted
into different directions. The parameters for both plots are
Va/Er = 0.8, Ω/Ωr = 0.2, δ/Ωr = −0.2 and g0/Ωr = 0.015. (c)
Dependence of ΓR and ΓL on the potential strength Va for
Ω/Ωr = 0.2 and δ/Ωr = −0.2. Within the slowly-varying en-
velop approximation, this dependence can be use to achieve a
time-dependent control of the emission rate ΓR(t) ≫ ΓL(t).

with amplitude Va/Er = 0.8 passes the emitter. Accord-
ing to Fig. 2, under these conditions one expects a strong
decay into right-propagating photons, which is clearly
evident from the decay of pe(t) and the emitted pho-
ton wave packet shown in Fig. 3(a) and (b), respectively.
Once the acoustic wave packet has passed, the decay pro-
cess stops half way in between. After a certain waiting
time a second wave propagating in the opposite direction
leads to a decay of the remaining population by emit-
ting a photon to the left. Note that in the absence of
other decay channels, the whole process is fully coher-
ent and produces a superposition between a right- and a
left-propagating photon.

In Fig. 3(a) the evolution of pe(t) is calculated from
Eq. (3) with time-dependent rates ΓR,L(t). These rates
are derived in a quasi-static approximation from the
slowly-varying envelop of the modulation, Va(t), as de-
picted in Fig. 3(c). This approximate theory is compared
with an exact simulation of the emission process based on
the full Hamiltonian (2). We see that within the regime
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of validity, g0 ≪ Ωr, the system dynamics is captured
very well by the Markovian model. Therefore, this com-
parison shows that by slowly modulating the envelope of
the acoustic wave, Va(t), a complete dynamical control
over the emission rate combined with a high degree of di-
rectionality, ΓR(t) ≫ ΓL, can be achieved. This feature
enables the emission of photonic wave packets of arbi-
trary shape, or conversely, the absorption of arbitrarily
shaped photons with close to unit efficiency. These are
the central requirements for implementing deterministic
quantum state transfer protocols between two separated
emitters [43].

B. Generation of stationary entangled states

To avoid precise pulse control, quantum correlations
between multiple emitters can also be established un-
der continuous driving conditions, as described by mas-
ter equation (12). In this case, the interplay between
laser excitations and correlated decay processes into the
waveguide can result in a non-trivial steady state, ρ0 =
ρ(t → ∞), with a high degree of entanglement [49, 57–
59]. However, since the maximal amount of entangle-
ment that can be reached by this approach depends cru-
cially on the waveguide properties [characterized by the
set of Aij in Eq. (14)], such schemes are not applicable
in most conventional settings. By manipulating the Aij
via strong acoustic waves, it is possible to overcome this
limitation and to turn even a regular waveguide into an
entanglement-mediating quantum channel.

To illustrate this concept, we consider in Fig. 4 the
case of two resonantly driven emitters with frequencies
ωeg > ωc within the propagation band of the unperturbed
waveguide. Although in this case the emitters can mutu-
ally exchange photons through the waveguide, many of
these photons will simply be lost and the resulting steady
state is highly mixed and completely disentangled. As
the acoustic modulation is gradually turned on, a direc-
tional emitter-emitter coupling, ∣A12∣ ≫ ∣A21∣, is estab-
lished. After this point the system relaxes into an al-
most pure state, with a high degree of entanglement, ex-
pressed in terms of the concurrence C [61]. Indeed, in the
limit of an ideal unidirectional quantum channel, where
A12 = ΓRe

ikR(x2−x1) and A21 = 0, master equation (12)
has a unique pure steady state, ρ0 = ∣ψ0⟩⟨ψ0∣ [57, 58],
where

∣ψ0⟩ =

¿
ÁÁÀ Γ2

R

Γ2
R + 2Ω2

L

(∣gg⟩ − i
√

2ΩL
ΓR

∣S⟩) , (15)

is a superposition between the ground and the maximally
entangled singlet state, ∣S⟩ = (∣ge⟩ − ∣eg⟩)/

√
2. As shown

in Fig. 4, a steady state with a similar degree of entan-
glement can be achieved, even for a bi-directional, but
modulated waveguide. This scheme for generating entan-
gled steady states works for a large range of parameters
and both within the forward- and the backward-emission
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FIG. 4. Steady-state entanglement.—Evolution of the purity
P and the concurrence C of the reduced density operator of
two driven emitters coupled to a waveguide. During times t1
and t2 the strength of the right-propagating acoustic poten-
tial, Va, is gradually turned on and kept at a fixed value of
Va/Er = 0.4 afterwards (see lower plot). This tunes the waveg-
uide into a regime, where the directional correlation parame-
ter Λ = ∣A12∣/(Γ + Γng) (dotted line) is close to one. As a re-
sult, the system evolves into an almost pure steady state with
a high degree of entanglement. For this plot we have assumed
δ/Ωr = 0.08, Ω/Ωr = 0.2, g0/Ωr = 0.08, Γng/Γ0 = 0.001, and we
have set φi = −ikRxi to compensate for propagation phases.
The inset shows the steady-state concurrence C(t → ∞) as
function of δ and Va for Ω/Ωr = 0.2 and Γng/Γ0 = 0.002. For
the simulations shown in the inset, we fixed the Rabi fre-
quency to a value of ΩL = 1.3Γ and averaged the resulting
concurrence over different emitter separations d = x2 − x1, to
eliminate position-dependent interference effects.

window (see inset). Note that by choosing a detuning
δ < 0, the acoustic modulation can also be switched off
after the steady state is reached, leaving behind a pro-
tected entangled state between two emitters inside the
band gap [62].

C. An acoustic conveyor belt for light

In the examples discussed so far we have considered
the weak-coupling regime, where the emitted photons ex-
tend over many acoustic wavelengths and a Markovian
description of emitter-waveguide interactions applies. As
the coupling strength increases or much shorter acoustic
pulses are used this picture changes and for g0 ∼ Ωr a
coherent exchange of excitations between an emitter and
a photon residing inside a single potential well becomes
possible. In this strong coupling regime, the nature of
emitter-photon interactions and the described photon-
dragging effects change completely and gives rise to new
mechanisms for communicating between separated emit-
ters.

To illustrate this point, we focus again on the scenario,
where the frequency of the emitters lies within the band
gap, ωeg < ωc. However, instead of a continuous wave,
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FIG. 5. An acoustic conveyor belt.—(a) Energy level diagram
for the waveguide QED system in the presence of a propa-
gating acoustic potential well V (x, t), as defined in Eq. (16).
The excitation of the first emitter can be coherently converted
into a single bound photon, which is dragged along by the
acoustic wave and can successively interact with other emit-
ters along the waveguide. (b) Excitation transfer between two
atoms as function of time as predicted from the full model
(continuous lines) and the effective moving cavity model Hmc

(dashed lines). In this example the emitters are detuned by
δ/Ωr = −0.096 and are separated by ∣x2 −x1∣/λ = 6, which cor-
responds to a propagation time of τ = 754Ω−1

r for an acoustic
wave frequency of Ω/Ωr = 0.05. The other parameters are
Va/Er = 0.5, ∆x/λ = 2. The bare coupling strength is fixed to

g0/Ωr = 0.007. (c) Plot of the transfer probability p
(2)
e (Tf) as

a function of the width ∆x and the strength Va of the acous-
tic potential. This plot is obtained from the effective cavity
model and the other parameters are the same as in (b).

we now consider a short acoustic pulse

V (x, t) = −Va cos[ka(x − vt)]e
− (x−vt)

2

2(∆x)2 , (16)

where the extent of the wave packet, ∆x, is in the or-
der of a few wavelengths. As shown in Fig. 5(a) for the
static case v = 0, this wave packet creates a localized po-
tential well, which for sufficiently strong Va induces a set
of spectrally isolated bound photonic states below the
band edge. To model these states also at a finite speed
of sound, it is convenient to change to a co-moving frame
via the unitary transformation H̃w = THwT

† + ih̵Ṫ T †,
where

T = eip̂vt = eh̵vt ∫ dxψ
†(x) ∂∂xψ(x). (17)

The binding energies En = h̵ωn and bound state wave-
functions φn(x) of the resulting time-independent Hamil-

tonian H̃w are then solutions of the effective Schrödinger

equation

(En − h̵ωc)φn(x) = [− h̵2

2m∗
∂2

∂x2
+ V (x) + ih̵v ∂

∂x
]φn(x).

(18)
In the laboratory frame these photonic states are dragged
along by the acoustic wave, resulting in moving bound
states. By assuming that the emitters are tuned close
to the resonance of the lowest bound state with energy
E0 = h̵ω0 and wavefunction φ0(x), we can then derive an
effective moving cavity model,

Hmc(t) =h̵ωeg ∣e⟩⟨e∣ + h̵ω0a
†
0a0

+ h̵∑
i

[gi(t)a†
0σ
i
− + g∗i (t)a0σ

i
+] ,

(19)

where a0 and a†
0 are photon annihilation and creation

operators and gi(t) = gφ0(xi − vt) is the effective cou-
pling strength between a single bound photon and the i-
th emitter. This single-mode model is valid for ∣gi∣, ∣Ω∣ ≪
∣ωeg −ωn≠0∣, ∣δ∣, i.e., as long as transitions to other bound
or continuum states can be neglected.

The Hamiltonian Hmc is formally equivalent to models
that are used in the context of atomic cavity QED to
describe the interaction of multiply Rydberg atoms flying
through a single resonator [63–67]. However, here the
roles are reversed, allowing the successive interaction of
fixed emitters with a common cavity mode that is carried
by the acoustic wave packet along the waveguide. In
Fig. 5(b) we show how this acoustic conveyor belt can be
used for implementing a state transfer protocol between
two emitters with x2 > x1. In this example, the first
emitter is initially prepared in the excited state ∣e⟩ and we
are interested in the excitation probability of the second

emitter, p
(2)
e (Tf), at a final time Tf , once the acoustic

wave has left the interaction region. The frequencies of
both emitters are set to ωeg ≃ ωc−0.096Ωr, which matches
the frequency of the lowest photon bound state for a value
of Va/Er = 0.5. From the plot in Fig. 5(b) we see an
almost perfect transfer of the excitation between the two
emitters, where the delay between photon emission and
reabsorption just corresponds to the propagation time
τ = (x2 − x1)/v. We also find a very good agreement
between the numerical simulations of the full and the
effective model, as expected for the considered parameter
regime, ∣gi∣ ≪ ∣ωeg − ωn>0∣.

In the example above, the potential parameters Va and
∆x have been chosen to achieve perfect resonance condi-
tions, ωeg = ω0, and to obtain a coupling gi(t) satisfying

∫
Tf

0 gi(t)dt = π, in order to realize a complete transfer
between the photon and the emitter. In Fig. 5(c) we
plot the same state-transfer probability for varying po-
tential parameters. This plot demonstrates that chang-
ing the strength and the width of the acoustic wave
packet already provides enough flexibility for finetuning
the emitter-photon interaction, assuming that ωeg, g and
the speed of sound are fixed.
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FIG. 6. Acousto-optical waveguides in 2D.—Sketch of 2D
waveguide QED setting, where two emitters are coupled to
photons confined along the x − y plane. Acoustic waves cre-
ate travelling lattice potentials with strengths V1 and V2 and
wavevectors k1 and k2. The potential strengths and wavevec-
tors can be adjusted to induce long-range emitter-emitter in-
teractions along a chosen direction.

V. DIRECTIONAL PHOTON-EMITTER
INTERACTIONS IN 2D

For the implementation of extended on-chip quantum
networks it would be preferential to arrange the emitters
in 2D lattices instead of along 1D arrays to achieve a
higher degree of connectivity and an improved scalability.
However, photons emitted into 2D waveguides quickly
spread into all directions and for two emitters separated
by only several wavelengths, the ability to determinis-
tically exchange photons becomes vanishingly small. In
this section we show that the mechanism of acoustic emis-
sion control can be used to overcome this problem and
to achieve fully directional emitter-emitter interactions
even in a 2D scenario.

A. Photon emission in 2D acousto-optical
waveguides

In the following we generalize our previous analysis to
the case of a 2D optical waveguide, where the photons are
strongly confined along the z-axis, but propagate freely in
the x−y plane (see Fig. 6). In this case, the Hamiltonian
for the guided optical modes reads

Hw(t) = ∫ d2rψ†(r)(h̵ωc −
h̵2

2m∗∇
2
r + V (r, t))ψ(r),

(20)
where r = (x, y), and V (r, t) is the potential for the pho-
tons generated by acoustic waves inside the 2D waveguide
structure. In the examples below we restrict ourselves to
combinations of two orthogonal plane waves,

V (r, t) = V1 cos (r ⋅ k1 −Ω1t) + V2 cos (r ⋅ k2 −Ω2t), (21)

where k1 ⊥ k2. However, all the results can be general-
ized to other configurations as well.

To evaluate the emission characteristic of a single emit-
ter under the influence of this modulation, we extend the
Bloch-Floquet theory developed in Sec. III A to two di-
mensions (see App. B for more details). From this anal-
ysis we obtain the quasi-energy bands ω̃n(k) within the

first BZ defined by k1 and k2. Spontaneous emission
occurs for all wavevectors where the resonance condition

ωeg = ω̃n(k) +Ω1` +Ω2`
′, (22)

is satisfied for a pair of Floquet indices ` and `′. This con-
dition defines a set of isoenergetic lines in the first BZ.
For simplicity we focus in the remainder of the discussion
on the regime where the acoustic potential is already suf-
ficiently strong such that the emission is dominated by
resonances in the lowest quasi-energy band (n = 1) and
with ` = `′ = 0. Under this assumption the total emission
rate is given by

Γ ≃ g2

2π
∫

res
dk

∣u(0,0)1k ∣2

∣ṽg(k)∣
= ∫

2π

0
dϕΓ(ϕ), (23)

where the u
(`,`′)
nk are Bloch-Floquet expansion coefficients

and ṽg(k) = ∇kω̃n(k) is the group velocity in 2D. The
first integral in Eq. (23) runs over the line of k-vectors
satisfying the resonance condition (22) for n = 1, and
` = `′ = 0. In the second expression we have introduced
the polar emission rate Γ(ϕ), which directly provides the
relative fraction of photons that are emitted along the
polar angle ϕ.

In Fig. 7 we plot the lowest quasi-energy band to-
gether with the profile of the quasi group velocity for
the three basic configurations, where either no acoustic
wave, a single acoustic wave or two acoustic waves prop-
agating along orthogonal directions, are present. While
the emission into the unperturbed waveguide is always
fully isotropic [68], the acoustic modulation causes again
a tilting of the quasi-energy bands. As a result, the group
velocities along the isoenergetic lines in the BZ are no
longer equally distributed. For frequencies ωeg near the
upper band edge, this effect can become particularly pro-
nounced and, as shown in the right column of Fig. 7(c),
configurations can be found where the radiation pattern
Γ(ϕ) becomes highly peaked along a single direction.

B. Directional emitter-emitter interactions in 2D

For quantum networking applications as discussed in
Sec. IV above, not only a directed emission, but also
the efficient reabsorption of these photons by a second
emitter is important. In two or higher dimensions these
two properties are not the same, since even an initially
strongly focused beam can substantially spread as the
distance between the emitters increases. To account for
this effect, it is useful to adopt the master equation for-
malism developed in Sec. III D also for 2D waveguides,
where the efficiency of photon emission and reabsorp-
tion processes is directly reflected in the correlated decay
rates Aij . This allows us to quantify the suitability of
a general waveguide for various quantum communication
applications by a single correlation parameter

Λ(R) = ∣A12(R)∣
Γ + Γng

≤ 1, (24)
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FIG. 7. Directional emission in 2D.—Plots of the lowest
quasi-energy band ω̃1(k) of a 2D waveguide with a periodic
potential with wavevectors k1 = (ka,0) and k2 = (0, ka). The
three plots correspond to the case of (a) an unperturbed 2D
waveguide (V1,2 = 0), (b) a propagating acoustic wave along
y (V1 = 0 and V2/Er = 0.4), and (c) two propagating waves
along x and y (V1,2/Er = 0.4). The black arrows indicate the
direction of the group velocity ṽg(k). The solid lines repre-
sent the isoenergetic lines defined by the resonance condition
in Eq. (22) for the detunings (a) δ/Ωr = 0.02, (b) δ/Ωr = 0.2
and (c) δ/Ωr = 0.1. For each of these resonance lines the
plots in the right column show the resulting polar emission
pattern, Γ(ϕ). In all plots the acoustic frequency is fixed to
Ω1,2/Ωr = 0.2.

which takes all the relevant deviations from an ideal uni-
directional waveguide (where Λ = 1) into account. For
instance, in the example studied in Fig. 4, a value of
Λ ≈ 1 indicates the ability to generate strong quantum
correlation between two emitters, while for Λ ≲ 0.5 this
is no longer the case.

In Fig. 8(a) and (b) this correlation parameter is eval-
uated for a regular 2D waveguide and for a 2D waveguide
in the presence of two propagating acoustic waves. As al-
ready anticipated from the corresponding plots of Γ(ϕ) in
Fig. 7, while in the static case Λ(R) is fully isotropic, in
the latter case correlated emission processes are establish
only along a single line, which is defined by the diagonal
between the wavevectors k1 and k2. The important con-
sequence of this directed emission is more clearly seen in
Fig. 8(c), which shows the radial dependence of Λ(R)
along this diagonal. For a regular waveguide, we ob-

serve the typical decay, Λ(R) ∼ 1/
√

∣R∣, as expected for
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FIG. 8. Directional emitter-emitter interactions in 2D.—(a)
and (b) Plot of the correlation parameter Λ(R) as a function
of R = r2 − r1 for the case of (a) an unperturbed waveguide
and (b) a waveguide modulated by two propagating acoustic
waves. The detunings δ and other parameters for these two
plots are the same as in the corresponding plots in Fig. 7(a)
and Fig. 7(c). For both cases the radial dependence of Λ(R)

along the diagonal is plotted in (c). (d) Illustration of a tri-
angular lattice of emitters, where a long-range unidirectional
coupling along a chosen lattice direction is established by an
appropriate choice of the acoustic wavevectors k1 and k2.

photon-mediated interactions in an isotropic 2D system.
Importantly, even at very small distances, the correlation
parameter is always much below unity, since photons are
uniformly emitted into all directions. In stark contrast,
by applying acoustic control techniques strong correla-
tions, Λ(R) ≳ 0.9, can be established over distances that
can be in the order of several tens of the acoustic wave-
length, λ.

As illustrated in Fig. 8(d), this possibility to induce
directional, long-range interactions even in 2D, enables
the implementation of fully-connected networks of quan-
tum nodes, where by rotating the angle of k1 and k2,
emitters can interact in a unidirectional way with every
other emitter in large 2D lattices.

VI. IMPLEMENTATION

The efficient coupling of individual emitters to prop-
agating optical modes in nanofibers or photonic crystal
waveguides has already been demonstrated [23–33] using
trapped atoms as well as quantum dots. In both cases,
the decay into the waveguide can substantially exceed
the emission into non-guided modes, showing that the
waveguide QED regime, Γ0 ≫ Γng, can indeed be realized
experimentally. Photonic crystal waveguides can also be
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Diamond

λ[µm] Ω/2π[GHz] Ωr/2π[GHz] Ω/Ωr Va/Er
10 1.70 195 0.009 0.2
30 0.56 22 0.03 2
50 0.34 8 0.04 5

Silica

10 0.57 500 0.001 0.1
30 0.19 56 0.003 0.7
50 0.11 20 0.006 2

Silicon

10 0.84 74 0.01 0.5
30 0.28 8 0.03 5
50 0.17 3 0.06 14

TABLE I. Summary of the rescaled parameters Ω/Ωr and
Va/Ωr obtained for diamond, fused silica and silicon waveg-
uides. For all examples a value of ωc/(2π) = 400 THz and
δn/n = 10−4 has been assumed. The other parameters used
for these estimates are n = 2.4 and v = 1.7 × 104 m/s for di-
amond, n = 1.5 and v = 5.7 × 103 m/s for silica and n = 3.9
v = 8.4 × 103 m/s for silicon.

fabricated out of diamond [13, 71–73], which is particu-
larly interesting for the present purpose. Diamond has
excellent optical properties and both the speed of sound,
v ≃ 1.7 × 104 m/s (for the longitudinal modes), and the
refractive index, n ≃ 2.4, are exceptionally high com-
pared to most other materials. At the same time there
are several well-studied emitters, like nitrogen-vacancy
(NV) [74, 75] or silicon-vacancy (SiV) [76] centers, which
are ideally suited for quantum information processing ap-
plications.

Bulk or surface acoustic waves can be launched into
such a photonic waveguide using either electrical interdig-
ital transducers (IDT) or side-coupled electrodes [9, 77–
80]. The resulting index modulations can be of the order
of δn/n0 ≃ 10−4 [14, 51, 53], which for optical frequencies
of about ωc/(2π) = 400 THz results in a potential depth
of Va/h̵ = ωcδn/n0 ≈ 2π × 40 GHz. For a diamond waveg-
uide with an effective photon mass of m∗ ≈ 1.7×10−35 kg
and assuming an acoustic frequency of Ω/(2π) = 1 GHz
(λ ≈ 20µm), we obtain a recoil frequency of Ωr/(2π) ≈ 50
GHz and Va/Er ≃ 0.8 and Ω/Ωr ≃ 0.02. As summarized
in Table I, similar values are also obtained for fused sil-
ica and silicon waveguides. These estimates show that
already under very generic conditions, acoustic modifica-
tions of the emission characteristic, as described in this
work, become experimentally accessible.

A. Slow-light waveguides

To enhance acoustic effects, the group velocity of the
photons in the waveguide can be further reduced by
adding a static potential, Vst(z), with a periodicity a
that is slightly larger than the optical wavelength. For
sufficiently large Vst, this creates a miniband with a tight-
binding dispersion relation ω(k) ≃ (B/2) cos(ka) and an
increased effective mass m∗ = 2h̵/(Ba2). As illustrated in
Fig. 9(a) for the simple example Vst(x) = Vst cos(kstx),
where kst = 2π/a, the bandwidth B and therefore also
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FIG. 9. Implementation.—(a) Plot of the recoil energy Ωr
and the width B of the lowest band of a static cosine po-
tential V (x) = Vst cos(2πx/a) for a silicon waveguide and
a = 3µm. The dashed lines indicate the values of the po-
tential depth Va/h = 40 GHz and the acoustic frequency
Ω/(2π) = 1 GHz corresponding to a wave propagating at a
speed of v ≃ 8.4 × 103m/s. (b) Decay of the exited state of a
single emitter in a slow-light waveguide described by the po-
tential Vtot(x, t) in Eq. (25). Here the exact dynamics (blue
line) is compared with the prediction from the Bloch-Floquet
theory described in Sec. III A (green line), using the effective
mass m∗

= 2h̵/(Ba2) obtained from (a). The red line is the
prediction from an improved calculation detailed in App. A,
using the Born-Markov (BM), but not the effective mass ap-
proximation. For this plot λ = 3a = 9µm, Vst/Er = 2.5,
g0/Ωr = 0.02, Va/Er = 0.3, Ω/Ωr = 0.4 and δ/Ωr = −0.25,
where Er and Ωr are defined with respect to the bare effec-
tive mass, have been assumed. (c) Sketch of a dual-rail waveg-
uide configuration, where the upper rail is used to implement
the static optical crystal structure and contains the emitters,
while the other, structureless rails guides the acoustic wave.
By using a transverse mode profile, which extends over both
waveguides, optical modes are affected by both static and
acoustic potentials.

the recoil frequency Ωr can be significantly reduced com-
pared to a regular photonic crystal waveguide. For exam-
ple, for a = 3µm and Vst/h = 2 THz, which corresponds
to δnst/n0 ≈ 0.005, the resulting recoil frequency for a sil-
icon waveguide and Ω/(2π) = 1 GHz is already reduced
to Ωr/(2π) ≈ 2 GHz. Therefore, a potential strength
of up to Va/Er ≃ 20 and ratios of Ω/Ωr ≃ 0.5 can be
reached. At the same time, realistic coupling rates of
g0/(2π) ≈ 300 MHz [81], are still compatible with the
weak-coupling condition g0/Ωr ≪ 1, assumed in most
parts of this work, and with the requirement that the
resulting decay rates, Γ ∼ Γ0, exceed the bare decay of
the emitter, Γng/(2π) ∼ 1 − 10 MHz.

Note that by creating such minibands to reduce the
photonic group velocity, the full optical potential entering
in Hamiltonian Hw(t) must be replaced by

Vtot(x, t) = Vst(x) + Va cos(kax −Ωt), (25)

which in general makes the analysis of the emission pro-
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cesses considerably more involved (see App. A). How-
ever, as long as a ≪ λ, a quasi-continuum description
with an enhanced effective mass is still valid. This is
demonstrated in Fig. 9(b), where the decay of a single
emitter in the presence of the combined potential given in
Eq. (25) is calculated for λ/a = 3. Already at these ratios,
the predictions from the Bloch-Floquet theory developed
in Sec. III A, but assuming an enhanced effective mass,
reproduce well the actual dynamics obtained from the
evolution of the full model. Therefore, the implementa-
tion of minibands for optimizing the waveguide parame-
ters can be combined with the acoustic control techniques
without significantly affecting the resulting dynamics.

B. Other considerations

In our analysis we have considered so far a single
waveguide that confines both the optical and the acous-
tic waves. This can be problematic for optimizing the
photonic bandstructure, while leaving the propagation
of the acoustic control signals untouched. In addition,
for defects centers or quantum dots located inside the
waveguide, strong strain effects give rise to large mod-
ulations of the emitter frequencies, which interfere with
the described emission effects. Such and related prob-
lems can be overcome by considering dual-rail configu-
rations [24, 82], as illustrated in Fig. 9(c). Here one
rail contains the emitters and can be optimized to re-
duce the photonic group velocity, while the second rail
is left unaltered to minimize the dispersion of the acous-
tic wave packet, reduce backscattering, etc. By using a
transverse photonic mode, which has a support in both
waveguides [24, 82], the photons can still be simultane-
ously coupled to the emitters and the acoustic waves.

VII. CONCLUSIONS

In summary, we have analyzed the influence of strong
acoustic waves on emitter-photon interactions in waveg-
uide QED. Our findings show that in particular un-
der slow-light conditions substantial modifications of the
emission dynamics and the degree of directionality can
occur. These modifications can enable one to implement
and control strong interactions between distant emitters.
Since these effects do not depend on specific properties
of the emitter and can be tuned dynamically by simply
varying the strength of the acoustic modulation, they
can be applicable for a large range of quantum network-
ing applications. Beyond the basic scenarios considered
in this work, the acoustic photon dragging effects can
be combined with various other lattice geometries in two
or even three dimensions, where emitter-emitter inter-
actions with different types of connectivity can be engi-
neered.

Note added: At the final stage of this work, a related
study about directional emission in the context of cold

atoms in 2D moving optical lattices appeared [84].
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Appendix A: Bloch-Floquet theory of spontaneous
emission

In this appendix we outline the derivation of the to-
tal emission rate Γ into a 1D modulated optical waveg-
uide, which is described by a combination of a static
and a propagating potential, Vtot(x, t) = Vst cos (kstx) +
Va cos(kax − Ωt). Assuming ka < kst, the photon wave-
fuction can be expressed in terms of the Bloch functions
unk of the first BZ defined by the acoustic wavevec-
tor ka. In the interaction picture with respect to H0,
the single-excitation wavefunction can then be written

as ∣ΨI(t)⟩ = [c̃e(t)σ+ +∑nk φ̃n(k, t)a
†
nk] ∣g⟩∣vac⟩ and we

obtain the following set of coupled equations,

∂tc̃e(t) = −i g√
L
∑nk φ̃n(k, t)unk(0, t)eiωegt, (A1)

∂tφ̃n(k, t) = −i g√
L
c̃e(t)u∗nk(0, t)e−iωegt, (A2)

where x1 = 0 has been assumed. The equations of motion
of the field amplitudes can be integrated and reinserted
into the equation for ∂tc̃e(t). The resulting integro-
differential equation can be written as

∂tc̃e(t) = −g2 ∫
t

0
dt′G(t; t′)c̃e(t′), (A3)

where we introduced the general correlation function for
the optical field

G(x, t;x′, t′) = ⟨ψ(x, t)ψ†(x′, t′)⟩eiωeg(t−t
′)

= 1

L
∑
nk

unk(x, t)u∗nk(x′, t′)eiωeg(t−t
′)eik(x−x

′),
(A4)

and the short notation G(t; t′) ≡ G(x = 0, t;x′ = 0, t′).

1. Continuous waveguide

To proceed we first consider the case Vst = 0, which
corresponds to a continuous waveguide, as studied in
Sec. III. In this limit the unk(x, t) can be expanded in
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terms of the Bloch-Floquet coefficients u
(`)
nk [see Eq. (7)],

which satisfy the eigenvalue equation

∑
`′
H``′u

(`′)
nk = ω̃n(k)u(`)nk , (A5)

where

H``′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ωr(` + k
ka

)2 −Ω`, ` = `′
Va
2h̵
, ∣` − `′∣ = 1,

0, otherwise.

(A6)

Using this decomposition, the field correlation function
can be written as

G(t; t′) = 1

L
∑
nk

∑
``′
u
(`)
nk [u

(`′)
nk ]∗e−iΩ(`−`′)tei[δn(k)−Ω`′](t−t′)

≃ 1

L
∑
nk`

∣u(`)nk ∣
2ei[δn(k)−Ω`](t−t′),

(A7)

where δn(k) = ωeg − ω̃n(k). By going from the first to
the second line we have already assumed that g0 ≪ Ω,
in which case the terms with ` ≠ `′ are fast oscillating
compared to the dynamics of c̃e(t) and can be neglected.

In a final step we make use of the fact that for
large ∣t − t′∣, i.e., on timescales relevant for the emit-
ter dynamics, the main contributions in Eq. (A7) arise
from wavevectors kµ, which satisfy the resonance condi-
tion (9). By linearizing the dispersion relation in a small
interval δk around these resonances, we can approximate
the correlation function by

G(t; t′) ≃∑
µ

∣u(`µ)nµkµ
∣2

2π
∫

kµ+δk/2

kµ−δk/2
dk e−i

∂ω̃nµ
∂k ∣kµ(k−kµ)(t−t

′)

≃∑
µ

∣u(`µ)nµkµ
∣2

∣ṽg,µ∣
δ(t − t′).

(A8)

This approximation corresponds to the usual Born-
Markov approximation and is valid as long as g0 is small
compared to the width of the n-th quasi-energy band and
away from band-edges other points where ṽg(kµ) ≃ 0.
After this simplification and by separating contributions
from resonances with positive and negative group veloc-
ities, we obtain

∂tc̃e(t) ≃ −(ΓR
2

+ ΓL
2

) c̃e(t), (A9)

where ΓR and ΓL are given in Eq. (10).

2. Photonic crystal waveguide

We now consider the more general case of a photonic
crystal waveguide, where Vst ≠ 0. For simplicity we con-
sider here only the case where the acoustic wavelength is

an interger multiple of the period of the static potential,
i.e., λ/a = kst/ka = M ∈ N. Under this assumption the
original band structure generated by Vst is divided into
M sub-bands by the acoustic wave. Then, the Bloch
functions unk(x, t) can be expanded as

unk(x, t) = ∑
`,ν

u
(`,ν)
nk ei(k+kaν)xe−i(ω̃n(k)+Ω`)t, (A10)

where now an additional index ν for the Fourier expan-
sion in x must be introduced. By inserting this ansatz
into Eq. (6) we obtain an eigenvalue equation for the
quasi-energies ω̃n(k), similar to Eq. (A5). The matrix
elements for the corresponding Floquet Hamiltonian are

H``′,νν′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ωr(ν + k
ka

)2 −Ω`, ` = `′, ν = ν′,
Vst

2h̵
, ` = `′, ∣ν − ν′∣ =M,

Va
2h̵
, ` − `′ = ν − ν′ = ±1,

0, otherwise.

(A11)
For the derivation of the total decay rate we can then
proceed as above and under the validity of the Born-
Markov approximation we obtain

Γ = ∑
µ

∣gµ(x1)∣2

∣ṽg,µ∣
. (A12)

Note that in contrast to the homogeneous waveguide the

couplings gµ(x) = g∑ν u
(`µ,ν)
nµkµ

eikaνx depend explicitly on

the location of the emitter within the static lattice po-
tential, Vst(x).

Appendix B: Derivation of the master equation

For the derivation of the master equation (12) we con-
sider the general setting of N emitters located at posi-
tions xi along a 1D waveguide. In the interaction picture
with respect to H0, the emitter-field coupling reads

HI(t) = h̵g
N

∑
i=1

[ψ†(xi, t)σi−e−iωegt + σi+ψ(xi, t)e−iωegt] .

(B1)
Under the validity of the Born-Markov approximation,
we can follow the usual approach and derive an effective,
time-local master equation for the reduced density oper-
ator of the emitters, ρ (see, for example, Ref. [83]). The
result is of the general form

ρ̇ = − 1

h̵2 ∫
∞

0
dτ Trf{[HI(t), [HI(t − τ), ρ(t) ⊗ ρf ]]},

(B2)

where ρf = ∣vac⟩⟨vac∣ and the trace is over the field de-
grees of freedom. By evaluating all the individual terms,
the result can be written in a compact notation as

ρ̇(t) =
N

∑
i,j=1

Aij (σi−ρσ
j
+ − σ

j
+σ

i
−ρ) +H.c., (B3)
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where

Aij = g2 ∫
∞

0
dτ G(xj , τ ;xi,0). (B4)

For weak enough driving strength, ΩL, the Hamiltonian
for the external laser fields can be added to Eq. (B3)
without affecting the validity of this result. Then, after
identifying Γ = 2Re{Aii} and neglecting small frequency
shifts ∼ Im{Aii} we recover Eq. (12).

1. Correlated decay rates in 1D and 2D

For the evaluation of the correlated decay rates Aij in a
1D waveguide we can use the same set of approximations
as in App. A. As a main difference, the Aij depend on
the distance rij = xj − xi, since

G(xi, τ ;xj ,0) ≃
1

L
∑
nk`

∣u(`)nk ∣
2ei[δn(k)−Ω`]τei[k+ka`]rij

≃ ∑
µ

∣u(`µ)nµkµ
∣2

∣ṽg,µ∣
ei[kµ+ka`µ]rij δ (τ −

rij

ṽg,µ
) .

(B5)

Therefore, non-vanishing contributions to Aij arise only
from resonances where rij and ṽg,µ are co-aligned. In

Eq. (14), this fact is accounted for by the step-function
θ[ṽg,µrij].

The derivation of the master equation can be readily
generalized to 2D waveguides, by using in Eq. (B4) the
corresponding 2D correlation function G(ri, τ ; rj ,0) for
the evaluation of the Aij . In this case and defining Rij =
rj − ri, the general expression for the correlation decay
rates reads

Aij =
g2

2π
∑
n``′
∫

res
dk

∣u(`,`
′)

nk ∣2eik⋅Rij

∣ṽg(k)∣
θ[ṽg(k) ⋅Rij], (B6)

where for each set of indices n, ` and `′ the k-integration
runs over the resonance lines defined by Eq. (22). Note
that for an isotropic waveguide and without the acoustic
modulation,

Aij =
g2kr

2vg(kr)
[J0(kr ∣Rij ∣) + iH0(kr ∣Rij ∣)] , (B7)

where J0(x) and H0(x) denote the zeroth order Bessel
and Struve functions, respectively. From the asymptotic
expansion of these functions one obtains the character-

istic decay, Aij ∼ 1/
√

∣Rij ∣, for photon-mediated interac-
tions in 2D.
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