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We investigate a tradeoff relation between the internal generation efficiency and the escape effi-
ciency for single-photon generation based on cavity quantum electrodynamics (QED), where cavity
internal loss is treated explicitly. Consequently, we analytically derive an upper bound on the over-
all efficiency. The bound is expressed only with an internal cooperativity, introduced here as the
cooperativity parameter with respect to the cavity internal loss rate. This result means that the
internal cooperativity is a figure of merit for single-photon generation based on cavity QED. The
bound is derived by optimizing the cavity external loss rate, which can be experimentally controlled
by designing or tuning the transmissivity of the output coupler. The model here is general enough
to treat various cavity-QED effects, such as the Purcell effect, on-resonant or off-resonant cavity-
enhanced Raman scattering, and vacuum-stimulated Raman adiabatic passage. For typical optical
systems, we additionally take into account a “re-excitation” process, where the atom is re-excited
after its decay to the initial ground state.

I. INTRODUCTION

Single-photon sources are a key component for pho-
tonic quantum information processing and quantum net-
working [1]. Single-photon sources based on cavity
quantum electrodynamics (QED) [2–10] are particularly
promising, because they enable deterministic emission
into a single mode, which is desirable for low-loss and
scalable implementations. Many single-photon genera-
tion schemes have been proposed and studied using var-
ious cavity-QED effects, such as the Purcell effect [2–4],
on-resonant [4–6] or off-resonant [7, 8] cavity-enhanced
Raman scattering, and vacuum-stimulated Raman adia-
batic passage (vSTIRAP) [2–4, 6, 8–10].
The overall efficiency of single-photon generation based

on cavity QED is composed of two factors: the inter-
nal generation efficiency ηin (probability that a photon
is generated inside the cavity) and the escape efficiency
ηesc (probability that a generated photon is extracted to
the desired external mode). The upper bounds on ηin
have been derived for some of the above schemes [3–6],
where the upper bound is expressed with the cooperativ-
ity parameter C [3]. C is inversely proportional to the
total cavity loss rate, κ = κex + κin (κex and κin are the
external and internal loss rates, respectively [11]). Note
that κex can be experimentally controlled by designing
or tuning the transmissivity of the output coupler [12].
Thus, ηin is maximized by setting κex to a small value
so that κ ≈ κin. However, a low κex results in a low es-
cape efficiency ηesc = κex/κ, which limits the channelling
of the generated photons into the desired mode. There
is therefore a tradeoff relation between ηin and ηesc with
respect to κex, and κex should be optimized to maximize
the overall efficiency. This tradeoff relation has not been
examined in previous studies, where the internal loss rate
κin has not been treated explicitly.
Treating the cavity internal loss explicitly for the above

tradeoff relation and using a general cavity-QED model
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FIG. 1. Cavity-QED system for single-photon generation.
The atom is initially prepared in |u〉. κin and κex: cavity
internal and external loss rates, respectively. g: atom-cavity
coupling rate via the |g〉-|e〉 transition. Ω: Rabi frequency of
the external field for the |u〉-|e〉 transition. ∆e and ∆u: one-
photon and two-photon detunings, respectively. γ: atomic
decay rate due to spontaneous emission.

shown in Fig. 1, here we analytically derive the follow-
ing lower bound on the failure probability, PF , of single-
photon generation based on cavity QED:

PF ≥ 2

1 +
√

1 + 2Cin

≈
√

2

Cin
, (1)

where we have introduced an internal cooperativity,
Cin = g2/(2κinγ), as the cooperativity parameter with
respect to κin instead of κ for the standard definition,
C = g2/(2κγ) [3]. The approximation in Eq. (1) holds
when Cin ≫ 1. This result suggests that Cin, instead
of C, is a figure of merit for single-photon generation
based on cavity QED. Here it is notable that similar lower
bounds on failure probabilities, inversely proportional to√
Cin, have been derived for quantum gate operations

based on cavity QED [13–15]. This fact suggests that
Cin may be a figure of merit for quantum applications of
cavity-QED systems in a more general sense.

The lower bound on PF in Eq. (1) is obtained when
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κex is set to its optimal value,

κoptex ≡ κin
√

1 + 2Cin, (2)

and is simply expressed as 2κin/κ
opt, where κopt ≡ κin+

κoptex . Remarkably, this optimal value of κex is exactly the
same as that for a quantum gate operation in Ref. [14].

Note that the experimental values of (g, γ, κin) deter-
mine which regime the system should be in: the Pur-
cell regime (κ≫ g2/κ≫ γ), the strong-coupling regime
[g ≫ (κ, γ)], or the intermediate regime (κ ≈ g2/κ≫ γ).

The remainder of this paper is organized as follows.
In Sec. II, we show that the present model is applicable
to various cavity-QED single-photon generation schemes.
In Sec. III, we provide the basic equations for the present
analysis. Using these equations, we analytically derive an
upper bound on the success probability, PS = 1− PF , of
single-photon generation in Sec. IV. Using the bound,
we optimize κex and derive Eq. (1). In Sec. V, we briefly
discuss the condition for typical optical cavity-QED sys-
tems, where the effect of a “re-excitation” process is also
discussed. Finally, the conclusion and outlook are pre-
sented in Sec. VI.

II. MODEL

As shown in Fig. 1, we consider a cavity QED system
with a Λ-type three-level atom in a one-sided cavity. The
atom is initially prepared in |u〉. The |u〉-|e〉 transition
is driven with an external classical field, while the |g〉-|e〉
transition is coupled to the cavity. This system is general
enough to describe most of the cavity QED single-photon
generation schemes.

For instance, by first exciting the atom to |e〉 with a
resonant π pulse (with time-dependent Ω), or fast adi-
abatic passage (with time-dependent ∆u), the atom is
able to decay to |g〉 with a decay rate enhanced by the
Purcell effect [16], generating a single photon. Here, the
Purcell regime is assumed. [2–4].

Another example is where the atom is weakly excited
with small Ω and a cavity photon is generated by cavity-
enhanced Raman scattering. Here, κ ≫ g is assumed in
the on-resonant case (∆e = ∆u = 0) [4–6], while ∆e ≫ g
is assumed in the off-resonant case (∆u = 0) [7, 8].

A third example is based on vSTIRAP [2–4, 6, 8–
10], where Ω is gradually increased, and where the
strong-coupling regime [g ≫ (κ, γ)] and small detunings
(|∆e|, |∆u| ≪ g) are assumed.

III. BASIC EQUATIONS

The starting point of our study is the following master
equation describing the cavity-QED system (here we use
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FIG. 2. Transitions in Eqs. (3) and (4).

the natural units, c = ~ = 1):

ρ̇ =Lρ, L = LH + Ju + Jg + Jo + Jin, (3)

LHρ =− i
(

Hρ− ρH†
)

, H = H − i
(

γσe,e + κina
†a
)

,

H =∆eσe,e +∆uσu,u +

∫

kb†(k)b(k)dk

+ iΩ(σe,u − σu,e) + ig(aσe,g − a†σg,e)

+ i

√

κex
π

∫ ∞

−∞

[

b†(k)a− a†b(k)
]

dk, (4)

Juρ =2γruσu,eρσe,u, Jgρ = 2γrgσg,eρσe,g,

Joρ =2γroσo,eρσe,o, Jinρ = 2κinaρa
†,

where ρ is the density operator describing the state of
the system; the dot denotes differentiation with respect
to time t; H is the Hamiltonian for the cavity-QED sys-
tem including the terms for the output mode; a and a†

are respectively the annihilation and creation operators
for cavity photons; b(k) and b†(k) are respectively the an-
nihilation and creation operators for output-mode pho-
tons with wave number, or frequency, of k; |o〉 is, if it
exists, a ground state other than |u〉 and |g〉; ru, rg, and
ro = 1− ru − rg are respectively the branching ratios for
spontaneous emission from |e〉 to |u〉, |g〉, and |o〉; and
σj,l = |j〉〈l| (j, l = u, g, e, o) are atomic operators. In the
present work, we assume no pure dephasing [17].
The transitions corresponding to the terms in Eqs. (3)

and (4) are depicted in Fig. 2, where the second and
third ket vectors denote cavity photon number states
and output-mode states, respectively, and |k〉 = b†(k)|0〉.
Once the state of the system becomes |g〉|0〉c|0〉 or
|o〉|0〉c|0〉 by a quantum jump, Jg, Jo, or Jin, the time
evolution stops, and the single-photon generation ends
up in failure. On the other hand, the quantum jump Ju

initializes the state to |u〉, and the single-photon gener-
ation restarts. However, a photon generated by the “re-
excitation” process will have a different envelope from
that of a photon generated without Ju, and therefore
such photons may be not useful for some applications.
Thus, we consider that the single-photon generation ends
up in failure if the quantum jump Ju occurs. That is, the
success probability, PS , for the single-photon generation
is given by the probability that all the quantum jumps
do not occur. (We will discuss the re-excitation process
later.)
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Under the condition of no quantum jumps, the time
evolution is given by the non-Hermitian Schrödinger
equation: i|ψ̇〉 = H|ψ〉 [18, 19]. Expressing |ψ〉 as

|ψ〉 =αu|u〉|0〉c|0〉+ αe|e〉|0〉c|0〉+ αg|g〉|1〉c|0〉

+

∫ ∞

−∞

αk|g〉|0〉c|k〉dk, (5)

the Schrödinger equation becomes

α̇u = −i∆uαu − Ωαe, (6)

α̇e = −(γ + i∆e)αe +Ωαu + gαg, (7)

α̇g = −καg − gαe, (8)

αk(t) =

√

κex
π

∫ t

0

αg(t
′)e−ik(t−t′)dt′. (9)

The norm of |ψ〉 decreases from unity. This decrease
corresponds to the quantum-jump probability [18, 19].
Note that the output-mode amplitude αk is determined

by the atom-cavity amplitude αg satisfying Eqs. (6)–(8).
Introducing the position operator, state vector, and am-
plitude for the output mode as

b̃(z) =
1√
2π

∫ ∞

−∞

b(k)eikzdk, (10)

|z〉 = b̃†(z)|0〉, (11)
∫ ∞

−∞

α̃z|z〉dz =
∫ ∞

−∞

αk|k〉dk, (12)

the position amplitude is determined by αg as follows:

α̃z =

{√
2κexαg(t− z) · · · 0 < z < t,

0 · · · otherwise.
(13)

The pulse shape of the generated photon is proportional
to the atom-cavity amplitude αg. Thus, we can control
the pulse shape by controlling the atom-cavity state us-
ing, e.g., the vSTIRAP technique [6].

IV. UPPER BOUND FOR THE

SINGLE-PHOTON GENERATION EFFICIENCY

First, from Eqs. (6)–(8), we obtain

dN

dt
= −2γ|αe|2 − 2κ|αg|2 ⇒ 2γIe + 2κIg ≈ 1, (14)

where we have introduced N = |αu|2 + |αg|2 + |αe|2,
Ig =

∫ T

0 |αg(t)|2dt, and Ie =
∫ T

0 |αe(t)|2dt, and also as-
sumed N(0) = 1 and N(T ) ≈ 0 for a sufficiently long
time T . Thus, the success probability PS is given by

PS =

∫ ∞

−∞

|α̃z(T )|2dz = 2κexIg =
κex
κ

(1− 2γIe) . (15)

The last expression has a simple physical meaning: the
first factor is the escape efficiency ηesc and the second

term in the second factor comes from the excited-state
decay. Ig and Ie are evaluated as follows. From Eq. (8),

Ie =

∫ T

0

|α̇g(t) + καg(t)|2
g2

dt ≈
I ′g
g2

+
κ2

g2
Ig, (16)

where we have used |αg(0)|2 = 0 and |αg(T )|2 ≈ 0, and

also set I ′g =
∫ T

0 |α̇g(t)|2dt. Equations (14) and (16) lead
to

Ig =
C

κ(1 + 2C)

(

1−
I ′g
κC

)

, (17)

Ie =
1

2γ

[

1− 2C

1 + 2C

(

1−
I ′g
κC

)]

. (18)

Thus, PS is upper bounded as follows:

PS =
κex
κ

2C

1 + 2C

(

1−
I ′g
κC

)

≤
(

1− κin
κ

)

(

1− 1

1 + 2C

)

,

where we have used I ′g ≥ 0 by its definition. The equality
approximately holds when I ′g ≪ κC. This can actually
be achieved in some cases [5, 20]. Notably, it is known
that photon storage with cavity-QED systems without
internal loss also has a similar upper bound, 2C/(2C+1),
on the success probability [21, 22]. This, together with
the results for quantum gate operations [13, 14], implies
the universality of the upper bound.

The first and second factors of the upper bound are ηesc
and ηin, respectively. There is a tradeoff relation between
ηesc and ηin with respect to κex. To see this, it is notable
that PS in the case where I ′g is negligible is expressed
only with two dimensionless parameters, κ̄ex = κex/κin
and Cin, as follows:

PS =

(

1 +
1

κ̄ex

)−1(

1 +
1 + κ̄ex
2Cin

)−1

. (19)

Examples for various values of Cin are shown in Fig. 3.
The above tradeoff relation results in the maxima of PS .
Maximizing PS in Eq. (19) with respect to κ̄ex analyti-
cally, we obtain Eqs. (1) and (2). From Fig. 3, it is also
found that the maximization with respect to κex is robust
against the deviation of κex from κoptex .

The approximate lower bound in Eq. (1) can be de-
rived more directly using the arithmetic-geometric mean
inequality as follows:

PF ≥ κin
κ

+
1

2C + 1
− κin

κ

1

2C + 1
≈ κin

κ
+
κγ

g2
≥

√

2

Cin
,

where C ≫ 1 have been assumed. Note that κ is can-
celled out by multiplying the two terms. A similar tech-
nique has been applied to the derivation of an upper
bound on the success probability of a quantum gate op-
eration based on cavity QED [13].



4

1 10 102 103 104
0

1

0.2

0.4

0.6

0.8

�̅
��

�
�

FIG. 3. Success probability PS in Eq. (19). This holds when
I ′g is negligible. Dimensionless parameter κ̄ex is defined by
κ̄ex = κex/κin. Five curves correspond to the cases where
Cin = 1, 10, 102, 103, and 104 from the bottom.

V. TYPICAL OPTICAL CAVITY-QED

SYSTEMS

For optical cavity-QED systems where a single atom or
ion is coupled to a single cavity mode [5–10], the cavity-
QED parameters are expressed as follows [3]:

g =

√

µ2
g,eωg,e

2ǫ0~AeffL
, (20)

κin =
c

2L
αloss, (21)

rgγ =
µ2
g,eω

3
g,e

6πǫ0~c3
, (22)

where ǫ0 is the permittivity of vacuum, µg,e and ωg,e are
the dipole moment and frequency of the |g〉-|e〉 transition,
respectively, L is the cavity length, Aeff is the effective
cross-section area of the cavity mode at the atomic posi-
tion, and αloss is the one-round-trip cavity internal loss.
Substituting them into the definition of Cin, we obtain

2Cin = rg
1

αloss

1

Ãeff

, (23)

where Ãeff = Aeff/σ is the effective cavity-mode area
normalized by the atomic absorption cross section
σ = 3λ2/(2π) (λ = 2πc/ωg,e). Note that L and µg,e are
cancelled out. Thus, the single-photon generation effi-
ciency is limited by the three dimensionless quantities:
the one-round-trip internal loss αloss, the normalized
cavity-mode area Ãeff , and a branching ratio rg .
So far, we have not counted photons generated by the

“re-excitation” process, where the atom is re-excited af-
ter its decay to |u〉 via spontaneous emission. If we count
such photons, as in the ion-trap experiment in Ref. 7, the
success probability will become higher. In the following,
however, we show that even in this case, the success prob-
ability is upper bounded in a similar manner.
Taking the quantum jump Ju into account, we obtain

the formal solution of the master equation (3) [18]:

ρc(t) = Vc(t, 0)ρ0 (24)

= VH(t, 0)ρ0 +

∫ t

0

Vc(t, t
′)JuVH(t′, 0)ρ0dt

′, (25)

where ρc denotes the density operator conditioned on no
quantum jumps of Jg, Jo, and Jin, ρ0 is the initial den-
sity operator, and VH and Vc are the quantum dynamical
semigroups defined as follows:

d

dt
VH(t, t′) = LH(t)VH(t, t′),

d

dt
Vc(t, t

′) = Lc(t)Vc(t, t
′),

where Lc = LH + Ju is the Liouville operator for the
conditioned time evolution. The decrease of the trace of
ρc corresponds to the failure probability due to Jg, Jo,
and Jin [18, 19].
Note that ρH(t) = VH(t, 0)ρ0 can be expressed as ρH =

|ψ〉〈ψ| with |ψ〉 given by Eqs. (5)–(9). Thus,

ρc(t) = |ψ(t)〉〈ψ(t)| + 2γru

∫ t

0

|αe(t
′)|2Vc(t, t

′)ρ0dt
′.

(26)

The success probability PS is formulated as

PS =

∫ ∞

−∞

〈g|c〈0|〈z|ρc(T )|g〉|0〉c|z〉dz. (27)

Using Eqs. (24)–(27) and Eq. (15), PS is expressed as

PS =

∫ ∞

−∞

dz〈g|c〈0|〈z|Vc(t, 0)ρ0|g〉|0〉c|z〉 (28)

=2κex

∫ T

0

dt|αg(t)|2 + 2γru

∫ T

0

dt|αe(t)|2

×
∫ ∞

−∞

dz〈g|c〈0|〈z|Vc(T, t)ρ0|g〉|0〉c|z〉. (29)

The second term, which is denoted by Prep, is the contri-
bution of the re-excitation.
Here we assume the following inequality:

∫ ∞

−∞

dz〈g|c〈0|〈z|Vc(T, t)ρ0|g〉|0〉c|z〉

≤
∫ ∞

−∞

dz〈g|c〈0|〈z|Vc(T, 0)ρ0|g〉|0〉c|z〉 = PS . (30)

This assumption is natural because Vc(T, t) should be
designed to maximize PS at t = 0. Then, Eqs. (29) and
(30) result in

PS ≤ 2κexIg
1− 2γruIe

. (31)

Substituting Eqs. (17) and (18) into Eq. (31), we
obtain the upper bound on PS in the case of the re-
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excitation:

PS ≤ κex
κ

2C

1 + 2C

1−
I ′g
κC

1− ru + ru
2C

1 + 2C

(

1−
I ′g
κC

) (32)

≤
(

1− κin
κ

)

(

1− 1

1 + 2C

) ∞
∑

n=0

(

ru
1 + 2C

)n

, (33)

where we have used 0 ≤ 1− I ′g/(κC) ≤ 1 [23].

In a similar manner to deriving Eq. (1), we obtain

PF ≥ 2

1 +
√

1 + 2Cin/(1− ru)
, (34)

where κex is set to κin
√

1 + 2Cin/(1− ru).

Thus in the case of the re-excitation, Cin in Eqs. (1)
and (2) is replaced with Cin/(1 − ru). From Eq. (34),
it seems that the lower bound on PF becomes zero by
ru → 1. However, this is not the case because ru and
Cin are not independent. Instead of Eq. (23), we should
examine the following quantity:

2Cin

1− ru
=

1− ru − ro
1− ru

1

αloss

1

Ãeff

≤ 1

αloss

1

Ãeff

, (35)

where we have used rg = 1− ru − ro. The equality in
Eq. (35) holds when ro = 0. Thus, it turns out that even
if we count photons generated by the re-excitation pro-
cess, the single-photon generation efficiency is limited by
the one-round-trip internal loss αloss and the normalized
cavity-mode area Ãeff .

Using Eqs. (30) and (18), the contribution of the re-
excitation Prep is upper bounded as

Prep ≤ 2γruIePS ≤ 1

1 + 2C
+

2C

1 + 2C

I ′g
κC

. (36)

Thus, the contribution of the re-excitation is negligible
when C ≫ 1 and I ′g ≪ κC.

VI. CONCLUSION AND OUTLOOK

By analytically solving the master equation for a gen-
eral cavity-QED model, we have derived an upper bound
on the efficiency of single-photon generation based on
cavity QED in a unified way. We have treated cavity in-
ternal loss explicitly, which results in a tradeoff relation
between the internal generation efficiency and the escape
efficiency with respect to the cavity external loss rate κex.
By optimizing κex, we have derived a lower bound on the
failure probability. The lower bound is inversely propor-
tional to the square root of the internal cooperativity
Cin. This means that Cin is a suitable figure of merit for
cavity-QED systems used for single-photon generation.
The optimal value of κex has also been given explicitly.
For typical optical cavity-QED systems, the lower

bound is given by the one-round-trip internal loss, the
cavity-mode area normalized by the atomic absorption
cross section, and a branching ratio. The re-excitation
process, where the atom is re-excited after its decay to
the initial ground state via spontaneous emission, has
also been examined. As a result, it has turned out that
the single-photon generation efficiency is limited in a sim-
ilar manner, even including photons generated by the re-
excitation. Its bound is expressed with the one-round-
trip internal loss and the normalized cavity-mode area.
The lower bound is achieved in the limit that the vari-

ation of the system is sufficiently slow. When the short
generation time is desirable, optimization of the control
parameters will be necessary. This problem is left for
future work.
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