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We consider a model for an oscillatory, relativistic accelerating photodetector inside a cavity and
show that the entangled photon pair production from the vacuum (Unruh effect) can be accurately
described in the steady state by a non-degenerate parametric amplifier (NDPA), with the detector’s
accelerating center of mass serving as the parametric drive (pump). We propose an oscillatory Unruh
effect analogue NDPA microwave superconducting circuit scheme, where the breathing mode of the
coupling capacitance between the cavity and detector provides the mechanical pump. For realizable
circuit parameters, the resulting photon production from the vacuum should be detectable.

PACS numbers:

I. INTRODUCTION

In classical physics, the electromagnetic vacuum is devoid of any dynamical activity; accelerating an
electrically neutral mirror boundary or accelerating an electromagnetic radiation detector does not result
in the generation of energy from the electromagnetic vacuum. In stark contrast, quantum field theory
predicts photon pair production from the electromagnetic vacuum for an accelerating mirror boundary, and
the detection of photons for an accelerating photodetector. The former process is known as the Dynamical
Casimir Effect (DCE), and the latter in the case of a uniformly accelerating detector where the predicted
photon spectrum is thermal, the Fulling-Davies-Unruh Effect (or Unruh Effect in short–UE) [1].

A longstanding challenge is to demonstrate the DCE and UE in tabletop setups [2, 3], both to develop a
better understanding of photon production from vacuum processes under nonideal experimental situations
involving real material systems, and as a possible means for generating entangled photon states directly from
the vacuum, providing a resource for quantum information processing applications.

However, a seemingly insurmountable difficulty to demonstrating these effects in the lab is the appar-
ent need to accelerate mechanical mirrors and detector systems up to relativistic speeds in order to get a
measurable photon detection signal; in the UE the predicted thermal photon temperature registered by the
uniformly accelerating photon detector is T = ~a/2πckB , so that detecting 1 K thermal photons for example
requires a detector proper acceleration a = 2.47 × 1020 m/s2, which seems impossibly high for any current
or planned tabletop experiment.

One approach to circumventing the extreme relativistic speed requirement is to realize analogue systems
[4], which are described by quantum dynamical equations that closely match those for the actual DCE and
UE. For example, the accelerating mechanical mirror or photodetector may be replaced by an electromagnet-
ically induced, time changing boundary condition [5–8] or detector coupling [9, 10], such that the quantum
electromagnetic field vacuum responds effectively in the same way as in the original DCE and UE.

In order to see more clearly how such analogues work, consider the situation of an electromagnetic cavity
formed by opposite facing mirrors a distance L apart. The presence of the mirror boundary conditions
modifies the classical electromagnetic mode spectrum and hence the quantum electromagnetic vacuum zero-
point energy density within the cavity; an inertial photon detector located within (or without) the cavity
will not detect any photons. For the DCE, we now suppose that one of the mirrors is undergoing oscillatory,
center of mass motion in the longitudinal direction, changing the cavity length.



On the other hand, for the UE, we assume that both the cavity mirrors are fixed, while we suppose that
we have a photon detector with internal degrees of freedom modeled as a harmonic oscillator [11, 12] and
with center of mass oscillating sinusoidally [13] in the longitudinal direction of the cavity. This is to be
contrasted with the usual restricted definition of the UE that concerns a uniformly accelerating detector in
Minkowski vacuum. However, neither uniform acceleration nor unconfined free space vacuum is necessary
for the detector to ‘see’ photons in the vacuum, and in any case, the realisable acceleration of any actual
detector will always be non-uniform [13]. While the detected photon energy spectrum is not described
by an effective thermal Bose-Einstein distribution in the case of a non-uniformly accelerating detector, a
sinusoidally oscillating detector in a cavity does in fact ‘see’ an approximate Bose-Einstein distribution as
we will show below in Sec. IV. This is despite the fact that there is no event horizon for an oscillatory
acceleration. We term the latter situation the ‘oscillatory Unruh Effect’, loosening the usual restrictive
definition of the UE.

Making the single mode approximation for simplicity (we leave until later below in Sec. III a discussion
of the validity or otherwise of this approximation), it can be shown that the DCE single cavity mode
Hamiltonian can then be reduced to that of the degenerate parametric amplifier (DPA):

HDPA = ~ωca†a+ ~λ
(
e−iΩmta† 2 + eiΩmta2

)
, (1)

where ωc is the cavity mode frequency, Ωm is the mirror boundary mechanical center of mass frequency,
and the coupling strength parameter λ depends on the oscillating mirror amplitude and frequency. As we
show later below in Sec. II, the standard, relativistic one-dimensional cavity scalar field-coupled-oscillatory
detector action [see Eq. (5)] that models the oscillatory UE can be reduced by approximation such that the
Hamiltonian coincides with that of a non degenerate parametric amplifier (NDPA):

HNDPA = ~ωca†a+ ~ωd0b
†b+ ~λ

(
e−iΩmta†b† + eiΩmtab

)
, (2)

where again ωc is the cavity mode frequency, ωd0 is the internal oscillation frequency of the photodetector, Ωm
is the mechanical center of mass frequency of the photodetector, and λ is the coupling strength parameter
between the cavity mode and photodetector, which depends on its oscillating center of mass amplitude,
frequency, and other electromagnetic factors.

Under the resonant drive conditions Ωm = 2ωc for the DCE and Ωm = ωc + ωd0 for the UE, Eqs. (1) and
(2) simplify in the interaction picture to

HDPA = ~λ
(
a† 2 + a2

)
, (3)

HNDPA = ~λ
(
a†b† + ab

)
, (4)

and we clearly see that photon pair production in the cavity (+ detector) mode(s) occurs, even starting from
an initial vacuum state. The analogue then effectively replaces the time dependent mechanical oscillating
center of mass frequency terms e±iΩmt in Eqs. (1) and (2) with easier to implement oscillating, time
dependent electromagnetic terms of identical form [7, 10]. It is in this way that DCE analogues were realized
using superconducting circuit microwave cavity resonators [7, 14], with effective cavity length modulated via
oscillating flux tunable Josephson junction inductances.

However, while such superconducting circuit analogues have experimentally demonstrated photon pair pro-
duction from vacuum, they are perhaps a little unsatisfying given that non-mechanical parametric amplifiers
of both the degenerate and nondegenerate kind are rather ubiquitous in optical and microwave related fields.
A more faithful and hence compelling analogue would involve the resonant parametric drive terms e±iΩmt

arising from a genuine mechanically oscillating system with actual acceleration. For microwave cavity modes
in the several GHz regime, where it is straightforward experimentally to cool the modes to close to their
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quantum vacuum states (i.e., having negligible average thermal photon occupancy number) at mK temper-
atures, this entails requiring mechanical oscillators with frequencies Ωm/(2π) ∼ 10 GHz. Such mechanical
systems do in fact exist in the form of dilatational or “breathing” vibrational modes of crystal (or crys-
talline) solid membrane structures with thicknesses of a few hundred nanometers, and are termed “film bulk
acoustic resonators” (FBAR) when fashioned out of a piezoelectric material that facilitates actuation of the
mechanical motion [15, 16].

In Ref. 17, a superconducting microwave circuit resonator with mechanically oscillating FBAR “mirror”
boundary was proposed as a DCE analogue and it was shown that for realistic system parameters, photon
pair production rates from the microwave resonator vacuum should in principle be detectable. Motivated
by this proposal, in the present work we analyze a related superconducting circuit scheme incorporating a
mechanical FBAR that furnishes a practicable, 1 + 1 D Oscillatory UE analogue. In particular, we show
how to realize the NDPA Hamiltonian (2) with resonant mechanical drive terms.

The in principle detectability can be traced to a number of advantageous features of our scheme. First,
by coupling the oscillating photodetector to confined microwave cavity modes as opposed to the unconfined,
free space electromagnetic vacuum, the photon pair production rate can be resonantly enhanced [18]. This
is especially the case for realizable superconducting circuit microwave cavities with confined mode quality
factors Q in the tens of thousands and above, and also provided the mechanical FBAR can be actuated in
the steady state for multiples of the resonant mode relaxation time Q/ωc. Coupling a photodetector to a
microwave cavity mode necessitates oscillatory center of mass acceleration [13], rather than the idealized
contant proper acceleration considered in the original UE, so that the detector maintains its interaction
with the cavity mode. Despite the non-uniform nature of the acceleration, the photodetector nevertheless
still “sees” an effective thermal photon distribution under certain conditions to be established below. This
thermal nature follows from the fact that the NDPA Hamiltonian (4) generates a two-mode squeezed state
starting from vacuum, which appears as a thermal state when either the cavity or photodetector subsystems
are traced over.

Second, the nature of our circuit scheme and that of Ref. 17 involves utilizing the FBAR also as a capacitor,
in our case forming the coupling λ between the cavity (a†, a) and internal detector oscillator degrees of
freedom (b†, b). By scaling the linear dimension Lm of the FBAR capacitance along the cavity resonator
length axis, the coupling λ correspondingly scales: λ ∼ Lm, and thus the photon pair production rate from
vacuum scales as the square of the FBAR linear dimension: λ2 ∼ L2

m. In this way, the coupling strength
can be geometrically enhanced (Fig. 1a), in contrast to realizations that utilize “pointlike” photodetectors
with dimensions constrained by the microscopic nature of their internal electronic degrees of freedom. In
the latter realizations where the photodetector might for example be an atomic scale defect on the surface
of the oscillating FBAR, a similar enhancement could instead be achieved through utilizing a large number
of defects (Fig. 1b), all coupled to the same cavity mode. However, as we show later below, increasing the

number N of detectors leads to a
√
N enhancement over the coupling strength for a single defect and hence

a photon pair production rate from vacuum that is only linear in N . Nevertheless, there is the intriguing
possibility of a non-equilibrium, superradiant phase transition [19], where the photon pair production rate
scales as N2 beyond a critical value of the detector number and coupling, similar to the L2

m scaling of the
photon production rate of our present FBAR scheme.

In Sec. II, we show that the relativistic, oscillating pointlike photodetector-cavity system action can be
reduced by approximation to that of a non degenerate parametric amplifier, even under extreme relativistic,
detector center of mass oscillatory acceleration. In Sec. III, we solve for the photodetector-cavity quantum
dynamics within the single cavity mode approximation using the Heisenberg-Langevin equation formalism,
which takes into account cavity photon loss and accompanying noise. Section IV examines the effective
temperature and entanglement of the photodetector-cavity system in the steady state, and in Sec. V, we
generalize to many pointlike photodetectors. In Sec. VI, we analyze our superconducting circuit-FBAR
analogue of the oscillatory accelerating photodetector-cavity system. Following the conclusion, several ap-
pendices provide further details of the analysis. In Appendix A we give the derivation of the approximate
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FIG. 1: Enhancing the UE with (a) large photodetector crossection, or (b) many photodetectors.

NDPA Hamiltonian. Appendix B derives the second order moments of the cavity-detector quantum dynam-
ics. Appendix C gives the derivation of the superconducting circuit-FBAR analogue Hamiltonian and its
NDPA approximate form. Appendix D describes a possible actuation scheme for the FBAR.

II. THE DETECTOR-CAVITY SYSTEM

Our starting UE system comprises a pointlike detector that is linearly coupled to a 1 + 1 D scalar field
denoted as Φ(t, x) that models the electromagnetic field within the cavity. The detector’s center of mass
follows the worldline zµ(t) = (t, l + A cos(Ωmt + φ)), where Ωm is the detector’s center of mass oscillation
frequency, φ is a phase constant, l is the average position of the detector center of mass within the 1 D
cavity, and A is the detector center of mass oscillation amplitude. The detector’s internal degrees of freedom
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are modeled as a quantum harmonic oscillator with rest mass m0, displacement coordinate Q(τ) and bare
natural frequency ωd0. Such a detector model has the advantage that the resulting Hamiltonian is quadratic
in the detector-cavity phase space coordinates, so that in the quantum dynamics initial Gaussian states
(such as the vacuum state) evolve into Gaussian states that are completely characterized by moments of the
coordinate observables only up to second order [11, 12, 20]. The action of the combined system is given by
[13]:

S = −
∫
d1+1x

1

2
∂µΦ∂µΦ +

∫
dτ

{
m0

2

[
(∂τQ)2 − ω2

d0Q
2
]

+ λ0

∫
d1+1xQ(τ)Φ(t, x)δ1+1(xµ − zµ(τ))

}
, (5)

where λ0 is the coupling strength between the detector and cavity field and we adopt the Minkowski metric
sign convention ηµν = diag(−1, 1). We use τ to denote the detector’s proper time (i.e., time in detector’s
center of mass rest frame), and t to denote the laboratory (i.e., cavity rest frame) time. With the relation
S =

∫
dtL, the system Lagrangian in the laboratory frame is written as

L = −
∫
dx

1

2
∂µΦ∂µΦ +

m0

2

[
dt

dτ
(∂tQ)2 − dτ

dt
ω2
d0Q

2

]
+
λ0

c

dτ

dt

∫
dxQ(t)Φ(t, x)δ(x− z(t)). (6)

We consider a 1 D cavity with length L and impose the following Neumann boundary conditions at its x = 0
and x = L ends: Φ′(t, 0) = Φ′(t, L) = 0. Such boundary conditions match the ones that are imposed in the
circuit microwave cavity analogue in Sec. VI below, and correspond to the vanishing of the electromagnetic
field induced electrical currents at the cavity ends; there would be no essential differences in the following
analysis if we were to impose the alternative, Dirichlet boundary conditions Φ(t, 0) = Φ(t, L) = 0. The
cavity quantum field operator can be decomposed via an expansion in terms of the free field normal mode
function solutions:

Φ(t, x) =
∑
n

√
~c
nπ

cos (knx)
(
an(t) + a†n(t)

)
→

√
~c
π

cos (knx)
(
a(t) + a†(t)

)
, (7)

where the free field normal mode wavenumbers are kn = ωn/c = nπ/L, n = 1, 2 . . . , and we introduce photon
annihilation/creation operators an, a†n in a given mode n. In the second line of Eq. (7), we truncate the full
mode decomposition of the field operator and retain only the lowest, fundamental mode, relabeling the free
cavity mode wavenumber/frequency as kc = ωc/c = ω1/c = π/L and the cavity mode annihilation operator
as a = a1; the validity of this single mode approximation will be discussed further below and follows from our
restricting to a certain resonance condition between the detector center of mass frequency Ωm, the cavity
mode frequency ωn=1, and the center of mass rest frame frequency ωd0 of the detector’s internal degree
of freedom. The truncated momentum operator Π(t, x) that is conjugate to the truncated field operator
expression (7) for Φ(t, x) is given by

Π(t, x) = − i

L

√
~π
c

cos(kcx)
(
a(t)− a†(t)

)
, (8)

The internal detector oscillator position and momentum operators in terms of the annihilation/creation
operators b and b† are respectively

Q =

√
~

2ωd0m0

(
b+ b†

)
5



P = −i
√

~ωd0m0

2

(
b− b†

)
. (9)

Performing the Legendre transformation on the Lagrangian (6) and replacing the position and momentum
coordinates with their corresponding operators, we obtain the following cavity-detector system quantum
Hamiltonian expressed in dimensionless units:

H̃(t̃) = H(t)/(~ωc) = a†a+ ω̃d0
dτ

dt
b†b− λ̃0

dτ

dt
cos
[
kcl + kcA cos

(
Ω̃mt̃+ φ

)] (
a† + a

) (
b† + b

)
, (10)

where we have introduced the dimensionless time coordinate t̃ = ωct, such that ω̃d0 = ωd0/ωc and Ω̃m =

Ωm/ωc. The dimensionless cavity mode-detector coupling strength is λ̃0 = λ0/(ωc
√

2πm0ωd0c). The Lorentz

factor dτ/dt =
√

1− ξ2 sin2(Ωmt+ φ) accounts for the redshift in the detector oscillator frequency ω̃d0 as

measured by an observer in the laboratory frame, with ξ = ΩmA/c the ratio of the detector center of mass
velocity magnitude to the speed of light c; note that the factor kcA appearing in the mode function cosine
argument can also be expressed as ξ/Ω̃m.

We drop the tildes from now on for notational convenience and locate the detector’s center of mass equi-
librium position at the midpoint l = L/2 of the cavity, i.e., at the node of the fundamental normal mode
function where its gradient and hence cavity-detector coupling is a maximum. The time-dependent part of
the interaction term in Eq. (10) then reduces to

dτ

dt
cos

[
kcl +

ξ

Ωm
cos(Ωmt)

]
= −dτ

dt
sin

[
ξ

Ωm
cos(Ωmt)

]
, (11)

where we have set φ = 0 since the phase does not affect the dynamical behavior in any essential way.
Given that the time dependent Hamiltonian (10) is periodic with period 2π/Ωm, we can approximate the

Hamiltonian as a series in harmonics of Ωm via a Fourier expansion of the Lorentz factor dτ/dt, and a
Jacobi-Anger expansion of the sinusoidal term sin[ξ cos(Ωmt)/Ωm]. The Hamiltonian then becomes up to
second harmonic, time-dependent terms e±2iΩmt (see Appendix A):

H = a†a+ ωd0 [D0 +D2 cos(2Ωmt)] b
†b+ λ0C1 cos(Ωmt)(a

† + a)(b† + b), (12)

where D0 and D2 are coefficients that depend on ξ, while the coefficient C1 depends on ξ and Ωm. We now
impose the resonance condition Ωm = 1 + ωd, i.e., the oscillating detector center of mass frequency matches
the sum of the optical cavity frequency and renormalized detector frequency ωd = ωd0D0. Transforming

to the rotating frame via the unitary operator URF(t) = exp
(
ia†at+ ib†b

[
ωdt+ ωd0D2

2Ωm
sin(2Ωmt)

])
and

performing the rotating wave approximation (RWA) by dropping rapidly oscillating terms, we obtain the
following time-independent Hamiltonian in the interaction picture:

HI = λ(a†b† + ab), (13)

where the renormalized coupling is λ = 1
2λ0C1

[
J0

(
ωd0D2

2Ωm

)
− J1

(
ωd0D2

2Ωm

)]
, with J0(z) and J1(z) Bessel

functions of the first kind. We recognize Hamiltonian (13) to be that of a non-degenerate parametric
amplifier (NDPA), where the detector’s center of mass mechanical motion plays the role of the pump, while
the detector and cavity modes play the role of the so-called signal and idler. Assuming that the detector
and cavity modes are initially in their vacuum state, Eq. (13) describes the parametric amplification of the
vacuum fluctuations (i.e., photon pair production), resulting in a two mode squeezed state.
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III. SOLVING FOR THE QUANTUM DYNAMICAL EVOLUTION

In actual realizations, the cavity mode and detector oscillator subsystems will be open, interacting with
external environmental degrees of freedom. This results in damping and associated noise forces acting on
these systems. The input-output formulation [21, 22] provides a convenient approach to incorporating damp-
ing and noise, and together with the closed system dynamics following from the approximated Hamiltonian
(13), results in the following quantum Langevin equations for the cavity mode and detector lowering and
raising operators a, a†, b and b†:

d

dt


a
a†

b
b†

 =

−
γ
2 0 0 iλ

0 −γ2 −iλ 0
0 iλ −γ2 0
−iλ 0 0 −γ2



a
a†

b
b†

+
√
γ


ain

a†in
bin
b†in

 , (14)

where the cavity mode and detector oscillator are assumed here for simplicity to have the same energy
damping rate γ. We shall consider the weakly damped regime for the cavity and detector oscillator, i.e., γ �
ωc, ωd, since this favors enhanced photon production rates from the vacuum. The input noise operators ain(t),
bin(t) satisfy the expectation value and correlation relations 〈ain(t)〉 = 0, 〈bin(t)〉 = 0 〈ain(t)ain(t′)〉 = 0,

〈bin(t)bin(t′)〉 = 0, 〈a†in(t)ain(t′)〉 = 0, 〈b†in(t)bin(t′)〉 = 0 and 〈ain(t)a†in(t′)〉 = δ(t−t′), 〈bin(t)b†in(t′)〉 = δ(t−t′),
where we assume the environment temperature to be negligible compared to the frequencies of the cavity
mode and detector oscillator (i.e., kBT � ~ωc, ~ωd). We furthermore assume that the cavity mode and

detector oscillator noise operators are uncorrelated, i.e., 〈bin(t)a†in(t′)〉 = 0.
Suppose that the detector and cavity mode oscillators are initially (t = 0) in their ground states. Since

both the full and approximated Hamiltonians, Eqs. (10) and (13) respectively, are quadratic in the bosonic
operator terms, such an initial Gaussian state remains Gaussian throughout its evolution (also with damping
included); the first order moments vanish, so that the second order moments in a and b and their conjugates
therefore completely determine the cavity mode-detector state. With both cavity mode and detector oscil-
lator subject to damping and noise, in the long time limit they will reach a steady state that is independent
of their initial state. The analytical solutions for the nonzero steady state second moments that follow from
Eqs. (14) are

〈a†(t)a(t)〉
∣∣
t→∞ = 〈b†(t)b(t)〉

∣∣
t→∞ =

2η2

1− 4η2
, (15)

〈a†(t)b†(t)〉
∣∣
t→∞ = − 〈a(t)b(t)〉|t→∞ =

iη

1− 4η2
. (16)

The moments in Eq. (15) are the steady state average photon numbers of the cavity mode and detector
oscillator. Note that, by virtue of Eqs. (15) and (16), the state of the system is entirely governed by the
dimensionless parameter η = λ/γ which expresses the ratio of the coupling strength λ to the damping rate
γ. For stable steady state solutions to exist, we require η < ηcrit = 1/2; as the critical value ηcrit = 1/2 is
approached from below, all four non-zero second moments (and in particular the average photon numbers)
approach infinity, with the evolution time required to reach the steady state also approaching infinity.
Beyond this critical value, the system exhibits the so-called parametric instability. Such an instability is a
consequence of assuming a harmonic oscillator internal detector degree of freedom; for a more realistic model
of a detector involving an anharmonic oscillator (which is commonly approximated by a truncated two level
system), such an instability does not arise, although the dynamics is no longer solvable analytically.

In Fig. 2, we consider some example parameter values such that the resonance condition holds (Ωm =
1 + ωd), and compare the photon number expectation values for the cavity mode and detector oscillator
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FIG. 2: Average photon number of the cavity mode and detector oscillator versus time for the numerical solution
to the quantum Langevin equation with full Hamiltonian (10) (solid curve), the analytical solution to the quantum
Langevin equation with the RWA Hamiltonian [Eqs. (14) and (B5)] (Dashed), and the steady state solution Eq. (15)
(dotted curve). The parameter values are ξ = 0.8, ωd0 = 0.8 with renormalized ωd = 0.65, Ωm = 1.65, and λ0 = 0.01
with renormalized λ = 0.0021. (a) η = 0.40 corresponding to γ ≈ 0.005; (b) η = 0.48 corresponding to γ ≈ 0.004.

obtained by numerically solving the quantum Langevin equation with the full Hamiltonian (10), the analytical
solution to the quantum Langevin equation with the RWA Hamiltonian [Eqs. (14) and (B5)], and the
analytical steady state solution (15). Note that the cavity and detector photon number expectation values
are identical for the RWA Hamiltonian description [see Eq. (15)], while they closely coincide for the full
Hamiltonian description. This is a consequence of the fact that the photons are produced in pairs (one in
the cavity and one in the detector) starting from the system vacuum state, and that we assume the same
damping rates for the cavity mode and detector (given by γ). Note also that in this example, we consider
quite an extreme relativistic velocity magnitude: ξ = ΩmA/c = 0.8; nevertheless, the quantum Langevin
equation with simple NDPA Hamiltonian (13) and appropriately renormalized coupling λ still accurately
describes the average photon numbers. Comparing Figs. 2a and 2b which correspond to different η = λ/γ
values, we see that as η approaches the parametric instability threshold ηcrit = 1/2 the average photon
numbers of the cavity mode and detector increase (i.e., diverge), while the evolution time required to reach
the steady state also increases. Furthermore, note that the deviation between the results obtained using the
full Hamiltonian and the RWA Hamiltonian grows as η approaches the instability threshold. The Fig. 2b
inset provides a zoom-in view of the average photon numbers in the long-time limit; the oscillatory behavior
of the full Hamiltonian dynamics arises from time-dependent oscillatory terms which are neglected in the
RWA Hamiltonian [see Eq. (A9)]. The deviation in the average photon numbers between the full and RWA
descriptions is a consequence of the fact that small errors in determining the renormalized coupling λ (due
to neglecting higher than 2nd harmonics) get amplified as η approaches the instability threshold.

In solving for the quantum dynamics, we have neglected the higher cavity modes ωn = nπc/L = nωc =
n ≥ 2 (in dimensionless units). This is justified in the steady state provided the higher frequency harmonics
kΩm, k ≥ 2, of the center of mass drive are not resonant with the sum of a higher cavity mode + detector
frequency: n+ ωd. In particular, we require that

|kΩm − n− ωd| � γ. (17)
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Substituting in the resonance condition Ωm = 1 + ωd, we obtain

|(k − n) + (k − 1)ωd| � γ, (18)

which for the above example parameter values becomes

|(k − n) + 0.65(k − 1)| � 0.005 (19)

when, e.g., η = 0.40. Condition (19) is not violated until we go up to n = 34 and k = 21. However, the
effective coupling at such a high harmonic is much smaller than that for n = k = 1, so that the photon
production in the higher mode can be neglected. In essence, higher cavity modes can be neglected provided
the ratio of the detector to fundamental cavity frequency ωd is not an irreducible fraction with small numbers
in the numerator and denominator.

On the other hand, during the initial transient, evolving stage after the center of mass oscillator drive is
“switched on”, we do expect higher cavity modes to be populated with generated photons, especially for
the example extreme relativistic velocity magnitude ξ = 0.8 considered above [23]. Thus, the time evolution
given in Fig. 2 is likely to be accurate only during the steady state regime. For the analogue circuit realization
considered below in Sec. VI, the single cavity mode approximation should also be accurate in the transient
regime since in that case we have ξ ≪ 1.

IV. EFFECTIVE TEMPERATURE AND ENTANGLEMENT

Due to the fact that the system state is Gaussian and the first order moments vanish, the state is completely

determined by the covariance matrix Γ with elements Γαβ = 〈RαRβ +RβRα〉/2 where ~R = (Xa, Pa, Xb, Pb)
are the quadrature amplitudes of the cavity and detector modes, related to the creation/annihilation oper-
ators as follows: Xa

Pa
Xb

Pb

 = M


a
a†

b
b†

 ,M =
1√
2

 1 1 0 0
−i i 0 0
0 0 1 1
0 0 −i i

 . (20)

An oscillator thermal state is characterized by a zero-mean, circularly-symmetric Gaussian Wigner function
distribution on phase space. For the NDPA Hamiltonian (13), the fact that 〈a(t)〉, 〈a(t)2〉, 〈b(t)〉 and 〈b(t)2〉
vanish throughout the evolution implies that 〈Rα〉 vanishes, so that we have 〈X2

a〉 = 〈P 2
a 〉 and 〈X2

b 〉 = 〈P 2
b 〉.

Thus, the reduced states of both the cavity mode and detector oscillator are exact thermal states within
the RWA Hamiltonian approximation. Numerical solutions of the quantum Langevin equation for the full
Hamiltonian (10) give |〈a(t)2〉| � 〈a†(t)a(t)〉 and |〈b(t)2〉| � 〈b†(t)b(t)〉 in the steady state for 0 < η < 1/2,
so that the cavity mode and detector states are thermal (i.e., described by a Boltzmann distribution) to
a good approximation. For an arbitrary single bosonic mode with frequency ω in a thermal state defined
by temperature T , the expectation value of the mode occupation number is given by the Bose-Einstein
distribution 〈N〉 = 1/(e~ω/kBT − 1). Inverting and substituting in Eq. (15), we obtain the following
expressions for the approximate effective temperatures of the cavity mode and detector:

kBTc(t)

~ωc
=

1

ln
(
〈a(t)†a(t)〉+1
〈a(t)†a(t)〉

) t→∞−−−→ 1

ln
(

1−2η2

2η2

) , (21)

kBTd(t)

~ωd
=

1 +D2/D0 cos(2Ωmt)

ln
(
〈b(t)†b(t)〉+1
〈b(t)†b(t)〉

) t→∞−−−→ 1 +D2/D0 cos(2Ωmt)

ln
(

1−2η2

2η2

) . (22)
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The time dependence of the detector effective temperature Td in the steady state arises from the time-varying
Lorentz factor dτ/dt ≈ D0 +D2 cos(2Ωmt), which “red shifts” the frequency of the detector’s internal mode
as viewed from the lab frame–a consequence of the detector’s center of mass oscillatory motion. (The
coefficients D0, D2 are discussed in Appendix A.) The effective temperature of the cavity mode oscillator
is shown in Fig. 3a; the temperature factor kBTc/~ωc behaves like 1/[4(1 − 2η)], which increases (i.e.,
diverges) as η approaches the instability threshold value 1/2. The inset of Fig. 3a compares the analytical
approximation (21) with the full numerical calculation of the effective temperature; the discrepancy between
the two calculations grows as η approaches the instability threshold, again a consequence of small errors in
determining the renormalized coupling λ (due to neglecting higher than 2nd harmonics) getting amplified.
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FIG. 3: Steady state value of (a) cavity mode oscillator effective temperature as a function of dimensionless coupling
strength to damping rate ratio η = λ/γ given by the RWA analytical formula (21). The inset plot compares the
analytical formula (solid line) with the effective temperature obtained using the full Hamiltonian (10) (dots). (b)
Entanglement (logarithmic negativity EN ) as a function of η given by the RWA analytical formula (24) (solid line)
and by the full Hamiltonian (10) (dots) ; EN ranges between 0 (for η = 0) and 1 (for η = ηcrit = 1/2).

Starting from their initial ground states, the NDPA Hamiltonian generates a quantum entangled state
between the cavity mode and detector oscillator. In the presence of environmental dissipation and noise,
the system state is a mixed Gaussian state, so that an appropriate entanglement measure is the so-called
logarithmic negativity EN , which derives from the positive partial transpose criterion for a separable state
[24, 25]. The partial transpose operation corresponds to switching the sign of the quadrature degree of
freedom of one of the two oscillators; switching the sign of Xa by making transformation R → ΛR, where
Λ = diag(−1, 1, 1, 1), the partially transposed matrix becomes

ΓPT = ΛM


〈a2〉 〈a†a〉+ 1

2 〈ab〉 〈ab†〉
〈a†a〉+ 1

2 〈a†2〉 〈a†b〉 〈a†b†〉
〈ab〉 〈a†b〉 〈b2〉 〈b†b〉+ 1

2
〈ab†〉 〈a†b†〉 〈b†b〉+ 1

2 〈b†2〉

MTΛ. (23)

Substituting Eqs. (15) and (16) into Eq. (23) with all other moments set to zero, we find that ΓPT has
the following two eigenvalues: e1 = 1/[2(1 + 2η)], e2 = 1/[2(1− 2η)]. In terms of these eigenvalues, the
entanglement in the long time limit as defined by the logarithmic negativity is

EN =
∑
i=1,2

max[0,− log2(2ei)] = log2(1 + 2η). (24)
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In Fig. 3b we see that the entanglement increases monotonically from 0 with increasing η and reaches its
maximum value Emax

N = 1 at ηcrit = 1/2; the RWA formula (24) accurately matches the logarithmic negativity
obtained numerically from the quantum Langevin equation for the full Hamiltonian (10) thoughout the η
range.

V. MANY DETECTORS

A single accelerating detector coupled to the cavity mode generates photons by extracting energy from
the detector center of mass motion. If more than one accelerating detector is brought into play, coupling
to the same cavity mode, we might expect an enhancement of the Unruh effect. Consider N detectors with
their center of mass equilibrium points located in the region of the midway point of the cavity with the
spatial separation between the detectors much smaller than the cavity fundamental mode wavelength 2L;
the detectors approximately follow the worldlines zµn(t) = (t, L/2 +A cos(Ωmt+ φn)). Here we allow for the
possibility that the detectors have different phases φn, but with identical center of mass oscillation amplitudes
A and frequencies Ωm. Assuming for simplicity that the coupling strengths between each detector and the
cavity mode are given by the same λ0, the single detector Hamiltonian (10) is replaced by

H(t) = a†a+ ωd0

N∑
n=1

dτn
dt

b†nbn + λ0

N∑
n=1

dτn
dt

sin [kcA cos(Ωmt+ φn)] (a† + a)(b†n + bn). (25)

Following the same approximation procedure (harmonic series expansion and RWA) as for the single de-
tector case (see Appendix A), Hamiltonian (25) can be approximated by the following time-independent
Hamiltonian in the interaction picture:

HI ≈ λ

N∑
n=1

(a†b†n + abn), (26)

where the renormalized coupling is given by the same expression as in the single detector case. Consider the

collective detector operator bcol =
1√
N

N∑
n=1

bn and bin,col =
1√
N

N∑
n=1

bin,n, where the 1/
√
N factors ensure

that the usual commutation relations are obeyed:
[
bcol, b

†
col

]
= 1 and

[
bin,col(t), b

†
in,col(t

′)
]

= δ(t − t′). We

then obtain the same quantum Langevin equations as for the single detector (14), but with the coupling

scaled by
√
N :

d

dt


a
a†

bcol

b†col

 =


−γ2 0 0 i

√
Nλ

0 −γ2 −i
√
Nλ 0

0 i
√
Nλ −γ2 0

−i
√
Nλ 0 0 −γ2




a
a†

bcol

b†col

+
√
γ


ain

a†in
bin,col

b†in,col

 , (27)

where the phases φn drop out when performing the RWA. From Eq. (15), we therefore have that the steady
state cavity mode average photon number with N oscillating detectors is

〈a†(t)a(t)〉
∣∣
t→∞ =

2Nη2

1− 4Nη2
, (28)

where η = λ/γ here still refers to the single detector coupling to damping ratio. The parametric instability

threshold is then lowered to ηcrit = 1/(2
√
N). For η well below the instability threshold, we see that the

11



steady state cavity mode average photon number is scaled by N compared to the single detector case. In
essence, the oscillating detectors act incoherently in generating photons from the cavity mode ground state.

If the detectors are modeled more appropriately by quantized nonlinear oscillators, (e.g., by two level
systems), then we no longer expect a parametrically unstable regime. For certain parameter choices, there
may in fact be a non-equilibrium superradiant phase where the detectors act coherently and with the steady
state average cavity mode photon number now scaling as N2, thus significantly enhancing the Unruh effect
for N � 1.

VI. THE FBAR-SUPERCONDUCTING CIRCUIT ANALOGUE

Microwave superconducting circuits involving nonlinear Josephson junction (JJ) elements have proven
a fruitful arena for investigating various photon production from vacuum analogues [4], culminating in the
experimental demonstration of an analogue of the dynamical Casimir effect (DCE) [7]. In the latter analogue,
the accelerating, oscillating mirror boundary of the electromagnetic vacuum is replaced by a flux tunable
dc-SQUID at one end of a co-planar microwave cavity. By applying a sinusoidal, time varying magnetic flux
through the SQUID, the effective length of the cavity that determines the microwave modes is modulated,
resulting in photon pair production from vacuum under the right frequency conditions.

However, a more satisfying demonstration of the DCE would involve an actual moving, i.e., mechanically
oscillating mirror, rather than an electronic analogue. It was recently shown [17] that by incorporating
a capacitance at the end of the cavity with a few hundred nanometer thick dielectric layer undergoing
dilatational oscillations at suitable GHz frequencies, potentially measurable photon production rates are
predicted. Such mechanical resonators are commonly termed “film bulk acoustic resonators” (FBARs) when
piezoelectrically actuated [15]. We will adopt the same FBAR acronym to describe also thin, non-piezoelectric
membranes undergoing dilatational motion.

In Fig. 4, we show a possible practicable scheme inspired by the DCE proposal of Ref. [17] that furnishes
an Unruh effect analogue involving a mechanically oscillating detector based on an FBAR undergoing di-
latational motion. The scheme comprises two coplanar microwave cavities with center conductors modeled
as 1D strips having capacitance per unit length C and inductance per unit length L. We denote one of the
microwave resonators with center conductor length Lc the “cavity” (subscript ‘c’), while the other with cen-
ter conductor length Ld is denoted as the photon “detector” (subscript ‘d’), although there is no particular
distinction between cavity and detector resonators for our scheme given that we model the photon detector
as a harmonic oscillator as opposed to a two level system. The cavity and detector center conductors are
deliberately chosen to have different lengths so that the resulting normal mode frequencies are sufficiently
distinct (see discussion later below), with the center conductors overlapping at one end for a length Lm to
form the FBAR-capacitive coupling. At the opposite end of the cavity center conductor is a dc-magnetic
flux biased SQUID that serves to fine-tune its resonance frequency in order to appropriately match the rel-
evant cavity and detector mode frequencies with the FBAR frequency as required for resonant photon pair
production.

The FBAR has a thickness D, which together with the added metallic layers of the center conductor on both
sides forming the capacitive coupling, determines the fundamental dilatational mode frequency. In particular,
the FBAR is assumed to be driven with some steady state mechanical displacement z(t) = A cos (Ωmt),
A � D, where Ωm denotes the FBAR dilatational mode frequency and A is the dilatational displacement
amplitude. The subscript ‘m’ here stands for “mechanical”, to emphasize that the parametric drive involves
a mechanically oscillating degree of freedom, in this case the capacitor thickness that couples the cavity and
photon detector modes. However, unlike the actual Unruh effect as described in the above sections, the
present analogue does not involve the detector accelerating within the volume occupied by the cavity mode.

12



FIG. 4: Scheme of the device. (a) Side view showing the FBAR resonator comprising a dielectric crystalline ma-
terial with thickness D sandwiched between the detector (upper) and cavity (lower) center conductors. The FBAR
undergoes fundamental dilatational mode displacements z(t), modulating the distance between the cavity and detec-
tor center conductors. (b) Top view showing the cavity and detector resonators comprising their center conductors
with lengths Lc and Ld, respecively, and ground plane. The center conductors couple to each other via the FBAR
capacitance of length Lm. Note that FBAR capacitance length is not drawn to scale: Lm � Lc, Ld. The cavity and
detector resonators are coupled to separate transmission lines via capacitances CTc and CTd, respectively, which feed
to subsequent amplification stages for cross-correlation measurements of the resulting photon pair production. The
flux-biased DC-SQUID enables tuning of the cavity mode frequency, so as to bring the sum of the two cavity mode
frequencies into resonance with the FBAR mechanical drive frequency (parametric resonance condition).

In contrast to the DCE scheme of Ref. [17], we envisage utilizing a non-piezoelectric dielectric such as
silicon between the overlapping center conductor capacitor plates for the FBAR; this avoids correlated photon
pair production arising from induced, oscillating piezoelectric surface charges on the capacitor plates. Note
however that in an actual device, care must be taken to address possible photon production due to spurious
charges on the capacitor plate surfaces (i.e., electrostatic patch potentials). One possible way to actuate the
dilatational mode of the FBAR is via coupled ∼ 10 GHz, propagating flexural vibrations in a suspended
dielectric strip that is attached to the upper FBAR surface and at right angles to the center conductors (see
Appendix D).
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A. The analogue circuit cavity mode-detector Hamiltonian

The cavity and detector center conductors are assumed to be weakly coupled capacitively to separate
transmission lines that feed into measurement circuitry for verifying correlated photon production in the
cavity-detector system. In the first part of the analysis, we neglect the capacitive coupling to the measurement
circuitry and treat the cavity-detector system with driven FBAR as a closed system, deriving the mode
Hamiltonian of the latter. We also neglect the SQUID element in the analysis, since it serves effectively as a
flux dependent frequency “tuner” and does not play an essential role in the dynamics. Applying Kirchhoff’s
laws to the circuit in Fig. 4 and performing a normal mode analysis of the closed cavity-detector system
dynamics (see Appendix C for the details of the derivation), we obtain the following Hamiltonian:

H =
∑
n

~ωna†nan −
A

D
cos (Ωmt)

∑
n,n′

~λnn′
√
ωnωn′

(
an − a†n

)(
an′ − a†n′

)
, (29)

where the label n denotes the normal mode and the dimensionless coupling between the normal modes is
given by the following formula:

λnn′ =

(
π

Φ0

)2 Cm√
CnCn′

∫ Lm

0

dx [Φd,n(Ld − x)− Φc,n(Lc − x)] [Φd,n′(Ld − x)− Φc,n′(Lc − x)] . (30)

Here, Φd,n(x) and Φc,n(x) are the normal mode flux field solutions in the detector and cavity resonator,
while Φ0 = h/(2e) is the flux quantum. The parameter Cm denotes the undisplaced FBAR capacitance per
unit center conductor length, which we assume to be well approximated by the parallel plate capacitance
formula; the Cn’s are mode normalization constants with the dimensions of capacitance.

Note that for the strong capacitive couplings we consider between the cavity and detector resonators (see
below), the modes of each of these subsystems become strongly hybridized, with the resulting normal modes
having non-negligible amplitude in both the cavity and detector resonator. The operators a†n thus create
photons that coexist in the two resonator regions and their physical identification as cavity and detector is
no longer that meaningful. Instead, it is more appropriate to relate the “cavity” and “detector” labels (or
“idler” and “signal”) in the analogue to the respective normal modes n = 1, 2.

Tuning the frequencies such that Ωm = ω1 + ω2, we can simplify the Hamiltonian (29) by transforming to
the interaction picture and making a rotating wave approximation to obtain

HI = ~λ
(
a1a2 + a†1a

†
2

)
, (31)

where we define here λ = −λ12
√
ω1ω2A/D; recall that A is the mechanical, dilatational displacement ampli-

tude andD is the FBAR thickness. This Hamiltonian coincides with the standard, non-degenerate parametric
amplifier (NDPA) Hamiltonian in the interaction picture.

We now estimate how large the coupling λ can be, given realistic device parameters. Assuming, e.g.,
cavity and detector normal mode frequencies ω1 ∼ 2π × 4 GHz and ω2 ∼ 2π × 6 GHz , we require the
FBAR dilatational frequency to be Ωm ∼ 2π × 10 GHz. Approximating the FBAR as elastically isotropic
and neglecting the mechanical contribution from the metal plates (we can assume that their thicknesses are
much less than D), the fundamental dilatational mode frequency of the FBAR is given by the expression
[15]

Ωm =
πvl
D
, (32)

where vl is the propagation speed of a longitudinal elastic plane wave. Assuming silicon for the FBAR mate-
rial, we have vl ≈ 104 m/s, and from the required Ωm frequency, the FBAR thickness must be approximately
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FIG. 5: Coupling strength λnn′ dependence on FBAR capacitance length Lm; ‘·’ denotes λ11, ‘∗’ denotes λ12, and
‘+’ denotes λ22.

D ≈ 500 nm. Using the parallel plate capacitance expression for the overlapping center conductor plates with
gap thickness D = 500 nm and dielectric constant εr ≈ 12 for silicon, we obtain Cm ≈ 2 × 10−9 F/m for a
10 µm width (coinciding with the assumed center conductor width). For the cavity and detector resonators,
we assume the capacitance and inductance per unit length to be C = 10−10 F/m (about twenty times smaller
than Cm) and L = 10−8 H/m, respectively.

Consider example cavity and detector conductor lengths Lc = 1.1 cm and Ld = 0.8 cm. Through the
expression ω = πv/L for the half-wave mode of a single, uncoupled cavity resonator, with electromagnetic

wave speed in the cavity given by v = 1/
√
LC, these lengths correspond to frequencies ω1/(2π) = 4.5 GHz

and ω2/(2π) = 6.5 GHz. While these are larger than our desired frequencies, note that introducing the FBAR
coupling capacitance CmLm will result in lower normal mode frequencies due to the increase in capacitance.

Evaluating the coupling strengths (30) versus FBAR capacitance length Lm for the lowest frequency modes
n = 1, 2, we obtain the results shown in Fig. 5. The coupling strengths scale approximately linearly with
Lm for small values, with the linear dependence breaking down when CmLm is within an order of magnitude
of the center conductor capacitances CLc and CLd, corresponding to Lm ∼ 40 µm. Beyond this capacitance
length, the cavity and detector modes become strongly hybridized; the coupling between normal modes n = 1
and n′ = 2 has a maximum (in magnitude) |λ12| = 0.04 for Lm = 90 µm, corresponding to normal mode
frequencies ω1/(2π) = 3.8 GHz and ω2/(2π) = 5.7 GHz. Note that these frequencies are smaller than the
original uncoupled cavity and detector frequencies ω1/(2π) = 4.5 GHz and ω2/(2π) = 6.5 GHz, respectively,
signifying the strong renormalizing effects of the coupling capacitance CmLm. Fig. 6 shows the normal mode
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solutions Φ1(x) and Φ2(x) for which the coupling |λ12| is a maximum. Note the strong hybridization of the
cavity and detector modes, extending throughout the cavity and detector lengths. With the FBAR thickness
D = 500 nm and assuming an achievable dilatational amplitude A = 10−11 m [16], we obtain the maximum
coupling strength λ ≈ 24.5× 103 Hz in Eq. (31).
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FIG. 6: Normal mode functions (arbitrary scale) (a) Φ1(x) and (b) Φ2(x). Note that the x coordinate is defined here
such that x = 0 corresponds to the left end of the cavity center conductor and x = Lc +Ld −Lm corresponds to the
right end of the detector center conductor (see Fig. 4). The vertical dashed lines indicate the location of the FBAR
coupling capacitor (Lc − Lm ≤ x ≤ Lc).

In the above derivation of the FBAR-superconducting circuit Hamiltonian, we treated the dilatational
motion non-relativistically, i.e., we neglected Lorentz time dilation factors. This is well-justified for our
analogue since with the assumed parameter values, the dilatational velocity magnitude of the FBAR surfaces
is AΩm ∼ 10−11 m× 2π × 1010 Hz ∼ 1 m/s ≪ c.

B. Measurement scheme

In the following, we describe how the generated correlated photon pairs may be measured that result
from the nondegenerate parametric amplification of resonator mode vacuum fluctuations with closed system
Hamiltonian given by Eq. (31). To proceed, we must take into account the (weak) capacitive couplings
between the detector and cavity resonators and their respective transmission lines (denoted by CTd and CTc,
respectively in Fig. 4) that feed into the subsequent signal amplification stages.

Including the weakly coupled transmission lines, the cavity and detector resonator modes will as a conse-
quence be damped and subject to electromagnetic noise. The resulting quantum dynamics can be described
to a good approximation using the “input-output” approach [21, 22] by the following quantum Langevin
equations:

da1

dt
=

i

~
[H, a1]− 1

2
(γc1 + γd1) a1 + i

√
γc1a

in
c − i

√
γd1a

in
d , (33)

da2

dt
=

i

~
[H, a2]− 1

2
(γc2 + γd1) a2 + i

√
γc2a

in
c + i

√
γd2a

in
d , (34)
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where the Hamiltonian (31) in the Heisenberg picture is

H = ~ω1a
†
1a1 + ~ω2a

†
2a2 + ~λ

(
e−iΩmta†1a

†
2 + eiΩmta1a2

)
, (35)

with Ωm = ω1 +ω2. In Eqs. (33) and (34), the n = 1(2) mode damping rates γc1(2) result from the capacitive
coupling of the cavity resonator to the left transmission line, while the damping rates γd1(2) result from the
capacitive coupling of the detector resonator to the right transmission line (see Fig. 4). The sign differences
in the noise terms follow from the relative signs of the mode functions Φ1 and Φ2 at the cavity and detector
center conductor ends that are coupled to their respective transmission lines. Equations (33) and (34) are
accompanied by the input-output relations

aout
c − ain

c = i
√
γc1a1 + i

√
γc2a2, (36)

aout
d − ain

d = −i√γd1a1 + i
√
γd2a2. (37)

Taking the Fourier transform [i.e., f(ω) = (2π)−1/2
∫ +∞
−∞ dteiωtf(t)] of the quantum Langevin equations

(33) and (34) and solving for a1(2)(ω), we obtain

a1(ω) =
[(
−i(ω − ω1) +

γ1

2

)(
−i(ω − ω1) +

γ2

2

)
− λ2

]−1

×
{[
i
√
γc1a

in
c (ω)− i√γd1a

in
d (ω)

] [
−i(ω − ω1) +

γ2

2

]
− λ

[√
γc2
(
ain
c (Ωm − ω)

)†
+
√
γd2

(
ain
d (Ωm − ω)

)†]}
, (38)

a2(ω) =
[(
−i(ω − ω2) +

γ1

2

)(
−i(ω − ω2) +

γ2

2

)
− λ2

]−1

×
{[
i
√
γc2a

in
c (ω) + i

√
γd2a

in
d (ω)

] [
−i(ω − ω2) +

γ1

2

]
− λ

[√
γc1
(
ain
c (Ωm − ω)

)† −√γd1

(
ain
d (Ωm − ω)

)†]}
, (39)

where γ1 = γc1 + γd1 and γ2 = γc2 + γd2. Substituting Eqs. (38) and (39) into the Fourier transform of
the input-output relations (36) and (37), we obtain solutions to aout

c (ω) and aout
d (ω), which can then be

used to calculate various measurable quantities. The latter are expressed in terms of the filtered output,
transmission line voltage or current operators:

V out
c(d)(t) = −i

(
~ZT
4π

)1/2 ∫ ω0+∆ω/2

ω0−∆ω/2

dω
√
ω

[
e−iωtaout

c(d) (ω)− eiωt
(
aout
c(d) (ω)

)†]
(40)

and

Iout
c(d)(t) = i

(
~

4πZT

)1/2 ∫ ω0+∆ω/2

ω0−∆ω/2

dω
√
ω

[
e−iωtaout

c(d) (ω)− eiωt
(
aout
c(d) (ω)

)†]
, (41)

where the filter bandwidth ∆ω is centered at frequency ω0, and ZT is the impedance of the transmission
lines.

We first determine the filtered output power in some bandwidth ∆ω centered at frequency ω0; as we shall
see, the output power gives a measure of the rate at which photons are produced from vacuum by the FBAR
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mechanical parametric drive. The power radiated into the transmission line connected to the cavity resonator
is

P out
c =

〈
Iout 2
c

〉
ZT =

~
4π

∫ ω0+∆ω/2

ω0−∆ω/2

dωdω′ω
[
〈aout
c (ω)

(
aout
c (ω′)

)†〉+ 〈
(
aout
c (ω)

)†
aout
c (ω′)〉

]
, (42)

where the angular brackets denote an ensemble average with respect to the ‘in’ states of the transmission
line, and we have also performed a time average; a similar expression also holds for the power radiated into
the transmission line connected to the detector resonator (c↔ d). Given that each of the two normal mode
functions extend throughout both coupled cavities, we effectively have a so-called ‘two-sided’ cavity [27]. This
affords the alternative possibility of a cross-correlated measurement of the currents in both transmission lines
to determine the radiated power:

P out
cd =

1

2

〈(
Iout
c Iout

d + Iout
d Iout

c

)〉
ZT

=
~

8π

∫ ω0+∆ω/2

ω0−∆ω/2

dωdω′ω
[
〈aout
c (ω)

(
aout
d (ω′)

)†〉+ 〈
(
aout
c (ω)

)†
aout
d (ω′)〉+ h.c.

]
, (43)

where ‘h.c.’ denotes “Hermitian conjugate”. The advantage of considering the cross correlation between the
current outputs of the two transmission lines over the autocorrelation between the current outputs of a single
transmission line, is that additive transmission line noise does not arise in the output signal. This is because
the cavity-connected transmission line noise operator commutes with the detector-connected transmission

line noise operator: [ain
c (ω),

(
ain
d (ω′)

)†
] = 0. Most crucially, taking into account the necessary, subsequent

amplification of the output signals in each transmission line and then cross correlating, the added noise of
the amplifiers would be significantly reduced, limited only by possible weak correlations between the cavity
and detector amplifier added noise modes [27].

Substituting the solutions (38) and (39) into Eq. (43), we obtain for the cross-correlated power in band-
width ∆ω about frequency ω0:

P out
cd =

∫ ω0+∆ω/2

ω0−∆ω/2

dω

2π
~ω(2n̄+ 1)λ2

×
{
−√γc1γd1γ2

∣∣∣(−i(ω − ω1) +
γ1

2

)(
−i(ω − ω1) +

γ2

2

)
− λ2

∣∣∣−2

+
√
γc2γd2γ1

∣∣∣(−i(ω − ω2) +
γ1

2

)(
−i(ω − ω2) +

γ2

2

)
− λ2

∣∣∣−2
}
, (44)

where n̄ = (e~ω/(kBT ) − 1)−1 is the thermal average photon occupation number of the transmission lines
(we assume both transmission lines are at the same temperature T ), and we have also assumed γcn, γdn �
ωn, n = 1, 2. The correlated power comprises the sum of two contributions, corresponding to the parametric
amplification of thermal and zeropoint fluctuations in modes 1 and 2. In particular, in the limit of vanishing
temperature such that n̄ = 0, the remaining non-zero contribution to the output power arises from the
pair-production of photons in modes 1 and 2 out of their vacuum (i.e., ground) state. Note that the minus
sign in front of the mode 1 term is due to the opposite signs of the associated mode function at the outer
ends of the coupled cavities (Fig. 6).

From Eq. (44), we define the cross-correlated power spectral density Scd(ω) through the relation

P out
cd =

∫ ω0+∆/2

ω0−∆/2

dω

2π
Scd(ω) (45)
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FIG. 7: Cross-correlated vacuum photon emission rate per unit Hertz Ncd(ω) versus frequency about mode n = 1
(solid line) and mode n = 2 (dashed line).

and also define the cross-correlated photon emission rate per unit Hertz as Ncd(ω) = Scd(ω)/(~ω). Figure
7 shows a plot of the vacuum (n̄ = 0), cross-correlated photon emission rate Ncd(ω) per unit Hertz versus
frequency ω for the sample realisable parameter values considered above in Sec. VI B, i.e., ω1/(2π) = 3.8 GHz,
ω2/(2π) = 5.7 GHz, and λ ≈ 24.5×103 Hz. We also assume identical, realizable cavity and detector resonator
cavity quality factors Q1 = Q2 = 105, so that the cavity damping rates (γn = ωn/Q) are γ1 = 2.4× 105 s−1

and γ2 = 3.6 × 105 s−1. With such damping rates, we have λ/γ1 = 0.1 and λ/γ2 = 0.07, which are about
an order of magnitude below the parametric instability onset; the photon emission rate maximum scales
approximately linearly with inverse damping rate and quadratically with dilatational mode displacement
amplitude when well below this instability onset. For the above parameter values, the peak cross-correlated
photon emission rate per Hertz is |Ncd| ≈ 0.02 at ω = ω1 and |Ncd| ≈ 0.01 at ω = ω2 (see Fig. 7).
These correspond to peak power densities |Scd|/kB ≈ 4 mK and 3 mK, respectively. These signal levels are
within reach of state-of-the-art cryogenic microwave techniques. In Ref. [28], for instance, the covariance
between modes of a parametric cavity was measured to milliKelvin precision using a conventional high
electron mobility transistor (HEMT) amplifier. The averaging times in that work were of order three hours,
suggesting that the precision could be further improved simply by averaging longer. If instead the HEMT
amplifier was replaced by a quantum-limited Josephson parametric amplifier, the averaging times could be
drastically reduced.

With just an order of magnitude reduction in the resonator damping rates from those assumed above, the
power spectral density could be considerably enhanced by adjusting the coupling λ through for example fine
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tuning the mechanical drive amplitude A ∼ 10−11 m so as to remain just below the instability onset (c.f.
Fig. 3).

While the cross-correlated power gives a measure of the parametric photon production rate without the
presence of transmission line noise, it cannot distinguish photons created out of vacuum zero-point fluctu-
ations (Unruh effect analogue) from the parametric amplification of thermal radiation (n̄ 6= 0) that might
be the result of heating due to the mechanical FBAR actuation process. Quantum correlated photon pair
production can be verified through for example quantum squeezing (so-called “two-mode” squeezing) or
quantum entanglement measures (e.g., logarithmic negativity–see Sec. IV) of the n = 1, 2 cavity-detector
resonator normal modes [8]. In the remainder of this section, we analyze the two-mode squeezing and briefly
discuss how it may be measured.

For two-mode squeezing, the appropriate observables to consider are the following superposition quadrature
operators [29]:

X1(t) = 2−3/2
[
eiω1ta1(t) + e−iω1ta†1(t) + ei(ω2t−θ)a2(t) + e−i(ω2t−θ)a†2(t)

]
(46)

and

X2(t) = −2−3/2i
[
eiω1ta1(t)− e−iω1ta†1(t) + ei(ω2t−θ)a2(t)− e−i(ω2t−θ)a†2(t)

]
. (47)

These two quadrature operators are complementary, satisfying the commutation relation

[X1(t), X2(t)] =
i

2
(48)

and the Heisenberg uncertainty principle

∆X1∆X2 ≥
1

4
. (49)

For coherent states, we have ∆X1 = ∆X2 = 1/2; we therefore define a “quantum squeezed” state as one for
which minθ ∆X1 < 1/2, i.e., where the phase angle θ is chosen such that ∆X1 is a minimum.

In order to evaluate ∆X1 for the cavity-detector modes in the parametrically driven steady state, it is
convenient to express the solution in terms of the Fourier transform of the quadrature operator:

∆X2
1 = 〈X1(t)2〉 =

1

2π

∫∫
dωdω′e−i(ω−ω

′)t〈X1(ω)X1(−ω′)〉, (50)

where

X1(ω) =
1√
2π

∫ +∞

−∞
dteiωtX1(t)

= 2−3/2
[
a1(ω1 + ω) + (a1(ω1 − ω))

†
+ a2(ω2 + ω)e−iθ + (a2(ω2 − ω))

†
eiθ
]
. (51)

From Eqs. (38), (39), and (51), we obtain

〈X1(ω)X1(−ω′)〉 =
1

4
δ(ω − ω′)

∣∣∣(−iω +
γ1

2

)(
−iω +

γ2

2

)
− λ2

∣∣∣−2

×
{
− (n̄1 + n̄2 + 1)λγ1γ2 sin θ − λ [γ1(2n̄1 + 1)− γ2(2n̄2 + 1)]ω cos θ

+(2n̄1 + 1)
γ1

2

[
ω2 +

γ2
2

4
+ λ2

]
+ (2n̄2 + 1)

γ2

2

[
ω2 +

γ2
1

4
+ λ2

]}
, (52)
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where n̄1(2) = (e~ω1(2)/(kBT ) − 1)−1 (we assume that γ1 � ω1, γ2 � ω2). Substituting Expression (52) into
(50) and carrying out the angular frequency integrals,

∆X2
1 =

1

4
(n̄1 + n̄2 + 1)

1− 2λ
(γ1+γ2) sin θ

1− λ2

γ1γ2

. (53)

This expectation value is a minimum for θ = π/2 (with λ > 0):

∆X2
1 =

1

4
(n̄1 + n̄2 + 1)

(
1− 2λ

γ1+γ2

1− λ2

γ1γ2

)
, (54)

with the complementary quadrature variance given by

∆X2
2 =

1

4
(n̄1 + n̄2 + 1)

(
1 + 2λ

γ1+γ2

1− λ2

γ1γ2

)
. (55)

The condition ∆X1 < 1/2 to be in the quantum squeezing regime then becomes

n̄1 + n̄2 <

(
1− λ2

γ1γ2

1− 2λ
γ1+γ2

)
− 1. (56)

For the above example parameter values, we require n̄1 + n̄2 < 0.08, which gives for the cavity-detector
environment (i.e., transmission line) temperature T < 70 mK in order to be in the quantum squeezing regime.
Verifying this two-mode quantum squeezing requires measuring cross-correlations between the quadratures
of the output transmission line voltage (40) or current (41) operators filtered about the ω1 and ω2 normal
mode frequencies [7]. While achieving electron temperatures in microwave systems well below 70 mK is
non-trivial, it is feasible; for instance, in Ref. [28] a calibrated electron temperature of 30 mK was achieved.

VII. CONCLUSION

Motivated by the goal to demonstrate the Unruh effect in tabletop setups, we introduced a model of a
pointlike photon detector with its center of mass undergoing oscillatory accelerating motion inside a high
quality factor cavity; the detector’s internal degrees of freedom are modeled as a quantum harmonic oscillator
that is linearly coupled to a massless scalar field in the single mode approximation. Under the condition
that the sum of the detector and cavity mode frequencies match that of the detector’s center of mass
frequency, cavity-detector photon pair production from the vacuum is resonantly enhanced, and the steady
state photon production dynamics is accurately described by a simpler non-degenerate parametric amplifier
(NDPA) model. In particular, we derived accurate analytical expressions for the average photon numbers
of the detector and cavity modes, as well as the entanglement (logarithmic negativity) between them. The
ratio of the coupling strength and the modes’ damping rate, denoted as η, is the determining parameter
in the analytical expressions for the average photon numbers and the entanglement; both quantities can be
increased by tuning η close to 1/2, the onset of parametric instability.

We proposed an Unruh effect (UE) analogue of the cavity-coupled oscillating detector model, which involves
two capacitively coupled co-planar microwave resonators–one playing the role of the cavity and the other
the detector. Dilatational vibrations of the coupling capacitance with frequency (∼ 10 GHz) matching the
sum of the cavity and detector’s fundamental resonator mode frequencies results in measurable, resonantly
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enhanced photon production from their ground (i.e., vacuum) state. A key advantage of the analogue scheme
is the ability to increase the coupling between the detector and cavity by scaling the capacitance size.

A complementary tabletop realization of the UE might involve instead scaling up the number of photode-
tectors, especially if the latter are furnished by atomic scale defects where the individual coupling strengths
to the electromagnetic field are fixed by the defect’s dimensions. One might consider a large number of such
photodetectors embedded for example in a vibrating membrane such that they are all oscillating in unison,
the membrane contained within a high quality factor microwave cavity. An interesting question concerns
whether a sufficient number of detector defects can be employed such that we enter a superradiant phase,
resulting in a coherent enhancement of the photon production rate from the cavity vacuum [26].
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Appendix A: The RWA Hamiltonian for the single and many detector case

For the single-detector case with Hamiltonian given by Eq. (10), applying the Fourier series expansion to
dτ/dt and the Jacobi-Anger expansion to the sin [ξ cos(Ωmt+ φ)/Ωm] term, we obtain

dτ

dt
=

∞∑
n=0

(−1)n
( 1

2

n

)(
2n

n

)(
ξ

2

)2n

+ 2

∞∑
n=1

n∑
n′=1

(−1)n−n
′
( 1

2

n

)(
2n

n− n′

)(
ξ

2

)2n

cos [2n′(Ωmt+ φ)] , (A1)

sin

[
ξ

Ωm
cos(Ωmt+ φ)

]
= 2

∞∑
n=0

(−1)nJ2n+1

(
ξ

Ωm

)
cos [(2n+ 1)(Ωmt+ φ)] . (A2)

Keeping only terms up to second harmonics in Ωm, Eqs. (A1) and (A2) become approximately

dτ

dt
≈ D0 +D2 cos(2Ωmt+ 2φ) (A3)

dτ

dt
sin

[
ξ

Ωm
cos(Ωmt+ φ)

]
≈ C1 cos(Ωmt+ φ) (A4)

where the ξ dependent D0 and D2 coefficients can be read off from Eq. (A1) and the ξ, Ωm dependent
coefficient C1 can be read off from Eq. (A2). Setting the phase φ = 0, the Hamiltonian then reduces to

H = a†a+ [ωd + ωd0D2 cos(2Ωmt)] b
†b+ λ0C1 cos(Ωmt)(a

† + a)(b† + b), (A5)

where ωd = ωd0D0 is the renormalized detector oscillator frequency. Transforming to the rotating frame

via the unitary operator URF(t) = exp
(
ia†at+ ib†b

[
ωdt+ ωd0D2

2Ωm
sin(2Ωmt)

])
, the cavity mode and detector

annihilation operators pick up time-dependent phase terms as follows:

a(t) → e−ita(t),
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b(t) → e
−i

[
ωdt+

ωd0D2
2Ωm

sin(2Ωmt)
]
b(t). (A6)

The system Hamiltonian (A5) then becomes in the interaction picture

HI = λ0C1 cos(Ωmt)(e
ita† + e−ita)

[
eiωdteiB sin(2Ωmt)b† + e−iωdte−iB sin(2Ωmt)b

]
(A7)

where B = ωd0D2/2Ωm < 1.
Making use of the Jacobi-Anger expansion again such that

e±iB sin(2Ωmt) ≈ J0 (B)± 2iJ1 (B) sin(2Ωmt), (A8)

where J0(z) and J1(z) are Bessel functions of the first kind, and substituting back to Eq. (A7), we arrive at
the following expression for the system Hamiltonian:

HI ≈ λ0C1 cos(Ωmt)
{
ei(ωd+1)t [J0 (B) + 2iJ1 (B) sin(2Ωmt)] a

†b†

+e−i(ωd+1)t [J0 (B)− 2iJ1 (B) sin(2Ωmt)] ab

+e−i(ωd−1)t [J0 (B)− 2iJ1 (B) sin(2Ωmt)] a
†b

+ei(ωd−1)t [J0 (B) + 2iJ1 (B) sin(2Ωmt)] ab
†
}
. (A9)

Imposing the parametric resonance condition Ωm = 1 + ωd and combining the cos(Ωmt) term with the first
two terms within the braces, we obtain time-independent terms which we retain and oscillating terms at
integer multiples of Ωm which we drop (RWA). The resulting, approximate time independent Hamiltonian
describes a non-degenerate parametric amplifier (NDPA):

HI ≈
λ0C1

2
[J0 (B)− J1 (B)] (a†b† + ab). (A10)

For the N > 1 detectors case with Hamiltonian Eq. (25), applying the same harmonic expansion approx-
imation as above for the single detector case, we obtain the following approximate Hamiltonian [c.f., Eq.
(A5)]:

H = a†a+

N∑
n=1

[ωd + ωd0D2 cos(2Ωmt+ 2φn)] b†nbn + λC1

N∑
n=1

cos(Ωmt+ φn)(a† + a)(b†n + bn). (A11)

Transforming to the rotating frame via the unitary operator URF(t) =

exp

(
ia†at+ i

N∑
n=1

b†nbn

[
ωdt+

ωd0D2

2Ωm
sin(2Ωmt+ 2φn)

])
, the cavity mode and detector annihilation

operators pick up time-dependent phase terms as follows:

a(t) → e−ita(t),

bn(t) → e
−i

[
ωdt+

ωd0D2
2Ωm

sin(2Ωmt+2φn)
]
bn(t). (A12)

Performing again the Jacobi-Anger expansion, imposing the resonance condition Ωm = 1+ωd and the RWA,
the system Hamiltonian reduces approximately to

HI ≈
λ0C1

2
[J0 (B)− J1 (B)]

N∑
n=1

(a†b†n + abn). (A13)

Note that the phases φn drop out, so that as long as the Hamiltonian (A13) accurately describes the full
quantum dynamics (25), there should be little dependence on the relative detector oscillation phases.

23



Appendix B: Analytical derivation of the second order moments

We start from the Langevin equation (14) with the input noise operators ain(t), bin(t) satisfying the
expectation value and correlation relations 〈ain(t)〉 = 0, 〈bin(t)〉 = 0 〈ain(t)ain(t′)〉 = 0, 〈bin(t)bin(t′)〉 = 0,

〈a†in(t)ain(t′)〉 = 0, 〈b†in(t)bin(t′)〉 = 0 and 〈ain(t)a†in(t′)〉 = δ(t − t′), 〈bin(t)b†in(t′)〉 = δ(t − t′). The following
linear differential equation results for the second order moments:

d~V (t)

dt
= M(t)~V (t) + ~K, (B1)

where

~V =



〈aa〉
〈a†a〉
〈a†a†〉
〈ab〉
〈a†b〉
〈ab†〉
〈a†b†〉
〈bb〉
〈b†b〉
〈b†b†〉


, ~K =



0
0
0
iλ
0
0
−iλ

0
0
0


(B2)

and

M =



−γ 0 0 0 0 2iλ 0 0 0 0
0 −γ 0 −iλ 0 0 iλ 0 0 0
0 0 −γ 0 −2iλ 0 0 0 0 0
0 iλ 0 −γ 0 0 0 0 iλ 0
0 0 −λ 0 −γ 0 0 −iλ 0 0
−iλ 0 0 0 0 −γ 0 0 0 iλ

0 −iλ 0 0 0 0 −γ 0 −iλ 0
0 0 0 0 2iλ 0 0 −γ 0 0
0 0 0 −iλ 0 0 iλ 0 −γ 0
0 0 0 0 0 −2iλ 0 0 0 −γ


. (B3)

In ~V we include only moments of normal ordered operators, since the moments of anti-normal ordered
operators can be obtained from the former via commutation relation identities. From Eq. (B1) we derive

the analytical solution ~V (t) =
∫ t

0
dt′eM(t−t′) ~K + eMt~V (0). With ~V (0) = 0 (because of normal ordering) and

M a nonsingular (i.e., invertible) matrix, we can simplify the form of ~V (t) as follows:

~V (t) =

∫ t

0

dt′eM(t−t′) ~K

=

∫ t

0

dt′eMt′ ~K

= M−1(eMt − I) ~K. (B4)
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FIG. 8: Coordinates used to describe the cavity and detector resonator flux field variables. Note only the center
conductors of the resonators are shown.

The nonzero elements of ~V (t) are

〈a†(t)a(t)〉 = 〈b†(t)b(t)〉 = −
λe−t(γ+2λ)

[
γ
(
e4λt − 1

)
+ 2λ

(
−2et(γ+2λ) + e4λt + 1

)]
2(γ2 − 4λ2)

, (B5)

〈a†(t)b†(t)〉 = −〈a(t)b(t)〉 =
iλe−t(γ+2λ)

[
γ
(
−2et(γ+2λ) + e4λt + 1

)
+ 2λ

(
e4λt − 1

)]
2(γ2 − 4λ2)

, (B6)

which in the long-time limit reduce to

〈a†(t)a(t)〉
∣∣
t→∞ = 〈b†(t)b(t)〉

∣∣
t→∞ =

2λ2

γ2 − 4λ2

〈a†(t)b†(t)〉
∣∣
t→∞ = − 〈a(t)b(t)〉|t→∞ =

iγλ

γ2 − 4λ2
. (B7)

Equations (B7) can also be directly obtained from ~V (∞) = −M−1 ~K.

Appendix C: Derivation of the analogue cavity mode-detector Hamiltonian

Applying Kirchhoff’s laws (currents entering equals currents exiting a node; voltages around a closed loop
add to zero), the circuit in Fig. 4 yields the following equations in terms the cavity and detector flux field
variables Φc(xc, t) and Φd(xd, t), respectively:

(C + Cm) Φ̈c − L−1Φ′′c − CmΦ̈d = Cm
∂

∂t

(
z(t)

D
Φ̇c

)
− Cm

∂

∂t

(
z(t)

D
Φ̇d

)
, c↔ d, (C1)

where the overdots denote partial time derivatives and the prime superscripts denote partial spatial (i.e.,
x-coordinate) derivatives, z(t) = A cos(Ωmt) is the driven dilatational displacement of the FBAR (with A
the amplitude and Ωm the oscillation frequency), and D is the FBAR thickness. The cavity xc and detector
xd coordinates definitions are indicated in Fig. 8; in particular, the origin of the xc-coordinate for the cavity
center conductor is located at the end that capacitively couples to its probe transmission line, while the
origin of the xd-coordinate for the detector center conductor is located at the opposite end that capacitively
couples to its particular probe transmission line. In the overlap capacitance region, the cavity and detector
coordinates are related as follows: xc = −xd+Lc+Ld−Lm. For notational simplicity, we will frequently drop
the d and c subscripts on the x coordinates where the presence of these subscripts already on the flux field
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variables render these additional subscripts unnecessary. The parameter Cm denotes the undisplaced FBAR
capacitance per unit length, which we assume to be well approximated by the parallel plate capacitance
formula and we also include a step function in its definition so that

Cm(xc) =

{
0 0 ≤ xc < Lc − Lm
Cm Lc − Lm ≤ x ≤ Lc, c↔ d.

(C2)

From Eq. (C2), we see that the cavity and detector field variables couple only over the FBAR capacitance
length Lm; for 0 ≤ xc(d) < Lc(d)−Lm, Eq. (C1) reduces locally to separate decoupled scalar wave equations
in the flux fields Φc and Φd.

Equations (C1) follow from the Lagrangian

L
[
Φd,Φc, Φ̇d, Φ̇c

]
=

∫ Ld

0

dx

{
1

2

[
C +

(
1− z(t)

D

)
Cm
]

Φ̇2
d −

1

2L
Φ′2d

}
+

∫ Lc

0

dx

{
1

2

[
C +

(
1− z(t)

D

)
Cm
]

Φ̇2
c −

1

2L
Φ′2c

}
−
(

1− z(t)

D

)
Cm
∫ Lm

0

dx Φ̇d (Ld − Lm + x, t) Φ̇c (Lc − Lm + x, t) . (C3)

Here we treat the cavity and detector as closed systems (i.e., neglecting the capacitively coupled transmission
lines and other sources of cavity loss), Eq. (C1) is accompanied by the following boundary conditions on the
flux field variables:

Φ′c(0, t) = Φ′c(Lc, t) = 0, c↔ d. (C4)

Noting that the achievable dilatational mode displacement amplitudes satisfy A� D, we can find approx-
imate solutions to Eq. (C1) using the eigenfunction expansion method:

Φc(x, t) =
∑
n

qn(t)Φc,n(x) , c↔ d, (C5)

where the qn(t)’s are the normal mode coordinates labeled by n = 1, 2, . . . , and the associated functions
Φd,n(x) and Φc,n(x) are the normal mode solutions to the following equations which neglect the time-
dependent oscillatory displacement terms on the right hand side of the equals sign in Eq. (C1):

(Cc + Cm)ω2Φc + Cmω2Φd + L−1Φ′′c = 0 , c↔ d . (C6)

From the mode equations (C6) and the boundary conditions (C4), it follows that the normal mode functions
satisfy the orthogonality condition∫ Ld

0

dx (C + Cm) Φd,n′(x)Φd,n(x) +

∫ Lc

0

dx (C + Cm) Φc,n′(x)Φc,n(x)

−Cm
∫ Lm

0

dx [Φd,n′(Ld − x)Φc,n(Lc − x) + Φc,n′(Lc − x)Φd,n(Ld − x)]

=

(
Φ0

2π

)2

Cnδn,n′ , (C7)

where the Cn’s have the dimensions of capacitance, so that the normal mode coordinates qn(t) are di-
mensionless. Substituting the mode decomposition (C5) into the Lagrangian (C3), applying the boundary
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conditions (C6) and orthogonality condition (C7) on the mode functions, we obtain the following mode
coordinate Lagrangian:

L [qn, q̇n] =
∑
n,n′

(
Φ0

2π

)2 [
1

2
Cnq̇

2
n −

1

2Ln
q2
n −

z(t)

2D
λnn′ q̇nq̇n′

]
, (C8)

where L−1
n = ω2

nCn. The coupling between the normal modes is given by the following formula:

λnn′ =

(
2π

Φ0

)2

Cm
∫ Lm

0

dx [Φd,n(Ld − x)− Φc,n(Lc − x)] [Φd,n′(Ld − x)− Φc,n′(Lc − x)] . (C9)

Expressing in terms of creation and annihilation operators, the desired closed system, normal mode Hamil-
tonian that follows from Eq. (C8) is approximately

H =
∑
n

~ωna†nan −
z(t)

D

∑
n,n′

~λnn′
√
ωnωn′

(
an − a†n

)(
an′ − a†n′

)
, (C10)

where we exploit the fact that |z(t)| < A� D, and we have redefined the coupling as follows:

λnn′ =

(
π

Φ0

)2 Cm√
CnCn′

∫ Lm

0

dx [Φd,n(Ld − x)− Φc,n(Lc − x)] [Φd,n′(Ld − x)− Φc,n′(Lc − x)] . (C11)

Note that the coupling is dimensionless.

Appendix D: FBAR actuation

The optical pumping method of Ref. [16], while capable of inducing sufficiently large dilatational mode
displacement amplitudes A ∼ 10−11 m, is not suitable given the presence of thermal photons that would
swamp the parametrically generated photon signal of interest. Another possible approach would be to
actuate the dilatational mode acoustically via propagating flexural modes of a suspended, dielectric “strip”
that is attached to the upper surface of the FBAR and arranged at right angles say to the center conductor
(Fig. 9a). The flexural modes could be actuated for example by a piezotransducer located some distance
from the FBAR. In order to gain some confidence that such an actuation method generates sufficiently
large dilatational mode displacement amplitude magnitudes, we will now analyze the relatively simple model
shown in Fig. 9b. Assuming a suspended strip with width W and thickness T , mass density ρm, and subject
to a tensile stress τ , the (wave) equation of motion for transverse flexural displacements uz(x, t) of the strip
is

∂2uz
∂t2

− v2 ∂
2uz
∂x2

= 0, 0 < x, (D1)

where the flexural wave velocity is v =
√
τ/ρm. Here, we assume that the tensile stretching potential energy

dominates over the bending potential energy of the strip, primarily to simplify its elastic wave equations
(i.e., we neglect four order terms in the spatial derivative of dispacement field). The coupled equation of
motion for the FBAR dilatational mode effective displacement z(t) is

m
d2z

dt2
+mΩ2

mz +mγint
dz

dt
= F ∂uz

∂x

∣∣∣∣
x=0

, (D2)
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FIG. 9: FBAR dilatational mode actuation scheme. (a) Top view showing cavity-detector center conductors and
suspended strip that is driven into transverse (out of the plane) flexural vibration via a piezoactuator (not shown).
The strip forms the top layer of the FBAR and functions effectively as an acoustic transmission line for propagating
flexural waves. Note that the strip need not terminate at the FBAR, but may instead continue on both sides, attached
to a supporting substrate at its ends (not shown); the latter geometry may be more suited for the use of, for example,
high stress silicon nitride. (b) Model system for estimating the effect of the flexing strip on the FBAR dilatational
mode amplitude and dissipation rate.

where m is the FBAR fundamental dilational mode effective mass = 1/4× actual mass with coordinate
z(t) giving the actual thickness change of the FBAR, γint is the dilatational mode damping rate arising
from loss mechanisms other than due to coupling to the flexing strip, and F = τWT is the tensile force of
the strip whose transverse component obtained through multiplying by the gradient term ∂uz/∂x|x=0 will
either stretch (> 0) or compress (< 0) the FBAR. The equations are completed by imposing the following
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boundary condition on the strip at x = 0:

uz(0, t) = z(t). (D3)

Consider now a continuous flexural wave with amplitude Af and frequency ωf propagating to the left,
i.e., incident on the FBAR at x = 0. The wave will be partially absorbed by the FBAR oscillator and also
reflected to the right, described by the following solution to the wave equation (D1):

uz(x, t) = Re

[
Afe

−iωf (t+x/v) +

∫ ∞
0

dωB(ω)e−iω(t−x/v)

]
, (D4)

where second term on the right hand side describes flexural waves reflected from the FBAR and propagating
to the right. Substituting Eq. (D4) into the FBAR dilatational mode equation of motion (D2) and utilizing
the boundary condition (D3), we obtain

d2z

dt2
+ Ω2

mz + (γint + γf )
dz

dt
=

2ωfFAf
mv

sin(ωf t), (D5)

where the damping rate contribution due to acoustic radiation loss via the flexing strip is

γf =
F
mv

. (D6)

From Eq. (D5), the maximum steady state FBAR dilatational mode amplitude achieved when the strip
flexural mode frequency matches the FBAR dilatational mode frequency (ωf = Ωm) is

A =
2FAf
mvγtot

, (D7)

with γtot = γint + γf .

Consider for example a silicon nitride strip with mass density ρm = 3.44 × 103 kg m−3, thickness T =
100 nm, width W = Lm = 90 µm, and tensile stress τ = 1 GPa [30]. For the silicon FBAR dimensions
given in Sec. VI A and mass density ρsi = 2.33 × 103 kg m−3, the dilatational mode effective mass is
m = 2.6× 10−13 kg. Assuming an achievable dilatational mode quality factor Qm = Ωm/γtot = 100 [16] and
a strip flexural wave amplitude Af = 10−10 m, Eq. (D7) gives A = 2 × 10−11 m for the dilatational mode
amplitude, which is of the same magnitude as the assumed amplitude considered in Sec. VI A. Furthermore,
the damping rate γf given by Eq. (D6) corresponds to a quality factor ∼ 1000, and thus will not substantially
reduce the assumed quality factor ∼ 100 due to other loss mechanisms in the absence of coupling to the
flexing strip.

The numbers obtained above suggest that the proposed actuation method is feasible for producing fun-
damental dilatational mode amplitudes of the FBAR that are of sufficient magnitude. A more detailed
analysis is nevertheless still required, so as to for example ensure that other FBAR vibrational modes nearby
in frequency are not excited that could affect the efficiency of the flexural actuation scheme.

While we assumed a high tensile stress flexing strip for the analysis, a suspended bar of the same
dimensions–but with negligible tension–might also serve through its endpoint bending strain to actuate
the FBAR to desirable dilatational amplitudes. Again, further analysis is required to more comprehensively
explore the various possible actuation methods.
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