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An analytic expression for a polychromatic phasor representing an arbitrarily-short elegant
Laguerre-Gauss (eLG) laser pulse of any spot size and LG mode is presented in the time domain as
a non-recursive, closed-form perturbative expansion valid to any order of perturbative correction.
This phasor enables the calculation of the complex electromagnetic fields for such beams without re-
quiring the evaluation of any Fourier integrals. It is thus straightforward to implement in analytical
or numerical applications involving eLG pulses.

I. INTRODUCTION6

Perturbative models have long provided a straight-7

forward means of calculating the electromagnetic (EM)8

fields of optical beams with various spatiotemporal struc-9

tures [1–5]. To be generally applicable, such models must10

allow for the accurate description of beams which are11

focused to arbitrarily-small spot sizes, have arbitrarily-12

short temporal durations [5], and carry arbitrarily-many13

quanta of orbital angular momentum (OAM) [4–6],14

among other properties. The OAM carried by the beam15

manifests itself as an optical vortex [7–10], whereby the16

beam’s phase exhibits a helical structure about the opti-17

cal axis.18

Perturbative models generally entail a power series19

expansion in a parameter that is small in the paraxial20

limit of loose focusing, such as (kw0)
−1 [1–5, 11–13] or21

(k⊥/k) [4], where k is the wave number and w0 is the22

beam waist. The zeroth order term of such a series rep-23

resents the optical beam in the paraxial limit, and higher24

order terms introduce nonparaxial corrections. Notably,25

the first-order correction introduces a longitudinal elec-26

tric field that is characteristic of nonparaxial beams [1].27

In practice, perturbative models retain terms only up to28

a predetermined order of perturbation, at which point29

the infinite series is truncated.30

A perturbative model describing tightly-focused ele-31

gant Laguerre-Gauss (eLG) beams was presented by Ban-32

dres and Gutiérrez-Vega (BGV) [4], but this result was33

limited to a frequency-domain description for the case34

of monochromatic fields. Reference [5] extended this de-35

scription in two ways: i) It modified the BGV model by36

introducing a frequency spectrum, thus allowing for the37

description of pulses with arbitrary temporal duration;38

and ii) It Fourier transformed this modified frequency-39

domain phasor into the time domain, from which one40

can obtain the EM fields by straightforward differentia-41

tion. The first two orders of perturbative correction to42

the time-domain phasor were also presented in Ref. [5],43

and a method for generating higher order corrections was44

described in detail.45

A main benefit of using such perturbative models is the46

ability to calculate the EM fields using relatively simple47

expressions at each retained order of perturbative correc-48

tion. While exact models, such as that of Ref. [14], accu-49

rately describe such beams in the frequency domain, it50

can be cumbersome to generate the corresponding time-51

domain descriptions, which are required for calculating52

the EM fields. In particular, the Fourier transformations53

necessary to bring the frequency domain models into the54

time domain are often difficult to carry out owing to the55

mathematically-complicated nature of the exact descrip-56

tions, particularly as the LG mode indices become large.57

A major issue for perturbative descriptions, of course,58

is the convergence of the perturbation series describing59

the EM fields. For the model of Ref. [5], it was shown60

that the number of terms that must be retained in the61

perturbation series in order to achieve convergence de-62

pends not only on the spot size of the beam but also on63

the LG mode. For beams carrying large values of OAM64

(which can be created, e.g., in high-harmonic generation65

processes [10, 15, 16]), the perturbative order required to66

achieve convergence can become large. Thus, the ability67

to express a time-domain phasor to arbitrary perturba-68

tive order would be of great utility for general application69

of perturbative models to the calculation of EM fields in70

cases becoming increasing relevant in experiments involv-71

ing tightly focused, highly structured pulses of light.72

In this paper we generalize the second-order perturba-73

tive time-domain phasor results of Ref. [5] to arbitrarily-74

high perturbative order as a non-recursive, closed-form75

analytic expression. This generalized time domain pha-76

sor allows one to implement the perturbative model with-77

out requiring the explicit calculation of any Fourier inte-78

grals, which would be prohibitively difficult to calculate79

individually for each term of an arbitrarily-high order of80

perturbative correction. Instead, the EM fields can be81

calculated immediately from straightforward derivatives82

of the generalized time-domain phasor we present here.83

This paper is organized as follows. In Sec. II the time-84

domain phasor of Ref. [5] including two orders of pertur-85

bative correction beyond the paraxial approximation is86

reviewed, and the third-order correction is explicitly de-87

rived in the time domain via Fourier integration. We then88

propose a generalization of this time-domain phasor that89

is valid to any perturbative order. In Sections III and IV,90

our proposed generalized time-domain phasor is derived91

analytically. In Sec. V we provide a numerical example92
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showing the necessity for including high order terms in93

the perturbation expansion of the phasor in order to ob-94

tain good accuracy. We then summarize our results and95

present our conclusions in Sec. VI. In Appendix A, we96

derive the result of an integral involved in our analytical97

derivations. Finally, in Appendix B we present an alter-98

native approach to the generalization of the time-domain99

phasor that may be of interest to mathematicians and100

mathematical physicists.
101

II. PERTURBATIVE EXPRESSIONS FOR THE102

TIME-DOMAIN PHASOR103

A polychromatic time-domain phasor is an exact so-104

lution to the scalar Helmholtz equation. In Ref. [5] a105

second-order perturbative expression for this phasor was106

derived that is appropriate for describing the spatiotem-107

poral profile of an arbitrarily-short laser pulse of any108

LG mode n,m focused to an arbitrarily-small spot size.109

The result in [5] is perturbative in the small parameter110

ǫ2c ≡ c/(2zRω0), where zR is the Rayleigh range, ω0 is the111

central frequency of the pulse, and c is the speed of light.112

In Section IIA, we extend this time-domain description113

up to the third order correction (i.e., up to order ǫ6c) via114

explicit Fourier transformation. Then in Section II B we115

compare the time-domain phasor to second-order with116

its third-order correction (in Eqs. (1) and (16) respec-117

tively) and suggest how the time-domain phasor can be118

almost completely predicted to any perturbative order.119

In Section IV of this paper, we then prove analytically120

(using some necessary results derived in Section III) the121

closed-form analytic expression of the time-domain pha-122

sor (proposed in Section II B) that is exact to any desired123

perturbative order.
124

A. Derivation of the Third-Order Correction125

As derived in Ref. [5], the time-domain phasor U(t) for126

any LG mode n,m, including all terms up to second-order127

in the perturbative parameter ǫ2c ≡ c/(2zRω0) (i.e., up to128

the second-order correction to the paraxial solution), is129

U (4)(t) = Λn,m




n∑

j=0

c0,0ξ
jT−γ−1)

+
ǫ2c
β




n+1∑

j=0

c1,1ξ
jT−γ +

n+2∑

j=0

c1,2ξ
jT−γ




+
ǫ4c
β2




n+2∑

j=0

c2,2 ξjT−γ+1 +
n+3∑

j=0

c2,3 ξjT−γ+1

+

n+4∑

j=0

c2,4 ξjT−γ+1




 .

(1)

In Eq. (1), β ≡ (1 + iz/zR), γ ≡ m/2 + s+ j, n is the130

radial LG index, m is the azimuthal LG index (i.e., the131

quantized OAM carried by the beam), and s is a spec-132

tral parameter related to the duration of the pulse [see133

Eq. (7)]. The spatiotemporal terms in Eq. (1) that occur134

in each perturbative order are defined as follows:135

ξ ≡ ρ2

2cβzR
(2a)

T ≡ 1 +
ω0

s

(
− iz

c
+ ξ + it

)
(2b)

Λn,m ≡ (−1)n+m22n+m
√
2πn! exp(iφ0) (2c)

× ξm/2β−(n+m/2+1) exp(imφ),

where cylindrical coordinates, r = (ρ, φ, z), are used.
The coordinate-independent coefficients in Eq. (1),
cN,p(n,m, j), where N is the perturbative order of the
term and N ≤ p ≤ 2N , are defined for 0 ≤ N ≤ 2
as follows (in which their dependence on n, m, and j is
suppressed):

c0,0 ≡ Gn,m,j

(ω0

s

)γ−s Γ(γ + 1)

Γ(s+ 1)
(3a)

c1,1 ≡ 2(n+ 1)G(n+1),m,j

(ω0

s

)γ−s−1 ω0Γ(γ)

Γ(s+ 1)
(3b)

c1,2 ≡ − (n+ 2)!

n!
G(n+2),m,j

(ω0

s

)γ−s−1 ω0Γ(γ)

Γ(s+ 1)
(3c)

c2,2 ≡ 6
(n+ 2)!

n!
G(n+2),m,j

(ω0

s

)γ−s−2 ω2
0Γ(γ − 1)

Γ(s+ 1)
(3d)

c2,3 ≡ − 4
(n+ 3)!

n!
G(n+3),m,j

(ω0

s

)γ−s−2 ω2
0Γ(γ − 1)

Γ(s+ 1)
(3e)

c2,4 ≡ 1

2

(n+ 4)!

n!
G(n+4),m,j

(ω0

s

)γ−s−2 ω2
0Γ(γ − 1)

Γ(s+ 1)
.

(3f)

The factors Gn,m,j in Eq. (3) are defined as136

Gn,m,j ≡
(−1)j(n+m)!

(n− j)!(m+ j)!j!
; (4)

they are coefficients of the expansion of the associated137

Laguerre polynomials [17]:138

Lm
n (v) ≡

n∑

j=0

Gn,m,j vj . (5)

We now derive the time-domain phasor, U (6)(t), which139

is correct to third order in the parameter ǫ2c . According140

to the procedure given in Ref. [5], we start from the per-141

turbative, monochromatic frequency-domain phasor in142

Eq. (24) of Ref. [4], in which we retain terms 0 ≤ N ≤ No:143
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U
(2No)
BGV (r, ω) = (−1)n+m22n+m exp(ikz + imφ)

× h2n+m+2vm/2 exp(−v)

×
No∑

N=0

(
h2

k2w2
0

)N

f (2N)
n,m (v)

≡ U0,BGV +
ǫ2

β
U2,BGV + · · ·+ ǫ2No

βNo

U2No,BGV .

(6)

In Eq. (6), h ≡ (1+iz/zR)
−1/2 = β−1/2 and v ≡ h2ρ2/w2

0144

are dimensionless parameters, w0 ≡
√
2zR/k is the beam145

waist, ǫ2 ≡ (kw0)
−2 = (c/2zRω), and the first four fac-146

tors f
(2N)
n,m (v) (0 ≤ N ≤ 3) in (6) are given in Eq. (18)147

below. In order to describe short-pulse fields, we multi-148

ply Eq. (6) by a Poisson-like frequency spectrum [18, 19],149

150

f(ω) ≡ 2πeiφ0

(
s

ω0

)s+1
ωs exp(−sω/ω0)

Γ(s+ 1)
Θ(ω), (7)

where s is the spectral parameter controlling the pulse151

duration, φ0 is the initial phase of the pulse, and Θ(ω)152

is the unit step function. Henceforth, we follow the pre-153

scription in Appendix B of Ref. [5] to derive here the154

third-order correction to the time-domain phasor.155

Considering only the third-order term in Eq. (6), where156

f
(6)
n,m(v) is given in Eq. (25) of Ref. [4] [see Eq. (18)(d)157

below], we make the replacements w0 →
√
2zR/k and158

k → ω/c to show explicitly the dependence on frequency.159

We also invoke here the condition of isodiffraction, which160

requires that zR is independent of frequency [18–20]. The161

third-order frequency-domain phasor term is then162

ǫ6

β3
U6,BGV = (−1)n+m22n+m exp(iωz/c+ imφ)

× h2n+m+2vm/2 exp(−v)

[(
c

2ωβzR

)3

×
{
20(n+ 3)!Lm

n+3(v) − 15(n+ 4)!Lm
n+4(v)

+3(n+ 5)!Lm
n+5(v) −

1

6
(n+ 6)!Lm

n+6(v)

}]
.

(8)

Upon multiplying this result by the Poisson-like fre-163

quency spectrum in Eq. (7), the description becomes164

polychromatic. Therefore, the small parameter ǫ, which165

is appropriate for monochromatic fields, must be replaced166

by one that it is frequency independent,167

ǫ2 ≡ c

2zRω
=

c

2zRω0

ω0

ω
≡ ǫ2c

ω0

ω
, (9)

where ǫc is now the requisite constant small parameter.168

Expressing the associated Laguerre polynomials in (8)169

as sums [see Eqs. (4) and (5)], substituting v = ξω, and170

extracting powers of ω within the sums, we obtain finally,171

U6(ω) =
Λn,m

Γ(s+ 1)
exp

{
−ω

(
− iz

c
+ ξ +

s

ω0

)}

×
(

s

ω0

)s+1
Θ(ω)

√
2πǫ6c

β3



n+3∑

j=0

c̃3,3 ξjωγ−3

+

n+4∑

j=0

c̃3,4 ξjωγ−3 +

n+5∑

j=0

c̃3,5 ξjωγ−3

+

n+6∑

j=0

c̃3,6 ξjωγ−3


 ,

(10)

where the variables defined in Eq. (2) and the text above172

it have been used, and the new constants, c̃3,p(n,m, j),173

3 ≤ p ≤ 6, are defined as follows (in which indication of174

their dependence on n,m, j has been suppressed):175

c̃3,3 ≡ 20ω3
0

(n+ 3)!

n!
G(n+3),m,j (11a)

c̃3,4 ≡ − 15ω3
0

(n+ 4)!

n!
G(n+4),m,j (11b)

c̃3,5 ≡ 3ω3
0

(n+ 5)!

n!
G(n+5),m,j (11c)

c̃3,6 ≡ − ω3
0

6

(n+ 6)!

n!
G(n+6),m,j . (11d)

We now Fourier transform U6(ω) to the time domain176

in order to obtain U6(t),177

U6(t) =
Λn,m

Γ(s+ 1)

(
s

ω0

)s+1
ǫ6c
β3

∫ ∞

0

exp(−ωη)

×



n+3∑

j=0

c̃3,3 ξjωγ−3 +

n+4∑

j=0

c̃3,4 ξjωγ−3

+

n+5∑

j=0

c̃3,5 ξjωγ−3 +

n+6∑

j=0

c̃3,6 ξjωγ−3


dω ,

(12)

where η ≡ −iz/c+ ξ + s/ω0 + it and the sign of the178

Fourier exponent has been chosen to describe a pulse179

traveling in the positive ẑ direction. Making use of180

the integral representation of the gamma function [c.f.181

Eq. (6.1.1) of Ref. [21]],182

Γ(γ + 1) = ηγ+1

∫ ∞

0

dω ωγ exp(−ωη), Re η > 0, (13)

the Fourier integrals in (12) can be evaluated to obtain,183
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U6(t) = Λn,m

(
s

ω0

)s+1
ǫ6c
β3



n+3∑

j=0

c3,3 ξjη−(γ−2)

+
n+4∑

j=0

c3,4 ξjη−(γ−2) +
n+5∑

j=0

c3,5 ξjη−(γ−2)

+

n+6∑

j=0

c3,6 ξjη−(γ−2)


 ,

(14)

where c3,p ≡ c̃3,p Γ(γ − 2)/Γ(s+ 1) for 3 ≤ p ≤ 6.184

Taking now the overall prefactor (s/ω0)
s+1 in Eq. (14)185

inside each of the sums and using the definition of T in186

Eq. (2), we can write for any power q,187

(
s

ω0

)s+1

η−q =

(
s

ω0

)s+1−q

T−q. (15)

Defining the coefficients c3,p ≡ c3,p (s/ω0)
(s+3−γ) for 3 ≤188

p ≤ 6, the final result for the third-order term U6(t) is:189

U6(t) = Λn,m
ǫ6c
β3



n+3∑

j=0

c3,3 ξjT−γ+2

+
n+4∑

j=0

c3,4 ξjT−γ+2 +
n+5∑

j=0

c3,5 ξjT−γ+2

+
n+6∑

j=0

c3,6 ξjT−γ+2


 .

(16)

190

B. Proposed Expression for the Phasor to Order No191

Comparing the time-domain phasor to second-order in192

Eq. (1) with its third-order correction in Eq. (16), one193

surmises that its Nth order correction has the form:194

U(2N)(t) = Λn,m


ǫ

2N
c

βN

2N∑

p=N

n+p∑

j=0

cN,p ξjT−γ−1+N


 .

(17)
Before proving this result, one must first determine the195

general form of the coefficients cN,p(n,m, j). At least to196

order N = 3, these coefficients are related to coefficients197

in the expressions for the factors f2N
n,m(v) that appear in198

the monochromatic frequency-domain phasor of BGV [4]199

presented in Eq. (6). The first four of these factors are200

given in Eq. (25) of Ref. [4], i.e., for 0 ≤ N ≤ 3:201

f (0)
n,m(v) = n!Lm

n (v) (18a)

f (2)
n,m(v) = 2(n+ 1)!Lm

n+1(v)− (n+ 2)!Lm
n+2(v) (18b)

f (4)
n,m(v) = 6(n+ 2)!Lm

n+2(v)− 4(n+ 3)!Lm
n+3(v)

+
1

2
(n+ 4)!Lm

n+4(v) (18c)

f (6)
n,m(v) = 20(n+ 3)!Lm

n+3(v)− 15(n+ 4)!Lm
n+4(v)

+ 3(n+ 5)!Lm
n+5(v)−

1

6
(n+ 6)!Lm

n+6(v). (18d)

We illustrate the connection between the factors202

f2N
n,m(v) and the coefficients cN,p(n,m, j) for the sec-203

ond order case of N = 2. Substituting Eq. (5) into204

Eq. (18)(c), we obtain for the factor f
(4)
n,m(v):205

f (4)
n,m(v) = 6(n+ 2)!

n+2∑

j=0

Gn+2,m,j vj

− 4(n+ 3)!
n+3∑

j=0

Gn+3,m,j vj (19)

+
1

2
(n+ 4)!

n+4∑

j=0

Gn+4,m,j vj

Observe next that the coefficients cN=2,p(n,m, j) for206

2 ≤ p ≤ 4 in Eqs. (3)(d) - (3)(f) have the common207

factor X ,208

X ≡ 1

n!

(ω0

s

)γ−s−2 ω2
0Γ(γ − 1)

Γ(s+ 1)
. (20)

Comparing now the coefficients that multiply the com-209

mon factor X in each of the Eqs. (3)(d) - (3)(f) respec-210

tively with the coefficents of vj in each of the three sum-211

mations in Eq. (19), one sees immediately that they are212

the same. However, we have derived these relations only213

for orders 0 ≤ N ≤ 3 for which the factors f2N
n,m(v) are214

given in Ref. [4].215

In order to obtain a closed-form analytic expression216

for the Nth-order correction to the time-domain phasor217

in Eq. (17), two tasks are therefore necessary. First, a218

general expression for the factors f2N
n,m(v) in the BGV219

frequency-domain phasor in Eq. (6) must be derived for220

any perturbation order N . This derivation is presented221

in Sec. III. Second, the Nth order term in the frequency-222

domain phasor expansion shown in Eq. (6) must be mul-223

tiplied by a Poisson-like frequency spectrum in Eq. (7)224

and then it must be Fourier-transformed into the time-225

domain. This derivation is presented in Sec. IV.226

For convenience, we present here the final result for the227

time-domain phasor correct to order No:228
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U (2No)(t) =

No∑

N=0

U(2N)(t)

= Λn,m

No∑

N=0


 ǫ

2N
c

βN

2N∑

p=N

n+p∑

j=0

cN,p ξ
jT−γ−1+N


 ,

(21)

where the coefficients cN,p are given by229

cN,p ≡ κN,pG(n+p),m,j
(n+ p)!

n!
ωN
0

(
s

ω0

)s−γ+N

× Γ(γ + 1−N)

Γ(s+ 1)
,

(22)

where230

κN,p ≡ (−1)p−N

(p−N)!

(
2N

2N − p

)
. (23)

Equations (21) - (23) are the main results of this work.231

They provide a closed-form, analytic expression for the232

time-domain phasor U (2No)(t) correct to an arbitrary233

perturbative order No in the parameter ǫ2c . This pha-234

sor can be utilized directly to calculate the fields for a235

general eLG mode without requiring the calculation of236

any Fourier integrals. It is easily confirmed that Eq. (21)237

is consistent with the result for No = 2 in Eq. (1) and238

that the N = 3 correction in Eq. (16) is consistent with239

Eq. (17) for U(2N)(t). A full derivation of the Fourier240

transformation necessary to obtain Eqs. (21) - (23) is241

presented in Sec. IV, after first deriving analytic expres-242

sions for the factors f
(2N)
n,m (v) in the next section.243

III. EXPLICIT DERIVATION OF f
(2N)
n,m (v)244

In this section, we derive a general expression for the245

factors f
(2N)
n,m (v) for any N . We begin by finding a gener-246

ating function Ψ(x, y) for the associated Laguerre poly-247

nomials with equal upper and lower indices, Ln
n(y). We248

then connect this generating function to the results of249

BGV [4] in order to determine a general analytic expres-250

sion for f
(2N)
n,m (v).251

A. Generating Function Ψ(x, y) for Ln
n(y)252

We seek a generating function for associated Laguerre253

polynomials having equal upper and lower indices,254

Ψ(x, y) =

∞∑

n=0

xnLn
n(y). (24)

The associated Laguerre polynomial is expressible as255

an integral of a Bessel function of the first kind (see256

Eq. (22.10.14) of Ref. [21]):257

Ln
n(y) =

eyy−n/2

n!

∫ ∞

0

dt e−tt3n/2Jn
(
2
√
ty
)
. (25)

By substituting Eq. (25) into Eq. (24), one obtains258

Ψ(x, y) = ey
∫

∞

0

dt e−t
∞∑

n=0

[
an

n!
Jn
(
2
√
ty
)]

, (26)

where a ≡ xt3/2y−1/2. This sum can be rewritten as a259

Bessel function using Eq. (19.9.1) of Ref. [22],260

∞∑

n=0

[
an

n!
Jn
(
2
√
ty
)]

= J0

(√
4ty − 4a

√
ty

)

= J0

(
2i
√
x

√
t2 − ty

x

)
.

(27)

Making this replacement in Eq. (26),261

Ψ(x, y) = ey
∫

∞

0

dt e−tJ0

(
2i
√
x

√
t2 − ty

x

)
, (28)

the integral can be carried out using Eq. (6.616.1) of262

Ref. [23],263

∫
∞

0

dx e−tJ0

(
2i
√
x

√
t2 − ty

x

)

=
1√

1− 4x
exp

[ y

2x

(√
1− 4x− 1

)]
.

(29)

The result for the generating function in Eq. (24) is thus,264

Ψ(x, y) =
1√

1− 4x
exp

[
y

(
1 +

√
1− 4x− 1

2x

)]
. (30)

B. Derivation of f
(2N)
n,m (v) from Ψ(x, y)265

In Ref. [4], the factors f
(2N)
n,m (v) are generated from a266

sum over terms involving factors G(2N) that are not ex-267

plicitly defined for N > 3. However, comparing Eqs. (16)268

and (22) of Ref. [4] (as shown explicitly in Ref. [5]), one269

sees that270

∞∑

N=0

ǫ(2N)G(2N) =
1√

1− ǫ2Ω
exp

(√
1− ǫ2Ω− 1

2ǫ2h2
+

Ω

4h2

)
,

(31)
where ǫ ≡ 1/(kw0) is the small parameter of the pertur-271

bation expansion and Ω ≡ w2
0k

2
⊥
. By taking x = ǫ2Ω/4272
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and y = Ω/(4h2) in Eq. (30), we see immediately by273

comparison to Eq. (31) that274

Ψ(x, y) =

∞∑

n=0

xnLn
n(y) =

∞∑

N=0

ǫ(2N)G(2N). (32)

While not necessary, it is sufficient that the equality on275

the right-hand side of Eq. (32) is satisfied by setting the276

terms in each sum equal, i.e.,277

G(2N) =

(
Ω

4

)N

LN
N

(
Ω

4h2

)
. (33)

Substituting G(2N) into the alternative expression for278

the monochromatic frequency-domain phasor given in279

Eq. (22) of Ref. [4], we obtain [cf. Eq. (6)],280

U
(2No)
BGV (r, ω) =

1

2
(−1)n+m exp(ikz ± imφ)w2n+m+2

0

×
No∑

N=0

(
1

4k2

)N ∫ ∞

0

k2n+m+1
⊥

e−µ2k2

⊥

× k2N⊥ LN
N

(
µ2k2⊥

)
Jm(k⊥ρ)dk⊥,

(34)

in which our notation and that in Ref. [4] are related281

by µ2 ≡ i(z − izR)/(2k) = [w0/(2h)]
2, k⊥ ≡ α, and282

ρ ≡ r. The integral in Eq. (34), defined as I
(2N)
n,m (ρ, µ)283

in Eq. (A2), is derived in Appendix A. Substituting the284

result in Eq. (A6) for I
(2N)
n,m , Eq. (34) becomes:285

U
(2No)
BGV (r, ω) = (−1)n+m22n+m exp(ikz ± imφ)

× h2n+m+2vm/2e−v
No∑

N=0

(
h

kw0

)2N

×
[

N∑

i=0

aN,i(n+N + i)!Lm
n+N+i(v)

]
,

(35)

where the coefficients aN,i are defined in Eq. (A3). From286

Eq. (24) of Ref. [4], we have that287

U
(2No)
BGV (r, ω) = (−1)n+m22n+m exp(ikz ± imφ)

× h2n+m+2vm/2e−v
No∑

N=0

(
h

kw0

)2N

×
[
f (2N)
n,m

]
.

(36)

Comparing Eqs. (35) & (36), and noting that the factors288

within the square brackets must be equal, we see that the289

general expression for the factors f
(2N)
n,m of Ref. [4] is,290

f (2N)
n,m (v) =

N∑

i=0

aN,i(n+N + i)!Lm
n+N+i(v). (37)

Replacing the coefficients aN,i by their definition in291

Eq. (A3), and changing the summation index to p ≡292

N + i, the factors f
(2N)
n,m (v) are given explicitly by293

f (2N)
n,m (v) =

2N∑

p=N

κN,p(n+ p)! Lm
n+p(v), (38)

in which the coefficients κN,p are defined in Eq. (23).294

IV. EXPLICIT DERIVATION OF THE295

GENERALIZED TIME-DOMAIN PHASOR296

In this section an explicit derivation of the general-297

ized time-domain phasor up to arbitrary perturbative298

order No is provided, ultimately arriving at the expres-299

sion given in Eq. (21). To this end, one starts with300

the monochromatic frequency-domain phasor of BGV,301

U
(2No)
BGV (r, ω), given in Eq. (6) [4, 5]. This phasor is then302

made polychromatic by multiplication with a Poisson-303

like frequency spectrum, f(ω), given in Eq. (7). Finally,304

a Fourier integral is performed to obtain the general time-305

domain phasor U (r, t),306

U (2No) (r, t) =
1√
2π

∫
∞

−∞

e−iωtf(ω) U
(2No)
BGV (r, ω) dω,

(39)
where the negative exponential is chosen such that the re-307

sulting wave is traveling in the +ẑ direction. As described308

in Sec. II A, we assume the condition of isodiffraction.309

A. Generalization in the Frequency Domain310

We define the polychromatic frequency-domain pha-311

sor as U (2No) (r, ω) ≡ f(ω)U
(2No)
BGV (r, ω), where f(ω) is312

given in Eq. (7) and U
(2No)
BGV (r, ω) is given in Eq. (6).313

This expression is correct to order No in the pertur-314

bative small parameter ǫ2, which, however, depends on315

the frequency ω. Before carrying out the Fourier trans-316

form in Eq. (39), we therefore replace ǫ2 in Eq. (6) by317

the frequency-independent small parameter ǫ2c defined in318

Eq. (9). Then, all frequency dependent terms can be319

contained in new perturbative terms U2N (ω), namely,320

U (2No) (r, ω)

= f(ω)

(
U0,BGV +

ǫ2

β
U2,BGV + · · ·+ ǫ2No

βNo

U2No,BGV

)

≡ U0(ω) +
ǫ2c
β

U2(ω) + · · ·+ ǫ2No

c

βNo

U2No
(ω),

(40)
in which we have defined,321

U2N (ω) ≡ f(ω)
ωN
0

ωN
U2N,BGV . (41)
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Using Eqs. (6), (7), and (9), U2N (ω) in Eq. (41) may be322

written as,323

U2N (ω) = (−1)n+m22n+m exp(ikz + imφ+ iφ0)

×
(
ω0

ω

)N(
s

ω0

)s+1
ωs exp(−sω/ω0)

Γ(s+ 1)
Θ(ω)

× (2π)h2n+m+2vm/2 exp(−v)f (2N)
n,m (v).

(42)

In order to make the frequency dependence of U2N (ω)324

in Eq. (42) explicit, we first substitute the expression for325

the associated Laguerre polynomial in Eq. (5) into the326

result in Eq (38) for f
(2N)
n,m (v) to obtain,327

f (2N)
n,m (v) =

2N∑

p=N


κN,p(n+ p)!

n+p∑

j=0

G(n+p),m,j v
j


 , (43)

where the constants G(n+p),m,j are defined in Eq. (4).328

Finally, we extract the frequency dependence of v, using329

the vacuum dispersion relation, k = ω/c, and the pa-330

rameter definitions given in the text below Eq. (6), to331

obtain v = ξω, where ξ is defined in Eq (2a). Substi-332

tuting this latter expression for v and the result (43) for333

f
(2N)
n,m (v) into Eq. (42), we obtain the Nth order term for334

the frequency-domain phasor in Eq. (40) as,335

U2N (ω) =
√
2π

Λn,m

n!
exp(iωz/c)

×
(
ω0

ω

)N(
s

ω0

)s+1
ωs exp(−sω/ω0)

Γ(s+ 1)
Θ(ω)

× ωm/2 exp(−ξω)

×
2N∑

p=N


κN,p(n+ p)!

n+p∑

j=0

G(n+p),m,j ξ
j ωj


 ,

(44)

where Λn,m is defined in Eq. (2c).336

B. Generalization in the Time Domain337

The time-domain representation of Eq. (44) is obtained338

through Fourier integration:339

U2N (t) =
1√
2π

∫ ∞

−∞

e−iωt U2N (ω) dω

=
ωN
0 Λn,m

n!Γ(s+ 1)

(
s

ω0

)s+1 2N∑

p=N

[
κN,p(n+ p)!

×
n+p∑

j=0

G(n+p),m,jξ
j

∫ ∞

0

ωγ−N exp(−ηω) dω


 ,

(45)

where η ≡ −iz/c+ ξ + s/ω0 + it and γ ≡ s +m/2 + j.340

The integral is evaluated using Eq. (13), yielding341

U2N (t) =
ωN
0 Λn,m

n! Γ(s+ 1)

(
s

ω0

)s+1 2N∑

p=N

[
κN,p(n+ p)!

×
n+p∑

j=0

G(n+p),m,jξ
jΓ(γ + 1−N)η−(γ+1−N)


 .

(46)

Moving all factors except Λn,m into the inner sum, and342

making the substitutions indicated in Eqs. (15) and (22),343

the time-domain representation of the Nth order pertur-344

bative term U2N takes the form,345

U2N (t) = Λn,m

2N∑

p=N



n+p∑

j=0

cN,pξ
jT−γ−1+N


 . (47)

Corresponding to the frequency-domain phasor to order346

No in Eq. (40), the generalized time-domain phasor in-347

cluding all terms up to perturbative order No is348

U (2No)(t) =

No∑

N=0

ǫ2Nc
βN

U2N (t)

=Λn,m

No∑

N=0


 ǫ

2N
c

βN

2N∑

p=N





n+p∑

j=0

cN,p ξ
jT−γ−1+N






 ,

(48)

which agrees exactly with Eq. (21), as predicted.349

V. TEST FOR ACCURACY OF THE350

PERTURBATIVE PHASOR351

It is expected that the perturbative order in ǫ2c nec-352

essary to obtain accurate values of the phasor will in-353

crease not only as the beam waist is reduced, but also as354

the radial and/or azimuthal LG indices are increased [5].355

We illustrate this fact here using the simple numerical356

method suggested in Ref. [5] to check the convergence of357

our generalized perturbative phasor in the time domain.358

Specifically, a physically-correct description of the phasor359

requires that the wave equation is satisfied,360

∇2U =
1

c2
∂2U

∂t2
. (49)

One may thus check convergence by comparing numeri-361

cally both sides of this equation and requiring that362

|∇2U | ≈
∣∣∣∣
1

c2
∂2U

∂t2

∣∣∣∣. (50)

Such a comparison is shown in Fig. 1 for the case of an363

LG0,7 mode and two different orders of perturbative cor-364

rection. Also given for each comparison is the root mean365
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FIG. 1. Comparison of both sides of the wave equation
[Eq. (50)] for the phasor, |∇2U | and |∂2

tU/c
2|, for the LG

mode m = 0, n = 7, calculated for two different orders of
perturbative correction. The phasor contains perturbation
terms to order ǫ0c in (a) and to order ǫ22c in (b). Inclusion
of terms to O(ǫ22c ) is required for the RMSE to drop below
0.001, which we take here to indicate convergence. These plots
were made near the beam waist using a spectral parameter
s = 70, a beam waist w0 = 785 nm, and a central wavelength
λ0 = 800 nm (ǫ2c ≈ 0.0253).

squared error (RMSE), which is calculated near the beam366

waist on a finely-spaced grid of points extending over the367

range of ρ/λ shown in the plots in Fig. 1. Including only368

the lowest order perturbative term of order ǫ0c , one sees369

clearly in Fig. 1(a) that the two sides of Eq. (50) do not370

agree. Conversely, upon inclusion of corrective terms to371

O(ǫ22c ) in Fig. 1(b), the two sides of Eq. (50) agree to a372

very good approximation.373

This example explicitly highlights the need for higher-374

order perturbative corrections in a generalized descrip-375

tion. Both tight focusing and inclusion of high LG modes376

contribute to the complexity of the description. Thus,377

accuracy requires that higher order perturbative correc-378

tions are calculated in such cases.379

VI. SUMMARY AND CONCLUSIONS380

In summary, we have derived an analytic expression,381

postulated in Eq. (21) and derived explicitly in Eq. (48),382

for the time-domain phasor used to calculate the EM383

fields of an arbitrarily-tightly focused eLG beam of any384

LG mode and arbitrarily-short temporal duration. Our385

closed-form analytic result, obtained using the condition386

of isodiffraction, allows one to calculate the phasor to387

arbitrarily-high order No, in the perturbative small pa-388

rameter ǫ2c in Eq. (9), without having to evaluate any389

Fourier integrals. This model is thus straightforward to390

implement, either analytically or numerically.391

The result in Eq. (48) generalizes the time-domain pha-392

sor that was presented up to order No = 2 in Ref. [5] (by393

a procedure requiring increasingly complicated Fourier394

integrals with increasing perturbative order No). Owing395

to increasing interest in laser-matter interactions involv-396

ing structured light, accurate descriptions of high-OAM397

optical fields such as we have presented meet a current398

need. Reference [5] showed that higher-order perturba-399

tive corrections are required for the accurate description400

of high-OAM beams. Thus, having a closed-form analyt-401

ical perturbative expression for the phasor to arbitrarily-402

high order No is a distinct advantage for applications403

involving eLG fields.404

An alternative method for deriving the factors,405

f (2N)(v), is outlined in Appendix B, where the series406

expansion method of BGV [4] is followed explicitly. As407

discussed in Appendix B, there is a potential connection408

between that alternative method and the non-iterative409

derivation of integer partitions, which to our knowledge410

is an unsolved problem in the field of combinatorics in411

modern mathematics. Mathematicians or mathematical412

physicists may thus find this possible connection of sig-413

nificant interest.
414
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Appendix A: Result for the Integral in Eq. (34)420

In this appendix, we derive the result for the integral421

of a product of an associated Laguerre polynomial and a422

Bessel function that appears in Eq. (34) (in Section III423

above). We start from the integral in Eq. (8) of Ref. [4]424

(in which we have defined µ ≡ p, k⊥ ≡ α, and ρ ≡ r):425



9

∫ ∞

0

k2n+m+1
⊥

e−µ2k2

⊥Jm(k⊥ρ) dk⊥

=
n!

2
µ−(2n+m+2)

(
ρ

2µ

)m

Lm
n

(
ρ2

4µ2

)
exp

(
− ρ2

4µ2

)
.

(A1)
We define now a similar integral,426

I(2N)
n,m (ρ, µ) ≡
∫ ∞

0

k2n+m+1
⊥

e−µ2k2

⊥k2N⊥ LN
N

(
µ2k2⊥

)
Jm(k⊥ρ)dk⊥.

(A2)

The series representation of the associated Laguerre427

polynomials is given by Eq. (8.970.1) of Ref. [23]:428

LN
N (µ2k2⊥) =

N∑

i=0

(−1)i

i!

(
2N

N − i

)
(µk⊥)

2i

≡
N∑

i=0

aN,i (µk⊥)
2i.

(A3)

Substituting Eq. (A3) into Eq. (A2), we obtain429

I(2N)
n,m (ρ, µ) =

N∑

i=0

aN,iµ
2i

∫
∞

0

k2n+m+1+2N+2i
⊥

e−µ2k2

⊥Jm(k⊥ρ)dk⊥.

(A4)
This integral can be solved directly by application of430

Eq. (A1) with the replacement, n → (n+N + i):431

I(2N)
n,m =

N∑

i=0

aN,i

[
(n+N + i)!

2
µ−(2n+2N+m+2)

×
(

ρ

2µ

)m

Lm
n+N+i

(
ρ2

4µ2

)
exp

(
− ρ2

4µ2

)]

=
1

2

(
ρ

2µ

)m

exp

(
− ρ2

4µ2

)
µ−(2n+2N+m+2)

×
N∑

i=0

aN,i(n+N + i)!Lm
n+N+i

(
ρ2

4µ2

)
.

(A5)
Using the definitions µ ≡ w0/(2h) [see text below432

Eq. (34)] and v ≡ (hρ/w0)
2 [see text below Eq. (6)], we433

can write v = ρ2/(4µ2). Rewriting Eq. (A5) in terms of434

v and using µ ≡ w0/(2h), we obtain the following result435

for the integral defined in Eq. (A2):436

I(2N)
n,m (ρ, µ) =

1

2
vm/2e−v(2h/w0)

2n+2N+m+2

×
N∑

i=0

aN,i(n+N + i)!Lm
n+N+i(v),

(A6)

where the coefficients aN,i are defined in Eq. (A3).437

Appendix B: An Alternative Method for Deriving438

the Factors f (2N)(v)439

In Ref. [4], the factors f (2N)(v) were originally calcu-440

lated one at a time from each term in G(2N), which we441

introduced in Eq. (31). To calculate G(2N) for a partic-442

ular N , one carries out a Taylor series expansion of the443

right-hand side of Eq. (31) about ǫ2 = 0, the first four444

terms of which are,445

∞∑

j=0

ǫ(2N)G(2N) = 1 + ǫ2
(
Ω

2
− Ω2

16h2

)

+ ǫ4
(
3Ω2

8
− Ω3

16h2
+

Ω4

512h4

)

+ ǫ6
(
5Ω3

16
− 15Ω4

256h2
+

3Ω5

1024h4
− Ω6

24576h6

)
+O

(
ǫ8
)
.

(B1)
As one clearly sees, calculation of an arbitrarily high or-446

der term in this expansion in ǫ2 is not simple. Referring447

to the right-hand side of Eq. (31) as F, by the prod-448

uct rule for differentiation, each ǫ2 derivative acting on449

F must act on both the prefactor and the exponential.450

The action of arbitrarily many such derivatives takes the451

form,452

dNF

d(ǫ2)N
=

N∑

i=0

{[
Ωi

(1− ǫ2Ω)(1+2i)/2

i∏

i′=1

(
2i′ − 1

2

)]

×
[

dN−i

d(ǫ2)(N−i)
eE
](

N

i

)}
,

(B2)

where the first set of square brackets repre-453

sents derivatives of the prefactor, the argument454

of the exponential in Eq. (31) is denoted by455

E ≡ (
√
1− ǫ2Ω− 1)/(2ǫ2h2) + Ω/(4h2), and the bi-456

nomial coefficients occur owing to the product rule.457

To evaluate the second set of square brackets in458

Eq. (B2), one requires an expression for arbitrarily many459

derivatives of an exponential function. This result can be460

found via Faà di Bruno’s formula, which represents arbi-461

trarily many derivatives of a composition of sufficiently462

differentiable functions [24, 25]. Faà di Bruno’s formula,463

however, involves a sum over all possible integer parti-464

tions of the derivative order (cf. § 24.2.1 of Ref. [21]). In-465

teger partitions are still an area of active research in com-466

binatorics, and while there exist formulas for the num-467

ber of partitions of an arbitrary integer there is, to our468

knowledge, presently no known analytical representation469

for the partitions themselves. As such, the partitions of470

a given integer are often generated through iterative al-471

gorithmic approaches [26, 27] (e.g., requiring knowledge472

of the partitions of q to calculate those of q + 1). This473

prevents one from writing a non-recursive expression for474

the derivatives in Eq. (B2), and therefore from obtain-475

ing analytically a general solution for the coefficients of476

f (2N)(v) for arbitrary order N .477
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The method for deriving the factors f (2N)(v) in the478

main text gives them directly, whereas the alternative479

method described in this Appendix B involves integer480

partitions, which are typically derived iteratively. It re-481

mains an open question how this alternative method for482

deriving the factors f (2N)(v) is related to the method483

presented in the main text. Discovering this relationship484

may result in finding an analytical representation for the485

partitions of any integer. Researchers in combinatorics486

or mathematical physics may thus find this connection of487

interest.488

[1] M. Lax, W. H. Louisell, and W. B. McKnight, “From489

Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365490

(1975).491

[2] L. W. Davis, “Theory of electromagnetic beams,” Phys.492

Rev. A 19, 1177 (1979).493

[3] G. P. Agrawal and D. N. Pattanayak, “Gaussian beam494

propagation beyond the paraxial approximation,” J. Opt.495

Soc. Am. 69, 575 (1979).496

[4] M. A. Bandres and J. C. Gutiérrez-Vega, “Higher-order497

complex source for elegant Laguerre-Gaussian waves,”498

Opt. Lett. 29, 2213 (2004).499

[5] A. Vikartofsky, A. F. Starace, and L.-W. Pi, “Per-500

turbative representation of ultrashort nonparaxial ele-501

gant Laguerre-Gaussian fields,” Phys. Rev. A 98, 043820502

(2018).503

[6] S. R. Seshadri, “Virtual source for a Laguerre-Gauss504

beam,” Opt. Lett. 27, 1872 (2002).505

[7] G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted506

photons,” Nat. Phys. 3, 305 (2007).507

[8] A. M. Yao and M. J. Padgett, “Orbital angular momen-508

tum: origins, behavior and applications,” Adv. Opt. Pho-509

tonics 3, 161 (2011).510

[9] L. Allen and M. Padgett, “The Orbital Angular Momen-511

tum of Light: An Introduction,” in Twisted Photons:512

Applications of Light with Orbital Angular Momentum,513

edited by J. P. Torres and L. Torner (Wiley-VCH Verlag,514

Weinheim, Germany, 2011) Chap. 1, pp. 1–12.515
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C. Hernández-Garćıa, “Nonperturbative Twist in the537

Generation of Extreme-Ultraviolet Vortex Beams,” Phys.538

Rev. Lett. 117, 163202 (2016).539

[17] S. Hassani, Mathematical Methods for Students of540

Physics and Related Fields, 2nd Ed. (Springer, New York,541

2009).542

[18] C. F. R. Caron and R. M. Potvliege, “Free-space propa-543

gation of ultrashort pulses: space-time couplings in Gaus-544

sian pulse beams,” J. Mod. Opt. 46, 1881 (1999).545

[19] S. Feng and H. G. Winful, “Spatiotemporal structure of546

isodiffracting ultrashort electromagnetic pulses,” Phys.547

Rev. E 61, 862 (2000).548

[20] Z. Wang, Z. Zhang, Z. Xu, and Q. Lin, “Space-Time549

Profiles of an Ultrashort Pulsed Gaussian Beam,” IEEE550

J. Quantum Electron. 33, 566 (1997).551

[21] M. Abramowitz and I. A. Stegun, eds., Handbook of552

Mathematical Functions (Dover Publications, New York,553

1972).554
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