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Optical cavities can induce photon-mediated interactions among intracavity-trapped atoms. Mul-
timode cavities provide the ability to tune the form of these interactions, e.g., by inducing a nonlocal,
sign-changing term to the interaction. By accounting for the Gouy phase shifts of the modes in a
nearly degenerate, confocal, Fabry-Pérot cavity, we provide a theoretical description of this in-
teraction, along with additional experimental confirmation to complement that presented in the
companion paper, Ref. [1]. Furthermore, we show that this interaction should be written in terms of
a complex order parameter, allowing for a U(1)-symmetry to emerge. This symmetry corresponds
to the phase of the atomic density wave arising from self-organization when the cavity is trans-
versely pumped above a critical threshold power. We theoretically and experimentally show how
this phase depends on the position of the Bose-Einstein condensate (BEC) within the cavity and
discuss mechanisms that break the U(1)-symmetry and lock this phase. We then consider alternative
Fabry-Pérot multimode cavity geometries (i.e., beyond the confocal) and schemes with more than
one pump laser and show that these provide additional capabilities for tuning the cavity-meditated
interaction among atoms, including the ability to restore the U(1)-symmetry despite the presence
of symmetry-breaking effects. These photon-mediated interactions may be exploited for realizing
quantum liquid crystalline states and spin glasses using multimode optical cavities.

I. INTRODUCTION

The cavity QED system of quantum degenerate atoms
trapped inside an optical cavity opens numerous possi-
bilities for studying quantum many-body systems in a
driven-dissipative setting [2]. Recent advances include
demonstration of supersolidity [3], supermode-polariton
condensation [4], and spinor self-ordering [5]. Beyond the
traditional single-mode cavity system, degenerate multi-
mode cavities have emerged as promising platforms for
realizing nontrivial interactions among trapped atoms [6]
and exotic photonic matter [7]. Simultaneously address-
ing the multiple degenerate (or nearly degenerate) modes
of a cavity, which may have distinct and incommensurate
transverse spatial profiles, greatly expands the number
of transverse degrees of the freedom in the cavity. This,
in turn, provides the ability to engineer tunable-range
cavity-photon-mediated interactions, as described in our
previous work of Ref. [6].

A less-studied and subtle point is the role of the dif-
fering longitudinal profiles of these degenerate modes,
particularly the effect of the Gouy phase shift contribu-
tion [8][9]. As briefly mentioned in Ref. [6], and presented
more extensively in the companion paper of Ref. [1], the
Gouy phase shifts affect how different transverse modes
sum to produce an effective nonlocal and sign-changing
cavity-mediated interaction in the transverse direction.
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The present work explores the origin of this effect and its
consequences.

For a BEC trapped in a transversely pumped cavity,
atoms will start to self-organize coinciding with the su-
perradiant emission of cavity photons; i.e., atoms will
form a density wave commensurate with the optical lat-
tice due to the dynamically generated cavity light when
the cavity-mediated interaction overcomes the kinetic en-
ergy cost of the associated density wave [2, 4, 6, 10–12].
Compared to the case of a single-mode cavity [12], where
the density wave is forced to conform to the shape of the
single cavity mode and the transition is adequately de-
scribed by the Hepp-Lieb-Dicke model [2, 13], atoms in
a degenerate cavity have more freedom. The interference
of many transverse modes allows the atoms to adopt a
far wider range of shapes, which can induce a more exotic
phase transition [14, 15]. Moreover, the intracavity pho-
tons can be in a superposition of many modes, leading
to a localized photonic wavepacket. This induces a local-
ized, short-range photon-mediated interaction between
atoms [6]. In addition, the distinct longitudinal profiles
of the transverse modes, due to Gouy phase shifts, re-
sult in a phase degree of freedom of the density wave.
That is, not only the amplitude, but also the phase of the
atomic density wave can vary across the cavity and can in
principle become free (in the sense of a U(1)-symmetry)
under special conditions. These features, especially the
enhanced phase space of the order parameter, greatly en-
rich the physics of the self-organization transition.

In this paper, we present a detailed theoretical and
experimental study of how Gouy phase shifts induce
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this nonlocal interaction and determine the atomic den-
sity wave phase degree of freedom through this in-
teraction. Section II presents a general derivation of
cavity-mediated interactions, complementing that first
discussed in our Ref. [6], while also deriving a general
form of the nonlocal interaction studied in the compan-
ion paper [1]. Section III A then discusses how these in-
teractions determine the density wave state arising from
the Dicke superradiant, self-ordering density-wave tran-
sition studied in the companion paper [1]. We also show
how the spatial structure of the field emitted from the
cavity reveals important information about the phase of
the atomic density wave. Restricting to an ideal confocal
cavity, we show that the atomic density wave possesses a
continuous degree of phase freedom and a U(1)-symmetry
emerges at special positions in the cavity. Section IV
discusses this U(1)-symmetry in an ideal confocal cav-
ity. We provide a qualitative discussion of the physical
picture behind cavity-mediated interactions in Sec. III B.
Section V describes the mechanisms that break this sym-
metry in realistic confocal cavities coupled to BECs of
finite size. Results of experiments that image cavity
field emission are presented, demonstrating this symme-
try breaking. Section VI then describes the consequences
of this symmetry breaking for realizing various quantum
many-body systems such as quantum liquid crystalline
states [14, 15]. Section VII presents a proposal for a
pumping scheme that restores the U(1)-symmetry and
is robust against various possible symmetry breaking ef-
fects. Generalization of the cavity mediated interaction
to three dimensions is also discussed in Sec. VIII. Lastly,
before concluding remarks, we derive in Sec. IX the form
that cavity-induced interactions take in Fabry-Pérot mul-
timode cavities with geometries beyond the confocal.

II. CAVITY-MEDIATED INTERACTION AND
SELF-ORGANIZATION

We start by introducing a model of N atoms in a Bose-
Einstein condensate (BEC) with wavefunction Ψ(x) and
interacting with cavity modes described by annihilation
operators âµ,Q. The cavity axis is taken to lie along
ẑ, while the transverse, standing-wave pump field is ori-
ented along x̂. The Hamiltonian for this can be written
as:

H = −
∑
µ,Q

∆µ,Qâ
†
µ,Qâµ,Q

+N

∫
d3xΨ∗(x)

(
−∇

2

2m
+ V (x) +

U

2
|Ψ(x)|2

)
Ψ(x)

+
N

∆a

∫
d3xΨ∗(x)|φ̂|2Ψ(x). (1)

For compactness, we index the transverse modes with
the single variable µ, rather than separate indices l and
m for the Hermite-Gauss functions of the x and y coordi-
nates. We thus use use µ = (l,m) to label the transverse

electric electromagnetic mode function TEMµ ≡ TEMl,m

and define the total mode family index nµ = l+m. The
index Q defines the longitudinal mode number; we keep
the dependence on this explicit for now. When we later
consider a given family of degenerate modes in a confo-
cal or equivalent cavity, the longitudinal and transverse
mode numbers are related to one another. This behav-
ior is discussed in detail for general cases of multimode
cavity geometries in Sec. IX.

The first term in Eq. (1) is the Hamiltonian of the
cavity modes with detuning from the transverse pump
field ∆µ,Q. The second line is the standard Hamiltonian
for a weakly interacting BEC with contact interactions
of strength U in an external trap V (x). The final line is
the optical potential from the Stark shift, proportional to
1/∆a, due to the combined cavity and pump light. The

light field φ̂ thus consists of the standing-wave pump and
a sum over all cavity modes with their transverse and
longitudinal spatial dependence [16],

φ̂(r) = Ω cos(krx)

+ g0

∑
µ,Q

âµ,QΞµ(r) cos

[
kr

(
z +

r2

R(z)

)
− θµ,Q(z)

]
.

(2)

Here, Ω is the pump’s Rabi frequency, kr is the recoil mo-
mentum of the atom, g0 is the bare atom-cavity coupling
strength defined for an atom coupled to the peak intra-
cavity field of the TEM00 mode, and Ξµ(r) are Hermite-
Gauss mode functions of the cavity. We have restricted
the sum in this expression to run over those cavity pho-
ton modes that are near resonance with the pump, hence
the longitudinal wavevector is also set to kr. Only these
modes can be populated by scattering from the pump.
In writing in Eq. (2), we have included the radial depen-
dence of the phase r2/R(z), where R(z) = z + z2

R/z is
the radius of curvature of the phase fronts at longitu-
dinal position z and zR is the Rayleigh length. When
we consider atoms near the cavity midplane z = 0, we
have that R(z) → ∞, so the phase fronts become flat
and this contribution to the phase can be neglected. The
form of Eq. (2) results in a spatially varying single-photon
Rabi frequency g0Ξµ(r)/Ξ00(0) for the mode µ (assum-
ing atoms are located at the antinodal planes along the
cavity). Note that here, and in the following, we use r
to denote the coordinate in the plane transverse to the
cavity axis.

The cosine appearing in Eq. (2) also contains the term
θµ,Q(z), which describes terms varying slowly compared
to krz. The subscripts indicate that this term depends
both on the transverse index µ and the longitudinal mode
number Q. We may write this term as [16]:

θµ,Q(z) = ψ(z) + nµ[ψ(L/2) + ψ(z)]− ξµ,Q. (3)

We note that because we have not yet assumed a con-
focal cavity, the structure of this term is in general
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more complex than the analogous expression in our pre-
vious work [6]. This term accounts for several effects.
First, in order to satisfy Maxwell’s equations, terms
which vary faster in the transverse plane must vary
more slowly along the cavity axis. Thus, the z depen-
dence of the phase is given by (nµ + 1)ψ(z) where we
have ψ(z) = arctan(z/zR). The existence of this extra
phase evolution, known as the Gouy phase shift, or phase
anomaly [8, 16], and particularly its nµ dependence (i.e.,
the phase shift increases for greater nµ), is the source of
the rich physics discussed in this paper. The other term
contained in Eq. (3), nµψ(L/2) − ξµ,Q, describes phase
offsets required for the cosine function to match bound-
ary conditions at the mirrors (which are assumed to be
placed at z = ±L/2). The division of this phase shift
into the two terms nµψ(L/2) and ξµ,Q will simplify the
expressions when we consider a degenerate cavity below.

As noted earlier, atoms subject to transverse pumping,
as described by Eq. (1), will undergo self-organization to
form an atomic density wave commensurate with the op-
tical lattice due to the pump and cavity light. To describe
this transition, we need to write the motional wavefunc-
tion of the atoms, allowing for scattering of atoms by
the combined pump and cavity lattices. We assume that
most of the condensate is in the ground state, with a
small fraction having undergone a momentum kick from
either scattering a photon from the retroreflected trans-
verse pump into the cavity or vice-versa. Hence, we write

Ψ(x) = Z(z − z0)
√
ρ(r)

[
ψ0 +

√
2 cos(krx)×

{ψc cos(krz + δ) + ψs sin(krz + δ)}
]
, (4)

where Z(z) is an envelope function which describes the
confinement of the gas at a position z0 along the ẑ direc-
tion, ρ(r) is the density profile of the atoms in the cav-
ity transverse plane, ψ0 is the amplitude of the ground-
state condensate wavefunction of the gas, and ψc,s are
the amplitudes of the parts of the gas that have been
scattered into two out-of-phase density profiles. The sep-
arable form of this ansatz relies on the assumption that
the atoms are confined tightly enough in the z direction
that we can neglect variation of the Gouy phase across
the cloud—i.e., that the extent in z is much smaller than
the Rayleigh length, and that the atom density profile
ρ(r) is smooth on the scale of a wavelength. We have
written two independent components ψc, ψs to allow us
to describe an emergent freedom between the amplitudes

of these two components. The fixed phase offset δ is in-
troduced for later convenience—in the following we will
choose a value which enables us to simplify overlaps with
the light field. We may also consider ψc and ψs as being
the real and imaginary components of a complex order
parameter describing the atomic density wave, i.e., using
ψ1 = ψc + iψs and thus writing:

Ψ(x) = Z(z − z0)
√
ρ(r)[ψ0 +

√
2 cos(krx)<{ψ1e

ikrz+δ}].

We can now use Eq. (1) to find the mean-field equa-
tions of motion for ψ0,c,s and αµ,Q ≡ 〈âµ,Q〉. It is conve-
nient to write equations in terms of only the transverse
coordinates r, for which we must perform the z integral
in Eq. (1). This can be done straightforwardly in the
limit where we assume Z(z) has a width wz and that
λ� wz � zR. The first inequality allows us to drop any
terms oscillating at wavevector kr or 2kr; this imposes
momentum conservation so that recoiling atoms pick up
the difference of pump and cavity momenta. The second
condition means that we can evaluate the slowly varying
phase terms as being effectively constant over the width
of the gas: we can approximate θµ,Q(z) ' θµ,Q(z0). Both
conditions are well-satisfied in typical experiments [6].

In this paper, we will consider the onset of self-
organization, where the ψc,s become non-zero, leading
to an atomic density wave with an associated occupation
of the cavity modes. To understand the transition to this
state, and the patterns of atomic density waves which be-
come occupied, we focus on linear stability of the normal
state. That is, we linearize in the variables ψc, ψs and αµ.
In this linearized treatment, we find that all the relevant
z integrals involve a cross term between pump light and
cavity light that causes scattering between at-rest atoms
ψ0 and ψc,s. We then find that the z integrals yield two
possible overlap values,

Oσµ,Q =

{
cos[θµ,Q(z0)− δ] σ = c

sin[θµ,Q(z0)− δ] σ = s
, (5)

where the superscript σ distinguishes between two possi-
ble out-of-phase density waves ψc,s. In Sec. IX, we will
revisit the assumption that we may approximate the z
dependence of θµ,Q by its value at z = z0 and consider
the leading order corrections to this result.

In the linearized regime, we need only consider equa-
tions for ψσ and αµ,Q because the ground-state amplitude
ψ0 can be considered constant. Using the above overlaps,
we find the linearized equations take the form:
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i∂tαµ,Q = −(∆µ,Q + iκ)αµ,Q −
g2

0N

2∆a

∑
ν

∫
dr|ψ0|2ρ(r)Ξµ(r)Ξν(r)αν,Q′(ν)

− g0NΩ

2
√

2∆a

∫
drΞµ(r)ρ(r)

∑
σ=c,s

[ψ∗0ψσ + ψ0ψ
∗
σ]Oσµ,Q (6)

i∂tψσ =

∫
dr (µ+ 2ωr) ρ(r)ψσ +

1

2

∫
drUψ2

0ψ
∗
σρ(r)− g0Ω

2
√

2∆a

∫
dr
∑
µ,Q

(α∗µ,Q + αµ,Q)Ξµ(r)ψ0ρ(r)Oσµ,Q, (7)

where we have included the photon loss rate 2κ, µ is the
chemical potential of the ground-state condensate (when
not used as an index), and ωr is the recoil energy k2

r/2m.
The chemical potential is introduced purely to eliminate
the time dependence of the condensate wavefunction. In
writing these equations, we have dropped fast oscillating
terms due to the pump since the atomic density profile
extends over several optical wavelengths λ. The sub-
script Q′(ν) appearing on the amplitude α in the first
expression indicates the fact that since we restrict the
summation to include cavity modes nearly resonant with
the pump—the allowed longitudinal mode numbers Q′

and transverse modes ν in the sum are not independent.
The precise restriction on how Q′ relates to ν depends on
the degeneracy of the cavity and is discussed further in
the following section when we consider a confocal cavity.

Since we expect the cavity field to reach a steady state
on a timescale much faster than the atomic motion, we
adiabatically eliminate the photons by setting the time
derivative in Eq. (6) to zero and solve for αµ,Q. We also
neglect the corrections to the bare cavity modes caused
by the ground-state atomic gas; i.e., the term propor-
tional to the integral of |ψ0|2 is neglected. Substituting
αµ,Q back into the equation of motion of the atomic con-
densate gives

i∂tψσ =

∫
dr (µ+ 2ωr) ρ(r)ψσ +

1

2

∫
drUψ2

0ψ
∗
σρ(r)

+
g2

0Ω2N

2∆2
a∆µ0,Q0

∫
dr

∫
dr′

∑
τ=c,s

<{Dστ (r, r′)}ρ(r)ρ(r′)

× |ψ0|2
[
ψτ + ψ∗τ

]
, (8)

where ∆µ0,Q0
is taken as the detuning of some reference

mode (which, later we will take as the fundamental mode
in a degenerate family), and the cavity-mediated inter-
action takes the form:

Dστ (r, r′) = ∆µ0,Q0

∑
µ,Q

Ξµ(r)Ξµ(r′)

∆µ,Q + iκ
Oσµ,QOτµ,Q. (9)

This interaction matrix describes the interaction in terms
of the real and imaginary components ψτ of the complex
order parameter describing atomic density waves, with
freedom of both density wave amplitude and phase.

Expression (9) captures the general cavity-mediated
interaction between the two density wave components
without any assumptions about the structure of the cav-
ity modes or their degeneracies. In the following sections,
we will focus on a confocal cavity, where many modes are
degenerate (or nearly so in realistic cavities), and restrict
our attention to that family of nearly resonant modes
closest to the pump frequency, with all other mode fam-
ilies being relatively far detuned.

III. CAVITY-MEDIATED INTERACTIONS IN A
CONFOCAL CAVITY

A. Derivation of interaction for a confocal cavity

In this section, we consider how the general results of
the previous section apply for a confocal cavity. As noted
in the introduction and previous section, for a degener-
ate cavity, the existence of many degenerate modes allows
for both transverse spatial variation of the light and for
transverse variation of whether it couples to sine or cosine
atomic density waves. To explore this, we will examine
how the effective cavity-mediated interaction matrix be-
haves in the confocal limit.

We first summarize the standard results [16] for the pa-
rameters defining the mode functions in a confocal cavity;
a general derivation of equivalent results for all degener-
ate Fabry-Pérot cavities is given in Sec. IX. A confocal
cavity is defined by the cavity geometry R = L, where
R is the radius of curvature of the mirrors and L is the
length of the cavity. Matching the curvature of phase
fronts with the radius of curvature of the mirrors, we
find that the Rayleigh length zR = L/2. This means
that ψ(±L/2) = ±π/4 and so we may evaluate the phase
difference between the two ends of the cavity as

Qπ = krL− [θµ,Q(L/2)− θµ,Q(−L/2)]

= krL− (nµ + 1)π/2. (10)

We thus see that for a given family of degenerate modes—
i.e., having fixed wavevector kr—the longitudinal mode
number Q is locked to µ via Q = Q0− (nµ− η)/2, where
Q0 determines the longitudinal mode number of the low-
est transverse mode within a given degenerate family and
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η = 0 or 1. As expected for a confocal cavity, this for-
mula leads to separately resonant families of odd and
even transverse modes as selected by η. We consider
a regime where one specific degenerate family is near-
resonant with the pump laser and all other degenerate
frequencies can be neglected. Because of this, we can
suppress the Q dependence of the formulae written in
Sec. II, and sum only over transverse modes. We can
however allow small deviations from confocality, by con-
sidering the detunings within the near-resonant family to
take the form ∆µ,Q → ∆µ = ∆Q0 + nµε where ∆Q0 is
the detuning of the fundamental mode in a given family
and ε describes the residual splitting of near-degenerate
mode frequencies [6].

With this restriction to a single degenerate family, we
can also simplify the overlap factors. Because Q and µ
are locked, we find that within a given degenerate family,
the phase shift ξµ,Q required to match boundary condi-
tions becomes constant, i.e., ξµ,Q = ξQ0

. The expression
θµ,Q appearing in the cosine to give the slow phase de-
pendence can be split into two parts independent of nµ
and dependent on nµ; i.e. θµ,Q(z0) = ΘQ0

(z0)+nµθ0(z0).
For the confocal case, using zR = L/2, we explicitly have
that

θ0(z0) = π/4 + arctan(z0/zR) (11)

and ΘQ0(z) = ψ(z)− ξQ0 . We may also note that ξQ0 =
(π/2)(Q0 + 1) for even parity modes, so the longitudinal
profiles of the modes one free-spectral-range (FSR) apart
are phase shifted by a quarter period. Furthermore, we
may now choose the phase offsets of the atomic density
waves as δ = ΘQ0 , simplifying the overlap factors as

Oσµ,Q =

{
cos(nµθ0) σ = c

sin(nµθ0) σ = s
. (12)

For brevity, we have suppressed the z0 dependence of θ0

here and in the following expressions.
In this confocal limit, where sums are restricted to

modes within a given family, we may simplify the inter-
action matrix in Eq. (9) significantly. Since, as already
noted, a confocal cavity only supports degenerate fam-
ilies with the same parity, to find the cavity-mediated
interaction, summation over transverse modes should be
restricted to nµ being either even or odd. This can be
done by introducing an appropriate factor Sµ in Eq. (9)
to cancel unwanted modes in a particular confocal cavity
family; the sum is then made to be over all transverse
modes. This factor should be chosen as

S±µ = [1± (−1)nµ ]/2 (13)

for even (+) or odd (−) nµ families. For simplicity, in the
subsequent discussion, we will focus on even resonance
families. Thus, we consider the interaction:

D+
στ (r, r′, z0) = ∆Q0

∑
µ

Ξµ(r)Ξµ(r′)

∆µ + iκ
OσµOτµS+

µ . (14)

To evaluate the sums over Gauss-Hermite functions ap-
pearing here, we will make repeated use of the Green’s
function of the harmonic oscillator, which can be written
as a sum over Gauss-Hermite functions; namely:

G(r, r′, ϕ) ≡
∑
µ

Ξµ(r)Ξµ(r′)e−nµϕ

=
1

π(1− e−2ϕ)
exp

[
− (r2 + r′

2
)/w2

0

tanh(ϕ)
+

2r · r′/w2
0

sinh(ϕ)

]

=
eϕ

2π sinh(ϕ)
exp

[
− (r−r′)2/w2

0

2 tanh(ϕ/2)
− (r+r′)2/w2

0

2 coth(ϕ/2)

]
.

(15)

We can then rewrite the expressions actually required in
Eq. (14) in terms of this closed-form expression. First,
to account for the denominator present in Eq. (14), we
define a modified Green’s function as:

G(r, r′, ϕ) =
∑
µ

Ξµ(r)Ξµ(r′)e−nµϕ

1 + ε̃nµ + iκ̃

=

∫ ∞
0

dλe−λ(1+iκ̃)G(r, r′, ϕ+ ε̃λ), (16)

with ε̃ = ε/∆Q0
and κ̃ = κ/∆Q0

. Second, to account for
the factor S± in the sum, we can note that Ξµ(−r′) =
Ξµ(r′)(−1)nµ , and so we define:

G+(r, r′, ϕ) = G(r, r′, ϕ) + G(r,−r′, ϕ). (17)

Using these results, we can also include the phase factors
arising from the overlaps Oσµ to obtain D+ in matrix
form:

4D+(r, r′, z0) = 1G+(r, r′, 0)

+
σz

2

[
G+(r, r′,−2iθ0) + G+(r, r′, 2iθ0)

]
+
σx

2i

[
G+(r, r′,−2iθ0)− G+(r, r′, 2iθ0)

]
,

(18)

where 1, σz and σx are the standard Pauli matrices, and
the z0 dependence of this expression comes from the form
of θ0.

As discussed in our previous work [6] and explored in
the companion paper Ref. [1], G+(r, r′, 0) corresponds to
the local part of the interaction, while the terms involving
G+(r, r′,±2iθ0) give rise to a sign-changing nonlocal in-
teraction. On the midplane of the cavity where θ0 = π/4,
this interaction is proportional to cos(2r · r′/w2

0). There
are two consequences of the existence of the nonlocal
interaction: 1) different phases of the atomic density
wave are preferred at different locations in the cavity due
to the spatial dependence of G+(r, r′, 2iθ0[z0]); 2) cou-
pling between ψc,s is introduced by the nonlocal interac-
tion and atoms may adopt intermediate phases between
cos(krz + δ) and sin(krz + δ).

The additional freedom in the atomic density wave can
be seen directly through the observed light field above the
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self-organization transition threshold. To show why, we
must determine the light field in the cavity and extract
the forward propagating part, since we only image the
field emitted from one side of the cavity. From Eq. (6),
we see that within the approximation that allows us to
perform adiabatic elimination of cavity modes, the am-

plitudes of these modes take the form:

αµ =
Ωg0N

2
√

2∆a

∫
dr′

Ξµ(r′)

∆µ + iκ
ρ(r′)

∑
σ=c,s

Oσµχσ, (19)

where we have defined χσ ≡ ψ0ψ
∗
σ + ψ∗0ψσ. We can then

write the spatially varying light field in the cavity as:

α̃(r, z) ≡
∑
µ

αµΞµ(r) cos(krz −ΘQ0 − nµθ0) =
Ωg0N

2
√

2∆a

∫
dr′

∑
µ,σ=c,s

Ξµ(r)Ξµ(r′)

∆µ + iκ
cos(krz −ΘQ0 − nµθ0)Oσµχσρ(r′)

∝1

2
ei(krz−ΘQ0

)

∫
dr′
{
χc
[
G+(r, r′, 0) + G+(r, r′,−2iθ0)

]
+ iχs

[
G+(r, r′, 0)− G+(r, r′,−2iθ0)

]}
ρ(r′)+

1

2
e−i(krz−ΘQ0

)

∫
dr′
{
χc
[
G+(r, r′, 0) + G+(r, r′, 2iθ0)

]
− iχs

[
G+(r, r′, 0)− G+(r, r′, 2iθ0)

]}
ρ(r′),

(20)

where again we have used Eq. (16) to rewrite the sum over
transverse modes. The forward traveling component of
the light field can then be rewritten as

α̃F (r) ∝
∫
dr′ρ(r′)G+(r, r′, 0)

+ e−i2φA
∫
dr′ρ(r′)G+(r, r′,−2iθ0), (21)

where φA = Arg[χc + iχs]. Thus, while the light inside
the cavity is purely real, the forward travelling wave, and
thus the cavity light emitted out of one side of the cav-
ity, contains important phase information. Physically,
φA corresponds to the phase of the density wave adopted
by the atoms. In the cavity output field, G+(r, r′, 0) and
G+(r, r′,−2iθ0) correspond to two distinct spatial fea-
tures: the former results in an intense localized spot at
the position of the atoms, while the latter gives rise to
an weak oscillating background cos(2r · r′/w2

0), as shown
below. Both have been observed [1, 6]. Therefore, mea-
suring the phase difference between these two parts of
imaged light field, ∆φ = −2φA, reveals the phase offset
of the atomic density wave relative to the cavity modes,
as explored in the companion paper Ref. [1].

B. Physical picture for photon-mediated
interactions in confocal cavities

This section provides an intuitive physical picture for
the cavity-mediated atom-atom interactions in a confocal
cavity based on a combination of ray-tracing, Gaussian
optics, and scattering pictures. The local part of the in-
teractions induced by a confocal cavity arise from mode
superposition. That is, they arise from the superposi-
tion of transverse modes into which each atom scatters
a pump photon. The superposition of Hermite-Gaussian

TEMl,m mode-functions leads to a photon wavepacket lo-
calized transverse to the cavity axis and centered around
the scattering atom. Before these photons leak out of
the cavity, they may be exchanged between atoms that
reside within the volume of the wavepacket. This leads
to an atom-atom interaction. Summing over all trans-
verse modes, this mode superposition gives an interaction
that decays as e−∆r/ξ/

√
∆r/ξ in the transverse plane [6].

Here, ∆r is the transverse distance between the scatter-
ing atoms, and the length scale ξ is inversely proportional
to the number of modes in the superposition.

The interaction range in the longitudinal direction re-
mains very long, however, and is typically longer than
the atomic gas. This is because the Rayleigh length
of a confocal cavity is equal to half the cavity length,
and consequently, the differential phase advance of the
Gouy phase anomalies varies only slowly with distance.
This leads to negligible longitudinal destructive interfer-
ence, as is also the case for near-planar cavities and in-
teractions mediated by a single-mirror [17]. By contrast,
near-concentric cavities allow for significant destructive
longitudinal interference because their modes’ Rayleigh
lengths are far shorter than the cavity length: Concentric
cavities support both transverse and longitudinal local
cavity-photon-mediated interactions.

Neither near-concentric nor near-planar cavities pro-
vide nonlocal interactions. This is because they support
all transverse modes (up to finite-size limitations). In
confocal cavities, however, nonlocal interactions arise be-
cause Gouy phase shifts cause a subset of modes within
a degenerate resonance to acquire different longitudinal
phase shifts [18], changing how modes couple at the po-
sition of the atoms. Thus, in a confocal cavity, and fo-
cusing attention on atoms at the cavity center for sim-
plicity, each atom couples to either the l+m mod 4 = 0
modes or the l+m mod 4 = 2 modes [1] depending which
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mode family is involved. Superimposing a set of TEMl,m

modes with a subset missing induces constructive inter-
ference revivals at locations in the transverse plane. The
field from those revivals augments the scattered photon
wavepacket with a nonlocal, cosine-like contribution; see
Fig. 1d in Ref. [1]. The crossing diagonal rays in the
bow tie pattern of the ray-tracing picture represent this
portion of the field.

The origin and form of this pattern may be understood
from the propagation of Gaussian beams. The field of the
local wavepacket around the scattering atom at z = 0
forms a spot. This field propagates to and from a mirror
a total distance R. Because the mirror has radius of
curvature R, it acts as a lens with focal length R/2 that
projects the Fourier plane exactly back onto the object
plane at z = 0 where the atoms lie. Thus, the interference
pattern is the field from the cosine-like Fourier transform
of a spot at position r.

Putting the above together, the light emitted from the
cavity, after propagating through a lens, contains two
bright spots and an interference pattern at the image
plane. This is the image of the intracavity field at the
object plane of the atoms (z = 0) [19]. The two bright
spots are from the atom and its mirror image at r = −r
in the transverse plane. The mirror image arises because
each confocal resonance is composed of either even or odd
parity modes, leading to constructive interference revival
at −r; the photon wavepacket has support around both r
and −r and can mediate atom-atom interactions at either
location, as demonstrated in Ref. [6]. The fringe field
between them is their Fourier transform. The cos(2r ·
r′/w2

0) nonlocal interaction term therefore arises from the
exchange of photons in the part of the photon wavepacket
associated with the Fourier transform of its local part.

We note that atoms away from the cavity center would
exchange an out-of-focus, blurred version of this nonlocal
field. The form of the nonlocal interaction away from
z = 0 is presented in Sec. IX B for general multimode
Fabry-Pérot cavities. Indeed, the nonlocal interaction
contains terms that look like the Airy rings produced by
out-of-focus images.

IV. U(1)-SYMMETRY IN AN IDEAL
CONFOCAL CAVITY

We now consider the case of an ideal confocal cavity
(i.e., all modes are perfectly degenerate ε = 0) and show
the emergence of a U(1)-symmetry for the phase of the
density waves in the self-organization transition. More-
over, we will consider the case where there is no cavity
loss (κ = 0). Together, these allow the replacement of
G+ in the previous section with the symmetrized, bare
harmonic oscillator Green’s function

G+(r, r′, ϕ) = G(r, r′, ϕ) +G(r,−r′, ϕ) (22)

with G(r, r′, ϕ) as defined in Eq. (15). We note that for
atoms trapped at the midplane of the cavity, z0 = 0 so

θ0 = π/4, and so the nonlocal interaction now reduces
to G+(r, r′, iπ/2) and can be directly evaluated using
Eq. (15) as

G+(r, r′, iπ/2) =
1

π
cos

(
2r · r′
w2

0

)
, (23)

which is the nonlocal interaction studied in the compan-
ion paper [1]. This expression is purely real, and so by
inserting this into Eq. (18), we see that there is no σx

term. Moreover, at 2r2/w2
0 = (n + 1/2)π, with integer

n, the self-interaction 4<{D+(r, r)} = 1G+(r, r, 0) will
become proportional to the identity matrix, indicating
complete freedom about what the relative amplitudes of
the sine and cosine components of the density wave can
be. That is, these two density wave patterns become
degenerate.

If we return to consider a general value θ0, and thus a
general longitudinal location z0 of the atomic gas, we can
explore how these zeros of the non-local interaction ma-
trix evolve. We consider here the case of a single atomic
cloud where the Thomas-Fermi radius of the cloud is
much smaller than the cavity waist w0. Since we have
already integrated out all fast oscillations at the cavity
wavevector, this assumption allows us in the remaining
equations to approximate the atomic density profile ρ(r)
as a δ-function when evaluating terms that vary on the
scale of w0. For a cloud centered at location z0 and r0,
with density profile δ(r − r0) in the cavity transverse
plane, the interaction matrix given by

4<{D+(r0, r0, z0)} = 1G+(r0, r0, 0)+

σz<{G+(r0, r0,−2iθ0)}+ σx={G+(r0, r0,−2iθ0)}.
(24)

Note here, we have used that G+(r0, r0,−2iθ0)∗ =
G+(r0, r0, 2iθ0), a result that holds for the bare Green’s
function G+(r0, r0, ϕ) but does not directly hold for the
general form G(r0, r0, ϕ); we return to this point below.
As such, we note that a degeneracy between ψc and ψs
occurs when

|G+(r0, r0, 2iθ0)| = 0. (25)

Neglecting all prefactors, we find this condition equiva-
lent to: ∣∣∣e−i2r20 tan(θ0)/w2

0 + e+i2r20 cot(θ0)/w2
0

∣∣∣ = 0. (26)

Using the fact that

tan[θ0(z0)] = tan

[
π

4
+ arctan

(
z0

zR

)]
=
zR + z0

zR − z0
, (27)

we can directly find the equation for radii at which degen-
eracy between the sine and cosine density wave patterns
occurs,

√
2r0/w0 =

√[
z2
R − z2

0

z2
R + z2

0

]
π (n+ 1/2), (28)
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FIG. 1. Magnitude of |G+(r0, r0, 2iθ0(z0))| as a function of
radius r0 (vertical axis) and distance along the cavity z (hor-
izontal axis). Red dashed lines mark solutions to Eq. (28),
indicating contours at which there is a degeneracy between
the sine and cosine density wave patterns.

where n is a non-negative integer that indexes the family
of possible radii. We readily see that for z0 = 0 this
reproduces the zeros of cos(2r2/w2

0). The contours for
other positions z0 are illustrated in Fig. 1.

To understand the consequence of such degeneracy,
it is useful to consider the effective Hamiltonian corre-
sponding to Eq. (8). Neglecting the bare atomic Hamil-
tonian, at a radius r0 satisfying Eq. (28), the effective
Hamiltonian describing the cavity-mediated interaction
is given by

Heff ∝
(
χc χs

)(G+(r0, r0, 0) 0
0 G+(r0, r0, 0)

)(
χc
χs

)
.

(29)
We can now see that the Hamiltonian is invariant under
the transformation(

ψc
ψs

)
→ R(φ)

(
ψc
ψs.

)
, R(φ) ≡

(
cosφ − sinφ
sinφ cosφ

)
.

(30)
Physically, the transformation corresponds to the free-
dom in the phase of the atomic density wave, i.e., any

density wave cos(kz+δ) with arbitrary δ is allowed. This
degeneracy is analogous to the situation in a recent ex-
perimental realization of a supersolid via the coupling
of a BEC to two crossed cavities [3]. The spontaneous
breaking of this U(1)-symmetry can be directly observed
by imaging the phase of the forward-traveling component
of the cavity light field, as can be seen from Eq. (21).

So far we have only showed that the symmetry exists
when we ignore the contribution quadratic in the light
field Ξµ(r) in the equation of motion. As such, one may
question whether the symmetry should survive far above
threshold, where there is scattering between different cav-
ity modes (in the second term on the right-hand side of
Eq. (6)). As we will next show, the symmetry in fact
exists even when such coupling terms are included, as
long as we remain in the confocal limit. To see this, we
rewrite the initial atom-cavity Hamiltonian in terms of
new photon field operators. Specifically, we define the
new operators

âc,s =
1√
Nc,s

∑
µ

âµΞµ(r0)S+
µ

{
cos(nµθ0)

sin(nµθ0)
,

where r0 is the position of the atomic cloud. The nor-
malization factor Nc,s is required to impose bosonic com-
mutation relations on the cavity modes. Computing the
commutation relations, we obtain

[âc, â
†
s] =

1

2
√NcNs

={G+(r0, r0, 2iθ0)} (31)

[âc, â
†
c] =

1

2N 2
c

[
G+(r0, r0, 0) + <{G+(r0, r0, 2iθ0)}

]
[âs, â

†
s] =

1

2N 2
s

[
G+(r0, r0, 0)−<{G+(r0, r0, 2iθ0)}

]
.

We may now observe that the cross-commutator neces-
sarily vanishes when the location r0 of the atoms satisfies
the condition in Eq. (25), |G+(r0, r0, i2θ0)| = 0. This im-
plies that the normalizations required to satisfy the other
two commutation relations are equal, Ns = Nc. We will
see that this equality leads to the emergence of the U(1)-
symmetry of interest.

Using the above definitions, along with the parameteri-
zation in Eq. (4), we can rewrite the matter-light coupling
terms in the original Hamiltonian Eq. (1) as

Hcoupling =
g0NΩ

2
√

2∆a

∑
σ=c,s

√
Nσψ0(ψ∗σ + ψσ)(â†σ + âσ) +

g2
0N

2∆a

[
Ncâ†câc

(
ψ2

0 +
3

4
|ψc|2 +

1

4
|ψs|2

)
+Nsâ†sâs

(
ψ2

0 +
3

4
|ψs|2 +

1

4
|ψc|2

)
+

1

4

√
NcNs(ψ∗cψs + ψ∗sψc)(â

†
câs + â†sâc)

]
. (32)

The various factors of 1/4 and 3/4 come from the terms 〈cos4(krz)〉 = 〈sin4(krz)〉 = 3/8 and
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〈cos2(krz) sin2(krz)〉 = 1/8 encountered when taking the
averages of the Stark shifts. When Ns = Nc = N , we
can rewrite the term in brackets as

N
[ (
â†câc + â†sâs

)(
ψ2

0 +
1

2
|ψc|2 +

1

2
|ψs|2

)
+

1

4

(
â†câc − â†sâs

) (
|ψc|2 − |ψs|2

)
+

1

4
(ψ∗cψs + ψ∗sψc)(â

†
câs + â†sâc)

]
and then readily verify that the Hamiltonian is invariant
under the combined rotation(

ac
as

)
→ R(φ)

(
ac
as

)
,

(
ψc
ψs

)
→ R(φ)

(
ψc
ψs

)
, (33)

Hence, it appears that the U(1)-symmetry remains ro-
bust in a perfect confocal cavity even when including the
nonlinear terms that are relevant far above threshold.

V. BREAKING OF EMERGENT
U(1)-SYMMETRY

The previous section assumes a perfect confocal cavity,
with no loss and no transverse mode dispersion. In that
case, we anticipated perfect U(1)-symmetry at special
radii. Experimentally, this should correspond to a shot-
to-shot fluctuating density wave phase for these radii. As
discussed below, this is not seen experimentally. Instead,
there is a window where the phase of the density wave
evolves smoothly and deterministically from φA = 0 to
φA = π/2. To understand this, we next discuss the ef-
fects beyond the ideal solution, specifically effects of a
finite cloud size, effects of displacement from the mid-
point of the cavity, and effects of a small mode-splitting
ε and cavity loss κ.

To study the emergence of symmetry-breaking terms,
we consider the scenario where a single BEC is placed
at a radius r0 in the cavity transverse plane, and we
determine the phase of density wave formed in the self-
organization transition from the eigenvectors of the effec-
tive interaction matrix. The effective interaction matrix
is the generalization of Eq. (18) to include the aforemen-
tioned deviations from an ideal confocal cavity.

A. Displacement from midplane of cavity z0 = 0

Displacing the BEC from the midpoint z0 = 0 of the
cavity induces a density wave that is, in general, neither
of purely sine nor cosine pattern except at special po-
sitions where complete phase freedom (U(1)-symmetry)
is restored. Admixtures of sine and cosine patterns are
favored at positions where G+(r0, r0, 2iθ0) is complex.
This function is complex at all points in the cavity ex-
cept at its midpoint where G+(r0, r0, iπ/2) is purely real,
as well as at the points indicated by the red dashed line

contours in Fig. 1 where G+(r0, r0, 2iθ0) = 0, resulting
in positions of restored phase freedom. As such, displace-
ment from the midplane of the cavity does not break the
U(1)-symmetry at these specific radii.

In the following, we will see that finite cloud size and
nonconfocality can alter this picture. These nonidealities
lift the pattern degeneracy even at these special positions.
What is left is instead a smooth, deterministic evolution
of density wave phase with no U(1)-symmetry points.
The exception to this is at midplane z0 = 0. That is, de-
spite these nonidealities, the interaction remains purely
real at the midpoint of the cavity because θ0 = π/4 at
z0 = 0. Therefore, at the midplane of the cavity, there
continue to exist special radii where the U(1)-symmetry
is expected even under conditions of finite cloud size and
nonconfocality.

We shall focus on the nonlocal contribution
G+(r0, r0, 2iθ0) to the self-interaction, since the effects
of nonconfocality on the local interaction G+(r0, r0, 0)
have been studied in detail in Ref. [6]. Moreover, as
seen in Eq. (18), the density wave phase is determined
not by the local terms, which scale the components of
the identity matrix, but by the nonlocal terms that
determine the σx and σz parts of the interaction matrix.

B. Nonconfocality

To consider nonconfocality, we return to using the
Green’s functions defined in Eq. (16), i.e., allowing for
nonzero ε and κ. We first note that by using this Green’s
function, the matrix form of the nonlocal cavity-mediated
interaction Eq. (18) can be put into the form

4D+
nonlocal(r0, z0) =∫ ∞

0

dλe−λ(1+iκ̃)
[
σz<{G+(r0, r0, λε̃− 2iθ0)}

+ σx={G+(r0, r0, λε̃− 2iθ0)}
]
, (34)

where once again we note the z0 dependence comes from
the form of θ0. We further note that away from θ0(0) =
π/4, the quantity G+(r0, r0,−2iθ0) is complex, so both
components exist (except at the special points mentioned
above where it is zero). We can simplify this further,
since the actual interaction appearing in Eq. (8) involves
<{D+}. Since the term in brackets in Eq. (34) is by
definition real, taking the real part thus replaces e−iλκ̃ →
cos(κ̃λ). We can then write the final form for the relevant
part of the interaction as:

4<{D+
nonlocal(r0, z0)} = σz<{G̃+(r0, r0,−2iθ0)}

+ σx={G̃+(r0, r0,−2iθ0)} (35)

where we have defined a nonconfocal Green’s function:

G̃+(r, r′, ϕ) =

∫ ∞
0

dλe−λ cos(κ̃λ)G+(r, r′, ε̃λ+ ϕ). (36)
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From this expression, we can see that we still have an
interaction that is purely of σz form at θ0 = π/4. To see
this, we note that

={G+(r, r′, ε̃λ− iπ/2)}

≡ =
{∑

µ

Ξµ(r)Ξµ(r′)S+
µ e
−nµ(ϕ−iπ/2)

}
=
∑
µ

Ξµ(r)Ξµ(r′)S+
µ e
−nµϕ sin(nµπ/2).

Because S+
µ restricts the sum to even terms, we imme-

diately see that sin(nµπ/2) = 0 for these terms so all
terms vanish. The vanishing imaginary part then means
the interaction matrix becomes purely diagonal and there
still exists points where the interaction is proportional
to the identity matrix, giving degeneracy and the U(1)-
symmetry. However, away from θ0 = π/4, one can read-

ily check that |G̃+(r0, r0, 2iθ0)| does not vanish, i.e., the
real and imaginary parts of this function no longer van-
ish at the same points. As a result, there would be a
deterministic phase at all radii (other than those at the
midpoint), with the sense of phase winding dependent on
the displacement from the midpoint of the cavity.

C. Finite transverse size of atomic gas

A second effect that also leads to a deterministic phase
winding is the finite size of the condensate. To capture
this, we consider averaging the interaction matrix over
the spatial profile of the cloud. That is, we define an
averaged function

G+
avg(r0, ϕ) ≡

∫
dr

∫
dr′ρ(r′)G+(r, r′, ϕ)ρ(r), (37)

and then define the corresponding interaction matrix, de-
scribing the self-interaction due to the non-local part of
the interaction,

4<{D+
avg,nonlocal(r0, z0)} = σz<{G+

avg(r0, r0,−2iθ0)}
+ σx={G+

avg(r0, r0,−2iθ0)},
(38)

where once again the z0 dependence comes from the form
of θ0.

The integral over coordinates r, r′ can be evaluated by
using a Gaussian density profile:

ρ(r− r0) =
1

2πσ2
A

exp

(−(r− r0)2

2σ2
A

)
, (39)

where σA is the BEC width, and by making use of the
harmonic oscillator Green’s function Eq. (15). We find

0.0 0.5 1.0 1.5√
2r/w0

−0.2

−0.1

0.0

0.1

0.2

0.3

Re{G+
avg}

Im{G+
avg}

FIG. 2. Real (solid blue line) and imaginary (dotted or-
ange line) parts of G+

avg for a BEC at a transverse plane
(z0/zR = 0.3) located away from the cavity midplane and
with a Gaussian width of σA/w0 = 0.1. Black dashed line
marks zero. Note that Re{G+

avg} and Im{G+
avg} do not vanish

at the same point.

the integral over radius yields

G+
avg(r0, ϕ) =

A/π

1− e−2ϕ

{
exp

[
− 2r2

0

2σ2
A + coth(ϕ/2)w2

0

]
+ exp

[
− 2r2

0

2σ2
A + tanh(ϕ/2)w2

0

]}
,

where the prefactor A takes the form

A =

[(
1 +

2σ2
A

w2
0 coth(ϕ/2)

)(
1 +

2σ2
A

w2
0 tanh(ϕ/2)

)]−1

.

(40)

One can then combine the effects of nonconfocality

with finite cloud size by using G̃(r, r′, ϕ) in the right-
hand side of Eq. (37). In practice, one first performs the
Gaussian integral defined above and then defines

G̃+
avg(r0, ϕ) =

∫ ∞
0

dλe−λ cos(κ̃λ)G+
avg(r0, ε̃λ+ ϕ), (41)

which can be inserted into Eq. (38) to find the effec-
tive interaction. The final integral over λ is performed
numerically. We note that even when ε̃ = 0, the fi-
nite extent σA of the atoms already has the effect of
turning G+

avg(r0,−2iθ0) into a complex quantity and

ensuring that |G+
avg(r0,−2iθ0)| does not vanish when

away from the cavity midplane. Figure 2 plots the real
and imaginary part of G+

avg(−2iθ0) for atoms located at
z0/zR = 0.3. Crucially, the real part and imaginary part
do not vanish at the same point, therefore there is al-
ways a preferred phase of the atomic density wave and,
consequently, no emergent U(1)-symmetry.
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FIG. 3. (a) Example of the experimental phase and ampli-
tude of the cavity emission. The waist w0 of the TEM00

in the image plane is indicated. ∆φ = −2φA is computed
from the difference in phase between the regions marked by
black dot and the average phase of the gray rectangular re-
gion. They correspond to the local G+(r, r′, 0) and nonlocal
G+(r, r′, 2iθ0) contribution to the light field in Eq. (21), resp.
(b) Color wheel for illustrating electric field amplitude and
phase. (c) Measured phase difference between the local and
nonlocal contribution to the cavity field as a function of the
distance r of a single BEC from the cavity axis. The data
shown here are taken with cavity detuning ∆Q0 = −120 MHz.
The distance is extracted by fitting to the amplitude of the
measured field. The path of r taken in the x-y plane from the
cavity axis is shown as an black dashed arrow in panel (a).

D. Comparison to experiment

To confirm the existence of U(1)-symmetry-breaking,
we perform an experiment similar in method to those
reported in our works reported in Refs. [1, 6]. In
brief, we create a BEC of 87Rb with population
2.5(3)×105 inside the cavity; see Ref. [20] for tech-
nical details. The BEC is confined in an opti-
cal tweezer trap of trap frequencies (ωx, ωy, ωz) =
2π × [189(2), 134(1), 90(1)] Hz and Thomas-Fermi radii
(Rx, Ry, Rz) = [4.2(1), 5.8(3), 8.9(1)] µm. Due to exper-
imental constraints [21], the BEC is fixed at a position
of z0 ≈ 240 µm from the cavity midplane. The tweezer
allows us to control r0 by moving the BEC in the trans-
verse plane. The confocal cavity has length L = 1 cm
and TEM00 mode waist w0 = 35 µm. For this system,
g0 = 2π × 1.47(3) MHz and κ = 2π × 167(4) kHz.

To measure the U(1)-symmetry-breaking, we observe
the phase difference ∆φ between the cavity emission aris-

ing from the local versus nonlocal interaction terms while
moving a single BEC across a node of the oscillatory co-
sine pattern due to G+(r, r′, 2iθ0). The amplitude and
phase of the cavity field emission are detected through
the holographic reconstruction of a spatial heterodyne
measurement; see Refs. [1, 5] for details. The detec-
tion of the density wave phase relies on the fact that
the phase difference ∆φ is related to the density wave
pattern through ∆φ = −2φA using Eq. (21). That is,
the observable ∆φ is directly related to the phase of the
density wave.

Figure 3 shows the results of such measurements. An
example of a holographically reconstructed cavity emis-
sion field is shown in Fig. 3(a). The two orange spots are
the emission due to the local interaction term G+(r, r′, 0)
centered about the real and mirror images of the BEC in
the object plane, while the orange and blue striped oscil-
lation arises from the nonlocal term G+(r, r′, 2iθ0).

Figure 3(c) shows how ∆φ evolves versus r. A particu-
lar direction of the phase winding is preferred as the BEC
is gradually moved away from the cavity midplane. As
discussed in the beginning of this section, rather than
observe a point of random shot-to-shot density wave
phase due to a U(1)-symmetry, we observe that the phase
smoothly winds from 0 to −π as the BEC crosses the
node at the point

√
2r/w0 ≈

√
π/2 ≈ 1.25, as expected

from Eq. (28). The orange solid line is the predicted
theoretical phase difference taking into account: 1) the
finite mode dispersion ε̃; 2) finite size σA of the cloud in
the transverse plane; and 3) the aforementioned displace-
ment z0 of the atoms in ẑ from the cavity midplane.

Our theory could not reproduce the width of the tran-
sition region in the density wave phase. We attribute
this discrepancy to the coupling between density waves
through the nonlinear atom-cavity coupling term that is
proportional to g2

0/∆a in Eq. (6), which is not taken into
account at the current level of our theory. However, our
experimental data is taken above the self-organization
transition threshold with macroscopic population of cav-
ity photons. In this regime, scattering between different
cavity modes is no longer negligible. We also note that
we have assumed paraxial optics and only taken into ac-
count of the linear dispersion between transverse modes.
Contributions from cavity mirror aberrations (e.g., spher-
ical aberration) could further complicate the phase de-
pendence of transverse modes beyond the included Gouy
phase shifts. Lastly, we note that the finite extent of the
BEC along the cavity axis could play a role. We leave a
discussion of this effect to the Appendix.

VI. DETERMINISTIC EVOLUTION OF THE
DENSITY WAVE PHASE

We report the direct observation of the smooth evo-
lution of the density wave phase versus transverse po-
sition. We use a BEC with a width sufficiently large
to span two antinodes in the nonlocal interaction and
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observe a smooth phase evolution of the density waves
within the BEC. That is, we do not observe special U(1)-
symmetry points at which there is a phase freedom be-
cause of the expected symmetry breaking. Rather, the
phase smoothly evolves from 0 to π as shown in Fig. 4.

To observe this, we prepare a BEC that is elongated
along one direction using a dithered optical tweezer beam
to make an elongated trap. The mean position of the
BEC is placed away from the center of the cavity trans-
verse plane. Figure 4 shows the cavity field emission
above the self-organization transition threshold. As men-
tioned above, we observe a smooth phase variation from
0 to π across the BEC straddling the two antinodes of
the cavity emission that arises from the nonlocal inter-
action term. This phase evolution is reminiscent of the
“spoiled helix” state arising in a single-component Mat-
tis model. Such systems exhibit a ferromagnetic state
wherein the spin locally breaks a Z2 symmetry but with
a local rotation of the definition of up and down spin
versus position [22].

While this directly indicates that the phase of the den-
sity wave formed in the self-organization transition is no
longer restricted to be the same in the entire atomic
gas, as was predicted in Ref. [6], we do not observe
any shot-to-shot fluctuations in this phase evolution pat-
tern. The phase evolution is deterministic, by which
we mean that the phase winds with the same pattern
from experimental shot-to-shot and is predictable by ac-
counting for the effects discussed in the previous sec-
tion. That is, there is no fluctuation of the phase or
change of the winding orientation indicative of an un-
derlying U(1)-symmetry at these special radii. By con-
trast, such fluctuations in the self-organized density wave
are expected in a multimode cavity of the ideal con-
centric configuration [14, 15]. Those works showed how
such fluctuations of a density wave primarily along the
cavity axis could lead to a quantum Brazavoskii transi-
tion in transversely pumped concentric multimode cav-
ity QED systems. That is, such fluctuations could drive
the system from a Dicke-like superradiant, self-ordering
phase transition into a Brazovskii-like superradiant, self-
ordering transition, as discussed in Refs. [14, 15]. (The
Brazovskii transition [23, 24] is a weakly first-order,
fluctuation-induced transition that would result in a su-
perfluid smectic—‘supersmectic’—state. The Dicke tran-
sition, by contrast, is a second-order mean-field transition
to a supersolid state [25].)

The deterministic phase variation we observe in Fig. 4
illustrates that the preferred density wave phase is differ-
ent at different locations, but there are no fluctuations in
this nonideal confocal cavity. Moreover, such fluctuations
in the longitudinal direction are not likely to be possible
in even an ideal confocal cavity due to the long Rayleigh
length of the modes in such a cavity. In summary, various
corrections to D+

nonlocal in a nonideal confocal cavity lift
the expected U(1)-symmetry at all positions in the mul-
timode cavity other than the ones in the midplane. This
symmetry-breaking will hamper one’s ability to observe

(a) (b)x

y

FIG. 4. (a) Reconstructed cavity superradiance from a BEC
with length on the order of the cavity waist w0. The phase
of the atomic density wave varies smoothly from one side of
a node to the other. Note that the gas is positioned to only
one side of the cavity axis. (b) Line-cut of the phase winding
as indicated by white dashed line in panel (a). r denotes the
distance from the cavity axis.

Brazovskii physics in a nonideal confocal cavity pumped
with a single field.

The next section proposes a new pumping scheme that
restores this U(1)-symmetry and thus reintroduces the
possibility that fluctuations in the phase of the atomic
density waves can drive the system to a supersmectic
state via a quantum Brazovskii transition.

VII. PROPOSAL FOR RESTORATION OF
U(1)-SYMMETRY

The aforementioned rigidity in the allowed phase of the
density wave is a direct result of the nonlocal interaction.
We now propose a pumping scheme, involving two de-
generate resonances in a confocal cavity, for eliminating
the D+

nonlocal term from the cavity-mediated interaction.
This would restore the full phase freedom in the atomic
density wave, perhaps allowing Brazovskii physics to be
explored in a confocal cavity, even a nonideal one.

We suggest adding a second transverse pump at a fre-
quency near a confocal resonance one FSR away from
the first pump. As noted in Eq. (2), the phase varia-
tion of different transverse modes depends on the lon-
gitudinal index. For a resonance 1 FSR away, the lon-
gitudinal index Q changes by 1. Thus, in this newly
driven set of degenerate mode family resonances, the µ-
independent part of the slowly varying phase changes
from ΘQ0

→ ΘQ0
+ π/2. Since the atomic density wave

offset δ can only be adjusted to match one family, we find
that for this second mode family, computing the overlap
factors as in Eq. (12) gives

O′σµ =

{
− sin [nµθ0(z)] σ = c

cos [nµθ0(z)] σ = s
. (42)

Since these are two nearby resonances within the same
cavity, it is reasonable to assume that they have the same
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coupling g0 and residual mode splittings ε. Thus, if we
choose the two pumps to have the same effective detuning
∆Q0

and the same pumping strength Ω2/∆2
a, the relevant

total cavity-mediated interaction T is simply the sum of
the contribution from individual resonances

Tστ = ∆Q0

∑
µ

Ξµ(r)Ξµ(r′)

∆µ + iκ

(
OσµOτµ +O′σµ O′τµ

)
S+
µ

∝ 1G+(r, r′, 0). (43)

This identity holds because the sign change inO′cµO′sµ ver-
sus OcµOsµ cancels the off diagonal components. There-
fore, the combined interaction T is now diagonal in the
basis of ψc,s and the system exhibits a U(1)-symmetry
in the entirety of the cavity’s transverse plane. We note
that this result is general and does not rely on an ideal
cavity or the atoms being at special radii in the midplane
of the cavity. Combined with a short-range local inter-
action G+(r, r′, 0), observation of fluctuations in atomic
density wave in a large BEC should be possible, which
may in turn lead to a Brazovskii transition. This will be
the subject of future work.

VIII. CAVITY MEDIATED INTERACTION IN
THREE DIMENSIONS

In the discussion so far, we have assumed the cavity
couples to atomic density waves. Under this assumption,
combined with the restriction of atoms to a thin cloud
with wz � zR, we could ignore the z dependence of the
cavity-mediated interaction, and replace it with the ma-
trix structure in terms of sine and cosine quadratures of
atomic density waves. In order to be able to apply the
results discussed here to spin models (where atoms could
in principle be placed at arbitrary positions r, z), such
as recently realized in a BEC system [5], it is useful to
also present the cavity-mediated interaction with its z-
dependence included. That is, we allow for interactions
between atoms at distinct longitudinal coordinates z and
z′. We thus consider:

D+
3D(r, r′, z, z′) =

∑
µ

Φµ(r, z)Φµ(r′, z′)

1 + ε̃nµ + iκ̃
S+
µ , (44)

where Φµ(r, z) = Ξµ(r) cos[krz − ΘQ0(z) − nµθ0(z)] is
the full mode function. One may see that this takes the
form:

D+
3D(r, r′, z, z′) =

1

4

∑
τ,τ ′=±

G (r, r′,−i[τθ0(z) + τ ′θ0(z′)])

× eikr(τz+τ ′z′)−i[τΘQ0
(z)+τ ′ΘQ0

(z′)]. (45)

This expression represents the most general cavity-
mediated interaction in a near-confocal cavity.

Moreover, we can now transform this expression into
the form used in the companion paper [1]. To do so, we

should consider this expression under the special condi-
tion that we work near the midpoint of the cavity, so that
the z-separation between atoms is small compared to the
Rayleigh length. We may then neglect the z-dependence
of θ0 and ΘQ0

, and use G(r, r′,−iπ/2) = G(r, r′, iπ/2) to
write:

D+
3D(r, r′, z, z′) =

1

2

[
G (r, r′, 0) cos(kr(z − z′))

+ G (r, r′,−2iθ0) cos(kr(z + z′)− 2ΘQ0
)
]
. (46)

For even cavities, ΘQ0 is an integer multiple of π, and
thus we can write:

D+
3D(r, r′, z, z′) =

1

2

[
Glocal (r, r′) cos[kr(z − z′)]

± Gnonlocal (r, r′) cos[kr(z + z′)]
]
. (47)

This expression matches the form of the interaction in-
troduced in the companion paper [1]. Integrating this
over atomic density waves naturally recovers the interac-
tion matrix discussed in Sec. III A, while for spin degrees
of freedom, this expression can be directly applied, de-
pending on the locations of trapped spinful atoms.

IX. BEYOND CONFOCAL CAVITIES

All the results so far are based on cavity configura-
tions near the confocal geometrical configuration. How-
ever, there exist a much wider set of Fabry-Pérot cavity
configurations with resonances at which multiple modes
become degenerate. To describe these cases, let us note
that we can consider all degeneracies as arising from the
way the frequencies of different transverse modes shift
and cross as one varies the length of the cavity from a
short (nearly planar) configuration of L � R, past the
confocal point of L = R and toward the concentric limit
of L = 2R. This is illustrated in Fig. 5. In the following,
we first review the basic physics of higher-order degenera-
cies, generalizing the discussion of Ref. [16]. We provide
the following summary here for completeness.

A. Generalized degeneracy conditions

The cavity lengths at which degeneracies occur can be
understood by considering the frequency at which the
fundamental (i.e., TEM00 mode) of one family is crossed
by the Nth transverse modes of a family that is M -FSRs
away. That is to say, the nµ = 0 mode of one family
(with longitudinal mode number Q0) is degenerate with
the modes nµ = N from a different family with longitu-
dinal mode number Q0 −M . We refer to these as M/N
resonances. For example, the confocal situation corre-
sponds to M/N = 1/2, and concentric to M/N = 1.
Due to the linearity of the frequency shifts with mode
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Planar

M/N=1/3
Confocal

FSR

Concentric

FIG. 5. Diagram illustrating evolution of cavity frequencies
versus changing cavity length. Black vertical lines at the top
of the panel indicate different longitudinal resonances, sepa-
rated by one free spectral range (FSR). As one moves from
the planar limit (top, L � R) to the concentric limit (bot-
tom, L = 2R), the different transverse modes within a given
mode family split and cross with those from higher longitu-
dinal families. Some degenerate configurations are indicated
by horizontal blue lines.

index, we may note that at the M/N degeneracy, as well
as the nµ = 0 mode of one family being degenerate with
the nµ = N mode of the family M -FSR away, it is also
degenerate with the nµ = 2Nth mode of the family 2M
away, and so on. Therefore, the cavity becomes highly
degenerate. Moreover, the 1st-order transverse modes of
a given family will be degenerate with the N+1th modes
of the family M away, etc. Thus, there are N distinct
types of degenerate points, generalizing the two odd/even
sets of degeneracy families of the confocal case.

The condition on cavity length and mirror curvature
required for such a degeneracy can be found by requir-
ing equal wavevectors between pairs of modes indexed as
described above. Using the mode functions as written
in Eq. (2), and in particular, the phase θµ,Q(z) written
in Eq. (3), we find that to match the boundary condi-
tions that cavity light vanishes on-axis at the mirrors at
z = ±L/2, we require that

−kµ,Q
L

2
− θµ,Q (−L/2) =

π

2
, (48)

kµ,Q
L

2
− θµ,Q ( L/2) =

π

2
+Qπ. (49)

where kµ,Q is the wavevector associated with the mode
with transverse index µ and longitudinal modenumber
Q. Note that as per its definition, Q counts the phase
difference between the mirrors, thus labelling the longitu-
dinal mode number. In addition, to match the boundary
condition across the transverse plane of the mirrors, we
require that the radius of curvature R(z) at the mirror
locations z = ±L/2 should match the mirror curvature
R.

To solve Eqs. (48) and (49), we take sums and differ-

ences. Using the definition of θµ,Q(z) in Eq. (3), these
yield the following equations:

kµ,QL = Qπ + 2ψ(L/2)(1 + nµ), (50)

2ξµ,Q = (Q+ 1)π + 2nµψ(L/2). (51)

The first of these equations is the condition to solve
for degenerate points. Specifically, our M/N resonance
means that the values of kµ,Q should be equal for (nµ, Q)
and (nµ + N,Q −M). The condition for this to occur
is thus Mπ = 2Nψ(L/2). Using the definition of ψ(z),
we may regard this condition as defining zR in terms of
L/2 to ensure resonance. We can then use this, combined
with the definition of R(z), to find the radius of curva-
ture at the mirrors. We thus find the M/N resonance
corresponds to:

zR =
L

2
cot

(
Mπ

2N

)
, R =

L

2
cosec2

(
Mπ

2N

)
.

From this condition we may note that even with a small
range of tunability of cavity length L, one can nonethe-
less realize high-order resonances by finding irreducible
fractions M/N near the confocal point of M/N = 1/2.

We may note that since the degeneracy is between
transverse modes with total index nµ separated by N ,
there will be N separate degeneracies, corresponding to
η = nµ mod N , with η ∈ {0 . . . N − 1}. Each of these
families has an offset cosine along the longitudinal direc-
tion. To see this, one may note that from the degeneracy
condition between modes (nµ, Q) and (nµ +N,Q−M),
we may thus label nµ = η + PN,Q = Q0 − PM for in-
teger P , where Q0 is the longitudinal mode number of
the lowest transverse mode in the given family. As a re-
sult ξµ,Q = ξQ0 = (π/2)(Q0 + 1 + ηM/N) is constant
within a given degenerate family. We also see that as
with the confocal case, families separated by one FSR
differ in phase by π/2, giving an associated offset of the
atomic density waves. We may note that while for the
confocal resonance, different mode families had orthogo-
nal longitudinal dependence, this is not true for general
M/N .

B. Generalized interaction matrix

Having found the resonances, we may now consider one
near-degenerate family with kµ,Q = kr and find the ef-
fective interaction matrix. Focusing on a single degener-
ate family, we consider atomic density waves of the form
cos(krz+ δ), sin(krz+ δ) with a phase offset δ = ΘQ0

(z0)
chosen to match the given family. One may show that the
matrix describing the cavity-mediated matrix of Green’s
functions takes exactly the same form as in Eq. (9), but
with modified overlap functions and a modified factor Sµ.
Specifically, the angle θ0(z0) appearing inOσµ is now given
by θ0(z0) = ψ(z0) + ψ(L/2) = arctan(z0/zR) +Mπ/2N ,
and the factor restricting the mode summation should
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now be:

Sηµ =
1

N

N−1∑
s=0

exp(i2πs(nµ − η)/N).

This gives 1 for nµ = η mod N , and zero otherwise. The
label η thus replaces the ± label for even/odd modes. We
can then similarly define

Gη(r, r′, ϕ) =
1

N

N−1∑
s=0

e−i2πsη/NG(r, r′, ϕ− i2s π
N

). (52)

Using the above, we can then calculate the interaction
matrix, the equivalent of Eq. (18); we find:

2Dη(r, r′) = 1Gη(r, r′, 0)

+
σz

2
[Gη(r, r′,−2iθ0) + Gη(r, r′, 2iθ0)]

+
σx

2i
[Gη(r, r′,−2iθ0)− Gη(r, r′, 2iθ0)] , (53)

which is identical in structure to the confocal case, up to
the replacement of G+ → Gη and the modified value of
θ0. One may also verify that by taking M/N → 1/2 and
using η = 0, 1 for the ± families, we recover the confocal
results.

In the confocal case, neglecting effects of finite cloud
size, we noted that at the cavity midplane, z0 = 0, and
the coupling between sine and cosine density waves van-
ished at all radii. The same applies here for η = 0 (anal-
ogous to the even modes considered before). In fact, we
can extend this to all η if we consider an η-dependent
shift to the phase offset δ. Specifically, we choose the
offset such that the overlap factors become

Oσµ =

{
cos(nµθ0 − πMη/2N) σ = c

sin(nµθ0 − πMη/2N) σ = s
. (54)

With this, we find that at the cavity midplane (where
θ0 = Mπ/2N), the remaining kernel takes the form:

2Dη(r, r′) = 1Gη(r, r′, 0)

+ σze−iπMη/NGη(r, r′,−iMπ/N). (55)

In terms of the spatial structure of these functions,
there is one notable differences between the confocal case
and the higher-order resonances. This is that in the con-
focal case, N = 2, and at the cavity midplane, the angle
θ0 = π/4 led to an especially simple form of the nonlocal
interaction, cos(2r · r′/w2

0). For the higher-order reso-
nances, no such simplification occurs, and thus the non-
local interaction takes a form involving a sum of terms of
the more general form cos(A+Br·r′/w2

0+C(r2+r′2)/w2
0).

Thus, for such a higher resonance, the output light com-
ing from a single spot involves not only a set of paral-
lel fringes (contours of constant r · r′), but also a set of
circular fringes around the location of the atom cloud.
Whether such interactions could be used for engineering
interesting cavity-mediated spin-spin interactions is the
subject of future work.

X. CONCLUSIONS AND OUTLOOK

We have shown that the structure of Gaussian modes
in a near-confocal multimode cavity leads to cavity-
mediated atom-atom interactions that can favor distinct
patterns of atomic density waves as one moves trans-
versely across the cavity. We find, moreover, that there
can exist specific radii where there is phase freedom for
the atomic density wave. For a perfectly confocal cavity
and small-sized BECs, such radii exist at all longitudinal
distances along the cavity. Including effects of finite non-
confocality, the emergent symmetry exists on the mid-
plane of the cavity, while elsewhere we have symmetry
breaking. Nonetheless, the symmetry-broken state still
shows interesting phase evolution of the atomic density
wave versus radius, smoothly evolving between sine and
cosine density waves as the atomic gas is moved across
the transverse plane. Such behavior matches that which
we report experimentally.

The results presented here provide the foundation to
further control the cavity-mediated interaction among in-
tracavity atoms and atomic spins. In particular, we show
that a configuration involving two pump laser frequencies
can induce a full U(1)-symmetry, even accounting for im-
perfections of the real cavity. This provides a route to
exploring liquid crystalline order [14, 15] in experimen-
tally accessible conditions with a confocal cavity. At the
same time, we showed how other, more complex, interac-
tions can be engineered, by using higher-order cavity res-
onances. In particular, since resonances are labelled by
irreducible fractions M/N , high-order resonances can be
realized without requiring a significant change of cavity
length. These higher-order resonances provide a further
tool in realizing tunable cavity-mediated interactions.
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Appendix A: Finite BEC extent along cavity axis

One additional effect that may be considered as a
source of breaking of the U(1)-symmetry is the finite ex-
tent of the atom gas along the cavity axis. This corre-
sponds to relaxing our simplifying assumption that the
phase of cavity modes is constant over the extent of the
atomic gas, and can result in a more complicated overlap
factor in Eq. (12). However, as seen below, this effect on
its own does not to lead to a smooth phase evolution.

To account for this effect, we must return to the def-
inition of the overlap factor to include variation of the
Gouy phase in the integral over z that appears in this
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factor. That is, we cannot write this effect as a sin-
gle integral over z at the end of the calculation. From
Eq. (11), the phase variation along the cavity axis di-
rection is θ0(z) = π/4 + arctan (z/zR). We may expand
around the midpoint of the atom cloud, z0, and linearize
to write θ0(z) ≈ θ0(z0) + θ′0(z0)(z − z0). The modified
overlap factor should then include an integral over the
density profile |Z(z − z0)|2 of the atoms along the z di-
rection

Oσµ =

∫
dz|Z(z − z0)|2

{
cos [nµθ0(z)] σ = c

sin [nµθ0(z)] σ = s
. (A1)

Assuming a Gaussian density profile

|Z(z − z0)|2 =
1√

2πw2
z

exp

(
− (z − z0)2

2w2
z

)
, (A2)

the result of the integral is given by

Oσµ =

cos [nµθ0(z0)]exp
[
−n

2
µ(wzθ

′
0(z0))2

2

]
σ = c

sin [nµθ0(z0)]exp
[
−n

2
µ(wzθ

′
0(z0))2

2

]
σ = s

.

(A3)
Because of the appearance of the n2

µ factor in the expo-
nent, we can no longer apply Eq. (15) to evaluate the
sum in Eq. (14). We can nonetheless see that the off-
diagonal term still vanishes for θ(z0) = π/4. Thus, once
again, we see the variation of the cavity mode phase has
no effect on the symmetry breaking for atoms located at
the midplane of the cavity. The presence of the n2

µ fac-
tor in the exponent also means we can no longer find a
simple expression for the effect of this term away from
the cavity midplane. We leave additional explorations of
this effect to future work.

Appendix B: Field Profile in a Confocal Cavity

In order to understand the effects of the confocal
cavity-mediated interaction, it is helpful to evaluate the
cavity light profile corresponding to a given atomic cloud
position. The full cavity field profile can be written as

Φ(r, z) ∝
∑
µ

αµΞµ

(
w0r

w(z)

)
×

cos

[
kr

(
z +

r2

R(z)

)
−ΘQ0

− nµθ0(z)

]
S+
µ ,

(B1)

where αµ is given by Eq. (19) and R(z) is the radius of
curvature of the wave front defined below Eq. (2). In
writing this, to find the full 3D variation of the field,
we have made explicit the variation of the beam waist
w(z) = w0

√
1 + z2/z2

R along the cavity axis, which was
implicit in previous equations. In the adiabatic limit, we
can write αµ in terms of the condensate density profile,

and considering the exact confocal case, we make use of
Eq. (15) to perform the summation over µ. This yields:

Φ(r, z) ∝ <
[∫

dr′ρ(r′)D3D

(
w0r

w(z)
, r′; z

)

× exp

{
i

[
kr

(
z +

r2

R(z)

)
−ΘQ0

]}]
, (B2)

with

4D3D (r, r′; z) = G(r, r′,−θ0(z) + θ0(z0))

+ e2iτG(r, r′,−θ0(z)− θ0(z0))

+G(r, r′,−θ0(z) + θ0(z0) + π)

+ e2iτG(r, r′,−θ0(z)− θ0(z0) + π), (B3)

where τ = 0 (π/2) differentiates between χc (χs) density
waves. Assuming the atoms are in a Gaussian transverse
profile with width σA centered at r0, as in Eq. (39), we
can explicitly evaluate the integral:

∫
dr′ρ(r′)G(r, r′, φ) =

w2
0e
−iφ

2π (4σ2
A cosφ− iw2

0 sinφ)
×

exp

[
−2r2

0 cosφ− 4r0 · r + 2r2(w2
0 cosφ− i4σ2

A sinφ)/w2
0

4σ2
A cosφ− iw2

0 sinφ

]
.

(B4)

Summing over all the contributions in Eq. (B3), we can
then compute the total light field inside the cavity. For a
BEC located at z = 0, the field in the cavity transverse
plane reduces to a simple form

Φ(r) ∝ w2
0

4πσ2
A

[
exp

(−(r− r0)2

2σ2
A

)
+ exp

(−(r + r0)2

2σ2
A

)]
+
e2iτ

π
exp

(
−4σ2

A|r|2
w4

0

)
cos

(
2r · r0

w2
0

)
. (B5)

The overall amplitude of the nonlocal contribution
cos(2r · r′/w2

0) decays like a Gaussian with width deter-
mined by the transverse size of the atom density profile.
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