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Motivated by recent experiments, we model the dynamics of bright solitons formed by cold gases
in quasi-1D traps. A dynamical variational ansatz captures the far-from equilibrium excitations
of these solitons. Due to a separation of scales, the radial and axial modes decouple, allowing for
closed-form approximations for the dynamics. We explore how soliton dynamics influence atom
loss, and find that the time-averaged loss is largely insensitive to the degree of excitation. The
variational approach enables us to perform high precision calculations of the critical atom number
(ie. the maximum number of atoms that can exist in a single soliton before the attractive forces
overwhelm quantum pressure, leading to collapse).

I. INTRODUCTION

Solitons are localized excitations of nonlinear media
which robustly maintain their shape [1, 2]. Due to their
robustness they play key roles in settings as disparate
as weather patterns, optical fibers, and quantum degen-
erate atoms [3]. The latter has provided a particularly
large degree of control, enabling the quantitative inves-
tigation of a wide range of soliton phenomena [4]. For
example, cold atom solitons can collapse and explode in
a “Bosenova” [5], form mesoscopic Bell states [6], and
improve the noise floor of a matter-wave interferometer
[7]. Here we model the far from equilibrium dynamics of
a single bright soliton formed from an atomic gas in a
highly anisotropic trap.

This study is motivated by experiments at Rice Univer-
sity where a quantum degenerate gas of bosonic lithium
atoms is confined by a quasi-1D trap [8]. The interactions
are suddenly changed from repulsive to attractive, which
makes the cloud unstable. This modulational instability
causes the cloud to break up into a train of solitons. The
solitons bounce off one another and undergo large shape
deformations. A similar experiment can be found in [9].
Here we model the dynamics of the shape deformations
of a single soliton in the train. We use a time depen-
dent variational method to derive equations of motion
for parameters which describe the soliton’s shape. We
furthermore make a series of approximations which yield
closed-form expressions for the length and thickness of
the soliton. For much of the experimentally relevant pa-
rameter range, we find that the closed-form expressions
provide a good approximation to the dynamics.

Due to three-body processes, atoms are continually
scattered out of the solitons and lost from the trap. Inter-
estingly, the experimental loss rate appears to be orders-
of-magnitude faster than would be expected from mod-
els of static solitons. One possible hypothesis is that the
extra loss is due to the large-scale oscillations of the soli-
tons. We model this process, exploring how atom loss is
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FIG. 1. Geometry of soliton-shaped atomic cloud. Scale bar
shows typical size in experiments [8].

influenced by the dynamics. In the regime of large oscil-
lations, collisions predominantly occur when the cloud is
most compressed. We quantify these episodic losses and
characterize their dependence on the amplitude of the
oscillations. Radial oscillations slightly increase the loss
rate, while axial oscillations slightly decrease it. Since
the size of the effect is relatively small, we conclude that
this hypothesis is not able to account for the greatly en-
hanced loss observed in the experiment.

The nonlinear dynamics literature contains some dis-
cussion of dynamical solitons – particularly “breathers,”
which are a class of time dependent solutions to equations
such as the nonlinear Schrodinger equation. Breathers
are important for understanding phenomena such as
rogue waves, and have some connections to the physics
explored here. Also relevant are the prior studies of soli-
ton excitations, primarily in lower dimensions and in the
linear response regime [10–14].

We use two distinct approaches to modeling the soli-
ton dynamics. The first, and most conventional, is to
discretize space and numerically integrate the Gross-
Pitaevskii equation. The second is to write down an
ansatz wavefunction and derive a set of coupled ordinary
differential equations for the parameters from a time-
dependent variational principle. The second approach
is much more numerically efficient than the first, as it
identifies the most important degrees of freedom. We
systematically increase the number of parameters in the
ansatz. The six-parameter Gaussian ansatz captures the
qualitative features, while the sixteen-parameter ansatz
is more accurate than our spatial discretization approach
(using a grid-spacing appropriate for calculations on a
laptop computer). Using a separation-of-scales, we sim-
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FIG. 2. Energy landscape of a soliton within the Gaussian ap-
proximation. Lengths and energies are measured in transverse
oscillator units. Parameters: ωr/ωz = 50, and N/Nc = 0.64.
Contours are labeled by energies, and spaced quadratically.

plify the equations for the Gaussian ansatz, and make a
formal mapping onto two classic problems, simple har-
monic and planetary motion. We thereby produce ap-
proximate closed-form solutions to the equations and find
invariants which have physical significance.

Throughout this paper we model a single soliton. By
contrast, the most recent experiments at Rice University
study a train of 10-20 solitons. Although generalizing our
results to a soliton train is straightforward, it is beyond
the scope of this study. Qualitative features, such as
the dependence of loss-rate on excitation amplitude, are
nonetheless directly relevant to these experiments [8].

II. MODEL

The cold gas experiments of [8] are well-modeled by the
three-dimensional, axially symmetric Gross-Pitaevskii
equation with a harmonic trap and three-body loss [15],

ih̄∂t̃ψ̃ = − h̄2

2m
∇̃2ψ̃ +

m

2
(ω̃2
r r̃

2 + ω̃2
z z̃

2)ψ̃

+ g̃|ψ̃|2ψ̃ − iΓ̃3|ψ̃|4ψ̃, (1)

where the tilde symbols are used to denote quantities
with physical units. Planck’s constant is h̄, and the
atomic mass is m. The axial trap frequency ω̃z is much
smaller than the radial frequency ω̃r: in the experiments
of [8], ω̃r

2π = 346 Hz, and ω̃z

2π = 7.4 Hz. For the soli-
ton dynamics that we study, the axial trap plays a very

small role. Thus, we set ω̃z = 0 for most of the dis-
cussion. The atoms interact via a short-range poten-
tial with scattering length as, yielding a coupling con-
stant g̃ = 4πh̄2as/m. In the experiments, as is tuned
via a Feshbach resonance [16] from approximately 3a0

to various negative values of order −a0, where a0 is
the Bohr radius. Atom losses from inelastic three-body
collisions are modeled by the term proportional to Γ3,
where Γ3 = L3/12 ∼ 10−29 cm6/s. Physically, the
atomic density is n(r) = |ψ(r)|2. We adimensionalize

this equation, scaling length as x =
√

mω̃r

h̄ x̃, time as

t = ω̃r t̃, frequency as ω = ω̃
ω̃r
, and the wavefunction as

ψ = ( h̄
mω̃r

)
3
2 ψ̃. The dimensionless coupling constants are

g = 4
√

2π3h̄ω̃r(
h̄

mω̃r
)

3
2 g̃ and Γ3 = m3ω̃2

r h̄
−3Γ̃3

We study systems with attractive interactions: as < 0.
In the absence of loss, Eq. (1) will have a metastable

soliton solution as long as N < Nc = kc

√
h̄

mω̃r

1
|as|

[17, 18]. In Sec. III, we calculate that kc = 0.677986(2)
when ωz = 0. As explained in [19], this equilibrium
physics can be understood through a Gaussian ansatz
ψ ∝ exp(−r2/(2`2r) − z2/(2`2z)). The energy as a func-
tion of `r and `z is

Egauss =
N

2

(
1

`2r
+

1

2`2z
+ `2r +

gN

`2r`z

)
(2)

An example energy landscape is shown in Fig. 2 for a
particular N < Nc. It consists of two basins, separated
by a saddle. In the region where both `z and `r are small,
the attractive interactions dominate, causing the cloud to
shrink rapidly. Consequently, the density becomes very
high and rapid three-body recombination leads to large
atom losses [20, 21]. This process of shrinking and evap-
orating is often referred to as a collapse. When N < Nc
the energy landscape also contains a local minimum at
finite `z and `r where the soliton is metastable. The
energy landscape is highly anisotropic around this min-
imum: the curvature of the energy landscape in the `z
direction is much smaller than the curvature in the `r di-
rection. In the limit N � Nc, the low energy dynamics
become purely axial, and Eq. (1) reduces to a 1D nonlin-
ear Schrodinger equation [19].

When N > Nc the energy landscape is qualitatively
different, with no stationary points at nonzero `z and
`r. In this limit a single soliton will always collapse. As
is illustrated by the experiment, the only way to have
N > Nc is to have multiple solitons.

To model the dynamics of a soliton, we extend the
ansatz to a completely general time-dependent form,

ψ(r, z, t) =
A(r, z, t)

π
3
4 `z(t)

1
2 `r(t)

exp[− r2

2`r(t)2
− z2

2`z(t)2
]

exp[ir2φr + iz2φz], (3)

where again `r(t) is the radial size, and `z(t) is the axial
size. The phases proportional to r2 and z2 are related to
currents.
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The factor A(r, z, t) determines the number of particles
in the soliton and accounts for all deviations from the
Gaussian shape. We impose cylindrical and inversion
symmetry. Consequently, we expand A in a set of even-
degree orthogonal polynomials, up to total degree 2n:

A =
∑

l+m≤n
l,m≥0

clm(t)

2ll!
H2l

(
z

`z

)
Lm

(
r2

`2r

)
, (4)

where Hk(z) is the kth Hermite polynomial and Lk(r) is
the kth Laguerre polynomial. The factors are chosen so
that

N =

∫
d3x |ψ|2 =

∑
l+m≤n
l,m≥0

|clm|2. (5)

In the limit n→∞, the exact solution to Eq. (1) can be
written in the form of the ansatz in Eq. (4). By increas-
ing n, we can increase the accuracy of our approximation,
at the expense of increasing the number of coupled equa-
tions which need to be solved.

To derive the equations of motion for our varia-
tional parameters we write the Gross-Pitaevskii equation,
Eq. (1), as

δS

δψ∗
= −iΓ3|ψ|4ψ (6)

where the action S is a functional of ψ,

S =

∫
dt d3x [iψ∗∂tψ −H] (7)

H =
1

2
|∇ψ|2 +

1

2
(r2 + ω2

zz
2)|ψ|2 − 1

2
|g||ψ|4. (8)

Note that the dissipative term cannot be incorporated
into the action.

Taking the variational derivative of Eq. (7), we see that

δS

δc∗lm
=

∫
d3x

δS

δψ∗
∂ψ∗

∂c∗lm
. (9)

We then use the equations of motion, Eq. (6), to arrive
at our equations for the variational parameters,

δS

δc∗lm
=

∫
d3x (−iΓ3|ψ|4ψ)

∂ψ∗

∂c∗lm
. (10)

Similarly we have two equations associated with `r and
`z,

δS

δ`r,z
=

∫
d3x (−iΓ3|ψ|4ψ)

∂ψ∗

∂`r,z
+ h.c. (11)

We use a computer algebra system to perform the in-
tegrals in Eqs. (10)-(11), to arrive at a coupled set of
equations for the variational parameters. Section IV A
gives explicit examples in the Gaussian case.

In addition to the time-dependent variational ap-
proach, we analyze Eq. (1) by discretizing time and space.
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FIG. 3. Values k̄n for different ansatzes are plotted against
the corresponding number of parameters, Np. The nearly
horizontal black lines convey that n must be increased by 2
to get a better prediction. We do not understand the reason
for this pairing behavior for higher n. The horizontal gray line
indicates the best fit value of kc. The inset shows the natural
log of the difference between consecutive even-n predictions.
The convergence is not quite exponential.

We then use a split-step algorithm to numerically calcu-
late the dynamics of a soliton [22]. The results of the
discretization approach agree with the results of the vari-
ational approach. The comparison is discussed in sec-
tion IV B.

III. CRITICAL ATOM NUMBER

As a first application of our variational wavefunction,
we calculate Nc, the maximum number of atoms which
can be found in a static condensate. A soliton with more
atoms than Nc is unstable and will collapse. As already
explained, the critical atom number can be expressed as

Nc = kc

√
h̄

mω̃r

1
|as| , where kc is a dimensionless quantity

that only depends on the trap geometry [17, 18]. Much
theoretical [17, 18, 23–27] and experimental [29, 30] ef-
fort has been devoted to calculating kc. In particular,
Parker et al. [18] calculated that kc = 0.675 ± 0.005
for a cylindrical harmonic trap (ωz = 0). They calcu-
lated this result with imaginary time evolution of the
discretized Gross-Pittaevskii equation, a numerically in-
tensive method. Their result agrees with similar analysis
by Gammal et al. and Salasnich et al. and with the
results of Cuevas et al. [24–26].

We calculate the same result using our variational
wavefunction, which is a polynomial of degree 2n times
a Gaussian. Since this is an equilibrium calculation, we
can take the coefficients of the polynomials ckj to be real.
The ansatz will haveNp = (n+1)(n+2)/2+2 parameters.

We define k̄n as the largest value of k = N |as|
√
mω̃r/h̄

for which our ansatz yields a soliton solution. Thus, the
best estimate for kc from a given ansatz is k̄n.
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To find k̄n, we first choose a modest k, which we know
is below k̄n. We then optimize the parameters of our
ansatz by minimizing the energy, using a conjugated gra-
dient method. Subsequently, we slightly increase k and
repeat the minimization, using our previous solution as
the starting point. We continue in this manner until a
local minimum cannot be found – at that point we know
we have k ≈ k̄. We further refine our estimate of k̄n by
using sequentially smaller step sizes.

The resulting k̄n values, shown in Fig. 3, converge
rapidly with n. Interestingly, we find nearly identical
results for k̄n when n = 2m and n = 2m + 1, which
we have indicated by the approximately horizontal black
lines in Fig. 3. There is a small, but nonzero difference
between k2n and k2n+1, except for n = 0 where the two
results are identical (k̄0 = k̄1 = 3−3/4

√
π).

This equality is expected: If we let ψn represent the
variational wavefunction at fixed n, then(

∂ψ1

∂c10

)
c10=c01=0

∝ ∂ψ0

∂`z
, (12)

and a similar expression holds for c01 and `r. Thus a
stationary point of the energy with the Gaussian Ansatz
is also a stationary point with the n = 1 ansatz, taking
c10 = c01 = 0. This argument fails to explain the near-
degeneracy at larger n, because it cannot distinguish be-
tween even n and odd n for n > 0. We do not have an
explanation for this finding.

The even-n data is well approximated by a power law,
k̄n = kc+a(n−b)−c. We fit the parameters a, b, and c in
log space, by minimizing χ2 =

∑
n ln[k̄n−2−k̄n]−ln[a(n−

2−b)−c−a(n−b)−c]. The fit is illustrated by the inset of
Fig. 3. We then extract kc, by requiring that our ansatz
pass through the final data point. The uncertainty is
estimated by repeating the fit with one fewer data point,
which gives an uncertainty in kc of 1.6×10−6. We further
confirmed the extrapolation by fitting the odd-n data,
and by considering a number of alternative functional
forms. In all cases the results differed by numbers of order
10−7 or smaller. We conclude that kc = 0.677986(2),
corresponding to the horizontal gray line in Fig. 3.

A comparison of the value of Nc for different values of
n gives a good estimate for the accuracy of each ansatz.
From the data, the Gaussian ansatz has a 15% error, the
n=4 ansatz has a 0.4% error, and the n=8 ansatz has a
0.02% error.

IV. DYNAMICS

In Sec. IV A we analyze the equations of motion for the
Gaussian ansatz. In particular, in Sec. IV A 1 through
IV A 4 we derive approximate analytic solutions to the
equations of motion, and in Sec. IV A 5 we describe their
limitations. In section IV B, we go beyond the gaussian
approximation, calculating dynamics for the ansatz with
larger n, and compare those results to a numerical inte-
gration of the Gross Pittaevskii equation.
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FIG. 4. Dynamics of
√
〈r2〉,

√
〈z2〉 and atom number N for a

soliton with highly excited (solid black, dotted blue, and dot-
dashed green) or quasi-stationary (dashed red) initial condi-
tions. The solid black and dashed red curves were calculated
using the variational wavefunction in Eq. (3), with n = 2.
The dotted blue curves were simulated in the Gaussian ap-
proximation (n = 0), and the dot-dashed green curves show
our analytic solutions to the Gaussian ansatz equations, based
upon an adiabatic decoupling scheme. In (a), the solid black
curve covers the dotted blue and dot-dashed green curves
due to excellent agreement in the radial coordinate. Param-
eters: ω̃r/(2π) = 346 Hz, ωz = 0, as = −0.18a0, which gives
Nc = 26130, and Γ3 = 6.4× 10−20 cm6/s.

A. Gaussian Ansatz

The most important parameters describing a soliton
are the dimensionless width `r, length `z, and particle
number |c00|2 = N . In this section we analyze the Gaus-
sian ansatz, given by Eq. (3) with n = 0. The Gaussian
ansatz has six parameters: the above three variables, the
global phase of the soliton, arg(c00) = χ, and the vari-
ables φr and φz which account for the probability cur-
rents. As already explained, we work in units set by the
radial harmonic confinement. In this case the action can
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be written as

S = −
∫
dt

(
N

2`2r
+
N`2r

2
+N`2r(2φ

2
r + φ̇r) +

N

4`2z

+
Nω2

z`
2
z

4
+

1

2
N`2z(2φ

2
z + φ̇z) +

gN2

`2r`z
+Nχ̇

)
(13)

Taking the variational derivatives as in Eqs. (10,11)
then yields

φr −
˙̀
r

2`r
=

Ṅ

6N
(14)

φz −
˙̀
z

2`z
=

Ṅ

6N
(15)

2`r(φ̇r + 2φ2
r) + `r −

1

`3r
− 2gN

`3r`z
= 0 (16)

2`z(φ̇z + 2φ2
z)−

1

`3z
− 2gN

`2r`
2
z

= −ω2
z`z (17)

Ṅ +
2Γ3N

3

3
√

3π3`4r`
2
z

= 0 (18)

χ̇+
1

`2r
+

1

2`2z
+

7gN

2`2r`z
= 0. (19)

1. Decoupling of timescales

Because of the quasi-1D geometry of the soliton, the
timescale of the oscillations in the radial direction is much
smaller than that of the oscillations in the axial direction.
Both oscillation timescales are much smaller than the
timescale of the atom losses. The separation of these
timescales enables an adiabatic decoupling approach [31].

First, the terms on the right side of Eqs. (14)-(19)
are insignificant and will be neglected. With this ap-
proximation in place, The phases, φr, φz, are related
to the lengths `r, `z by φ = ˙̀/(2`), and consequently

2`(φ̇ + 2φ2) = ῭. This observation allows us to com-
bine Eq. (14) and Eq. (16) and combine Eq. (15) and
Eq. (17) into second order differential equations with no
first-derivative terms:

῭
r + `r −

(
1 +

2gN

`z

)
1

`3r
= 0. (20)

῭
z −

2gN

`2z`
2
r

− 1

`3z
= 0. (21)

Now we can take advantage of the different time-scales
in the problem. Since `z and N are slowly varying
compared to `r, we first solve Eq. (20) with `z and N
fixed. We then solve Eq. (21), replacing `−2

r with its
time average,

〈
`−2
r

〉
. As we will soon see,

〈
`−2
r

〉
=

1/
√

1 + 2gN/`z ≈ 1, is not only slowly varying, but
also nearly constant. We will then solve Eq. (21) when

gN/`z � 1, and substitute those solutions into Eq. (18)
to find N(t).

As we explain in section IV A 2, one can map these
equations onto two iconic problems in classical mechanics
to arrive at analytic solutions. For `r, the solution is the
distance from the center of an ellipse to its edge,

`2r =a2 cos2 t+ L2

a2 sin2 t. (22)

where L =
√

1 + 2gN/`z and a is a parameter which
determines the amplitude of motion. Similarly, `z(t) is
the distance from a focus of an ellipse to its edge. The
graph is a cycloid, defined parametrically by

`z(η) = A(1− ε cos η) (23)

t(η) = B(η − ε sin η). (24)

Here ε2 = 1 + Ez/(2g
2N2

〈
`−2
r

〉2
), A = (2|Ez|(1 −

ε2))−1/2, B = (4E2
z (1 − ε2))−1/2 and Ez is a parameter

determining the amplitude of the motion.

2. Solving equations of motion

To find the analytic results in Eqs. (22) and (27) we
note that Eqs. (21) and (20) are of the same form as the
central force equation:

r̈ +
1

m

dV (r)

dr
− L2

m2r3
= 0 (25)

with V ∝ r2 and V (r) ∝ −1/r. These correspond to the
harmonic and gravitational potential respectively. We
will find ~r(t), then our desired solutions are `(t) = r(t) =
|~r(t)|.

For the harmonic oscillator, Eq. (20), we can charac-
terize the elliptical motion by the semimajor axis of the
orbit a, and the angular momentum L =

√
1 + 2gN/`z.

The energy is Er = a2/2 + L2/(2a2). The particle’s tra-
jectory can be written as

~r(t) = ax̂ cos t+
L

a
ŷ sin t. (26)

Thus we see `r = |~r| is given by Eq. (22).
For Eq. (21), we can characterize the motion of the

particle by the energy Ez. The equations of motion for
r(t) = `z(t) can be integrated with a parametric substitu-
tion, as found in Landau’s Mechanics [32]. The solution
is a cycloid:

`z(η) =
1− ε cos η√
2|Ez|(1− ε2)

(27)

t(η) =
η − ε sin η

2|Ez|
√

(1− ε2)
, (28)

where ε2 = 1 + Ez/(2g
2N2

〈
`−2
r

〉2
) is the eccentricity of

the orbit. Bound gravitational orbits, which correspond
to self-trapped solitons, have Ez < 0. When Ez ap-
proaches zero from below, `z,max diverges as 1/|Ez| while
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`z,min approaches a constant value. Physically, Ez > 0
means that a soliton is no longer self-trapped and can ex-
pand to infinite size. However, any nonzero trapping in
the axial direction (ωz 6= 0) would restrain this unlimited
expansion.

3. Invariants

One insightful result from the decoupling approxima-
tion is the existence of certain invariants, which are found
by considering the angular momentum L = mr2θ̇ of the
classical system. The integral of θ̇ over one period of
radial oscillation is π or 2π in the harmonic and gravia-
tional problems. For the radial motion this yields

〈`−2
r 〉 =

1

Tr

∫ Tr

0

dt

`2r
=

1√
1 + 2gN

`z

≈ 1, (29)

where we have used that the period of oscillation is Tr =
π. For the axial motion we instead find

Tz〈`−2
z 〉 =

∫ Tz

0

dt

`2z
= 2π, (30)

where Tz = 2π/[4g2N2(1− ε2)3/2〈`−2
r 〉2] is the period of

the axial motion.
We have three applications of these invariants. First,

we used Eq. (29) in our adiabatic decoupling. Second,
these invariants are useful in analyzing the evolution of
the phase χ. Though χ is a physically irrelevant global
phase for the case of the single soliton, in the context of
a soliton train, phase differences between adjacent soli-
tons affect the strength and sign of the soliton-soliton
interaction. The phase evolution in Eq. (19) is domi-
nated by terms proportional to 〈`−2

r 〉, which are indepen-
dent of the amplitude of radial oscillation. Consequently
the phase relationship between neighboring solitons in a
train will be robust against the oscillation of individual
solitons. There is some experimental evidence for this
phenomenon [8].

Finally, these invariants can be used to analyze the
atom loss in Eq. (18). The time averaged loss is propor-
tional to 〈`−2

z 〉 ≈ 4g2N2(1− ε2)3/2.

4. Atom Loss

As explained in the introduction, the experimentally
observed atom loss rate is orders-of-magnitude larger
than one would expect for static solitons. We investi-
gated whether or not the oscillations of the solitons were
responsible for this discrepency. Using Eqs. (29) and

(30), the average of Ṅ over these oscillations is

Ṅ ≈ N5Er(1− ε2)
3
2 8Γ3g

2/3
√

3π3 (31)

The atom loss rate depends on the amplitudes of radial
and axial oscillation through Er and ε, respectively. In

the absence of oscillations, ε = 0 and Er = 1+O(gN/`z).

Axial oscillations increase ε, and hence decrease Ṅ . Ra-
dial oscillations increase Er and hence increase Ṅ . This
dependence, however, is weak. If (`z)max/(`z)min = 2
one has ε2 = 1/9, while if (`r)max/(`r)min = 2 one has
Er = 1.25. We conclude that the oscillations cannot ex-
plain the orders-of-magnitude enhancement of the loss in
[8].

We can integrate Eq. (31) over time-scales large com-
pared to the oscillation period:

N(t) ≈ N(0)(
1 +

4N(0)4(2g)2(1−ε2z)
3
2Er

3
√

3π3
2Γ3t

) 1
4

. (32)

Fig. 4c shows the atom loss in a soliton undergoing a
large amplitude axial oscillation with ε = 0.87. Thus,
the dynamic soliton loses atoms at a lower rate: the dot-
dashed green curve in the plot, given by Eq. (32), de-
creases more slowly than the dashed red curve, which
represents the atom number of a non-oscillating soliton.

5. Beyond Decoupling

To study corrections to the decoupling approximation,
we numerically integrate Eqs. (14) through (19). In Fig. 4
the dotted blue lines show the numerical solution within
the Gaussian approximation, while the dot-dashed green
lines show the closed-form predictions from Eqs. (22),
(27), and (32).

Though these closed-form solutions are fairly accurate
for large ranges of the parameters, they do not explain
certain features of the dynamics. First, the soliton loses
atoms at the greatest rate when the cloud is smallest
during each oscillation. This short timescale behavior is
not captured in Eq. (32), but when averaged over one
period, the closed-form prediction is quite accurate.

Second, the analytic solutions do not capture the slow
equilibration between the radial and axial motions. The
interaction term can slowly shift energy between the ra-
dial and axial modes, until their amplitudes have reached
equilibrium. With the current experimental conditions,
though, the soliton degrades long before its motion ap-
proaches equilibrium. Thus, this effect is not currently
experimentally observable.

It is possible to find perturbative analytic solutions
which capture these two behaviors. However, for this
level of detail, it is more illuminating to investigate the
features of the full numerical results.

B. Beyond Gaussian Approximation

To more accurately model the dynamics we integrate
the coupled ordinary differential equations produced by
Eqs. (10) and (11) for more complicated ansatzes with
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FIG. 5. Radius
√
〈r2〉 calculated with the n = 2 variational

ansatz (line) and the spatially-discretized finite-difference ap-
proach (dots).

larger values of n. Fig. 4 shows an example simulation
comparing an ansatz with n = 2 (with 6 complex varia-
tional parameters controlling the functional form) to the
Gaussian ansatz (with 1 complex variational parameter
controlling the functional form) and to the case where
the soliton is not oscillating.

The radial dynamics in panel (a) of Fig. 4 show quan-
titative agreement between the analytic solution and the
full simulations. This agreement is also underscored in
Fig. 5, where we compare our variational calculations to
a numerical method based on discretizing Eq. (1). This
discretization approach follows [22] and uses a split-step
integrator, taking an adimensional spatial grid spacing
of 0.05 and a timestep of 0.001. We ran the simulation
over only one radial oscillation because of the compu-
tational intensity of the discretization method. Fig. 5
validates the variational results, since they are nearly in-
distinguishable from the results of spatial discretization.

For the axial dynamics in panel (b) of Fig. 4, quanti-
tative predictive power is lost after a single axial oscilla-
tion. The decoupling approximations break down when
the soliton is sufficiently compressed. To illustrate this
breakdown, in Fig. 6a, we show a longer simulation using
the n=2 ansatz (16 real variational parameters) with the
same initial conditions as in Fig. 4. We use a density-
plot to show the ”axial density”, ρ(z) =

∫
d3rn(r, z) as

a function of time. For an excitation of this amplitude,
the dynamics are quite rich. Energy moves between the
various degrees of freedom, and it is likely that the be-
havior is chaotic: the variations in the amplitude cause
large variations in the period of oscillation, which in turn
affect the amplitude. Fig. 6b shows the results of using
the Gaussian ansatz, which does not contain enough de-
grees of freedom to capture the richness of the dynamics.
The Gaussian approximation is, however, reliable over
shorter timescales or for small amplitudes.

V. SUMMARY

To summarize, we studied a systematic set of varia-
tional ansatzes for the static and dynamic properties of

bright solitons in an attractive Bose gas in a cylindri-
cally symmetric trap. We presented a precise variational
calculation of kc = Nc|as|

√
mω̃r/h̄, where Nc is the crit-

ical atom number, above which a single soliton will col-
lapse. We found that for a cylindrical harmonic potential,
kc = 0.677986(2). We studied the dynamics, and found
closed-form solutions to the equations from the simplest
ansatz by a formal mapping to two familiar classical sys-
tems. This simple solution captures all of the significant
qualitative features and some of the quantitative features
of the far-from-equilibrium dynamics of a bright soliton.

The oscillations of the soliton affect the atom loss,
causing it to occur episodically. When time-averaged,
however, we find that the loss rate only depends weakly
on the oscillation amplitude. We conclude that the sur-
prisingly large loss rate seen in the experiments [8] cannot
be explained by this dynamical effect.

Although we solely considered the behavior of a single
soliton, the generalization to a soliton train is straight-
forward. Similar techniques could also be used to explore
the soliton generation process, where a monolithic atomic
cloud breaks up into an array of solitons.
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∫
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