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We investigate pairing in a strongly interacting two-component Fermi gas with positive scattering
length. In this regime, pairing occurs at temperatures above the superfluid critical temperature;
unbound fermions and pairs coexist in thermal equilibrium. Measuring the total number of these
fermion pairs in the gas we systematically investigate the phases in the sectors of pseudogap and
preformed-pair. Our measurements quantitatively test predictions from two theoretical models.
Interestingly, we find that already a model based on classical atom-molecule equilibrium describes
our data quite well.

PACS numbers: 03.75.Ss, 67.10.Db, 67.85.Lm

I. INTRODUCTION

A unique feature of fermionic superfluids is the pair-
ing. For a weakly interacting Bardeen-Cooper-Schrieffer
(BCS) superfluid pairing occurs directly at the critical
temperature for superfluidity Tc [1]. This pairing is ac-
companied with the emergence of an excitation gap ∆sc

which is identified with the superfluid order parameter
and ∆2

sc is proportional to the density of condensed pairs
[2]. For fermions with strong coupling, an excitation gap
already emerges at a temperature above Tc. This is re-
ferred to as the pseudogap regime [3]. The existence of
the pseudogap has been observed early on, e.g. in under-
doped high-Tc superconductors [4, 5]. While its nature
has been intensely studied, it is still not fully understood.
Understanding the pseudogap is expected to be the key
for revealing the mechanism behind high-Tc supercon-
ductivity [6, 7]. One interpretation of the pseudogap is
based on the presence of non-condensed pairs with non-
vanishing momentum [8].

Ultracold Fermi gases are an excellent system for in-
vestigating the gap and pseudogap physics from the BCS
to Bose-Einstein condensate (BEC) regimes [9]. Us-
ing radio-frequency (RF) spectroscopy in various forms,
e.g. [10–13], the excitation gap has been studied in the
way similar to angle-resolved photoemission spectroscopy
(ARPES) of solid state systems [14]. Evidence for pair-
ing above Tc was found in the RF experiments, as well as
in other physical quantities, such as viscosity [15], heat
capacity [16], and Tan’s contact [17, 18].

In this article, we investigate pairing of fermions for
various temperatures and interaction strengths on the
BEC side of the BEC-BCS crossover. For this, we mea-
sure the total number of bound fermion pairs Np in our
sample for T > Tc. Such counting of fermion pairs is

in general not possible for solid state systems and there-
fore complements existing methods. We determine the
fermion pair number by converting all atom pairs to
tightly-bound diatomic molecules, either by photoexci-
tation [19] or by a fast magnetic-field ramp [20, 21] and
measuring the decrease in atom number of the cloud.
When we compare the measured and calculated pair
numbers we find quite good agreement with two models:
an ab initio t-matrix approach and a classical statisti-
cal model of atom-molecule equilibrium [22]. We provide
an explanation why the classical model achieves good re-
sults, despite the fact that strong interactions and quan-
tum statistics play an important role in our system.
In the following, we consider an ultracold, spin-

balanced, strongly-interacting two-component Fermi gas
in a harmonic trap. Collisions lead to pairing of atoms
with opposite spins, |↑〉, |↓〉. For a given temperature and
interaction strength well defined fractions of pairs and
atoms are established at thermal equilibrium, as long as
collisional losses are negligible. Figure 1 shows the phase
diagram of such a system in the vicinity of a Feshbach res-
onance at (kFa)−1 = 0. Here, a is the s-wave scattering
length, kF =

√
2mEF/~ denotes the norm of the Fermi

wave vector, m is the atomic mass, and EF = kBTF is the
Fermi energy in the trap center with kB the Boltzmann
constant. The dash-dotted and solid lines are contours
of constant molecular fractions Np/Nσ for two different
approaches. Here, Nσ = Np + Na is the number of all
atoms per spin state regardless whether they are bound
in pairs (Np) or free (Na). The dotted lines are calcu-
lations based on a self-consistent t-matrix approach [23],
while the solid lines correspond to a statistical mechanics
approach treating the particles as a canonical ensemble of
non-interacting molecules and atoms in chemical equilib-
rium (see [22] and Appendix A). Here, the molecules have
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FIG. 1. Theoretical phase diagram for a balanced two-
component harmonically trapped ultracold Fermi gas in the
vicinity of a Feshbach resonance (vertical line) where kF and
TF are determined in the trap center. Shown are calculated
contours for various pair fractions. Dotted lines are based
on a self-consistent t-matrix approach [23], while solid lines
are based on a classical model of non-interacting atoms and
molecules (see text) [22]. Close to the Feshbach resonance the
solid lines are blurred because the classical model is expected
to lose its validity. The cyan dash-dotted line marks a pair
breaking temperature, as calculated by [24] with a BCS mean
field model that was extended to the near-BEC regime. The
gray shaded area marks the superfluid phase below the critical
temperature Tc that was calculated within the self-consistent
t-matrix approach [25].

a binding energy of Eb = −~2/(ma2). Also shown is a
calculation (cyan dash-dotted line) by Perali et al. [24] of
the BCS mean-field critical temperature which provides
an approximate estimate of the pair breaking tempera-
ture. It partially coincides with the 50 % pair fraction
line of the statistical mechanics approach.

We carry out our experiments with a spin-balanced
two-component Fermi gas of 6Li atoms which is ini-
tially prepared at a magnetic field of 780 G. The atoms
have magnetic quantum numbers mF = +1/2 ( |↑〉 ) and
mF = −1/2 ( |↓〉 ) and correlate to the F = 1/2 hy-
perfine level of the ground state at 0 G. They are con-
fined in a harmonic 3D cigar-shaped trapping potential
which is generated in radial direction mainly by a fo-
cused 1070 nm dipole trap laser beam and along the ax-
ial direction mainly by a magnetic field gradient. The
temperature T is set via evaporative cooling and is mea-
sured by fitting a distribution obtained from the second
order quantum virial expansion to the outer wings of
the density profile [26]. The particle number Nσ per
spin state ranges from 3 × 104 for the lowest tempera-
ture of about 0.3TF to 3 × 105 for the highest temper-
ature of about 3TF. The population balance of the two
spin states is assured by means of a 100 ms long res-
onant RF pulse that mixes the two Zeeman states |↑〉
and |↓〉 . For a spin-balanced system the Fermi energy

is given by EF = ~(6Nσω2
rωa)1/3, where ωr and ωa de-

note the radial and axial trapping frequency, respectively.
In our experiment ωr ranges from about 2π × 300 Hz to
2π×1.6 kHz while ωa = 2π×21 Hz is almost constant as it
is dominated by the magnetic confinement. The interac-
tion parameter (kFa)−1can be tuned by changing either
the scattering length a via the broad magnetic Feshbach
resonance located at 832 G [27, 28], or by adjusting the
Fermi energy EF.

II. MEASURING THE PAIR FRACTION

In order to determine the pair fraction Np/Nσ we mea-
sure the particle numbers Np and Nσ separately. Nσ is
obtained by means of spin-selective absorption imaging
of the |↑〉 component using a σ−-polarized 671 nm laser
beam resonant with the D2 transition of 6Li [29]. This
transition is essentially closed due to a decoupling of the
nuclear spin and the total electronic angular momentum
in the Paschen-Back regime of the hyperfine structure
[30]. All |↑〉 atoms will be counted regardless whether
they are free or bound in the weakly-bound pairs. Since
the binding energy Eb of these pairs is always less than
h× 1 MHz in our experiments, the imaging laser is reso-
nant with both free atoms and bound pairs. In order to
determine the number of bound pairs Np, we transfer all
pairs to states that are invisible in our detection scheme
and measure again the remaining |↑〉 state atom number
via absorption imaging. We use two different bound-state
transfer methods which produce consistent results. They
are briefly described in the following.

A. Optical transfer (OT) method

This transfer method is based on resonant excitation of
fermion pairs to a more strongly bound molecular state
(A1Σ+

u , v
′ = 68) with a laser (λ = 673 nm) which is de-

tuned by 2 nm from the atomic transition, see also [19].
Subsequently, the excited molecules quickly decay to un-
detected atomic or molecular states, see Fig 2(a). This
optical excitation of the fermion pairs occurs via an ad-
mixture of the molecular bound state X1Σ+

g , v = 38 to
the fermion pair wave function [19].

If, for now, we ignore other loss processes, the number
of fermion pairs decays exponentially as a function of
the laser pulse length ∆t such that the measured total
number Nσ(∆t) of mF = +1/2 atoms as a function of
time is given by

Nσ(∆t) = Nσ(0)−Np
(
1− e−k1∆t) , (1)

where 1/k1 is the time constant for the optical excitation.
Figure 2(b) shows this decay for five different initial tem-
peratures T/TF at a magnetic field of 726 G. By fitting
Eq. (1) to the measured data (see fit curves) we are able
to extract the pair number Np. Besides the photoexci-
tation of pairs a loss in Nσ could in principle also be
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FIG. 2. Measurement of the number of fermion pairs. (a,b)
Optical transfer method. A resonant laser pulse transfers
pairs to states which are invisible to our detection scheme
[blue arrows (1)]. The total number Nσ(∆t) of remaining
fermion pairs and single atoms is measured by absorption
imaging [red arrows (2)]. (b) shows Nσ(∆t)/Nσ(0) as a func-
tion of the pulse width ∆t at a magnetic field of 726 G for
various temperatures T/TF = {0.64, 0.79, 1.2, 1.4, 1.7}. The
solid lines are fit curves using Eq. (1). (c,d) Magnetic trans-
fer method. Using absorption imaging, the particle number
Nσ = Na + Np is measured at the magnetic field (1) and
the number of unbound atoms Na is measured after a fast
ramp to (2). (d) shows the measured particle numbers at (1)
(B = 726 G, green solid circles) and at (2) (B = 550 G, red
solid squares) for various temperatures T/TF.

induced by photoassociation of two free atoms. How-
ever, we made sure that within our field range its rate
is negligible. The photoassociation rate constants range
between 1× 10−9 and 3× 10−9 cm5(W s)−1 for magnetic
fields between 726 and 820 G. We work with low parti-
cle densities of at most 1011 cm−3 and a maximum laser
intensity of about 1.9 W/cm2.
For the data shown in Fig. 2(b) the laser intensity is

0.22 W/cm2 and the peak density for the lowest tem-
perature of T/TF = 0.64 is 1.4 × 1011 cm−3 which cor-
responds to an initial photoassociation time constant of
about 33 ms. This is much longer than the loss dynamics
observed in Fig. 2(b). Indeed, the fact that the curves
in Fig. 2(b) approach constant values for pulse times
t & 0.3 ms already suggests that the photoassociation
of free atoms is negligible.

However, closer to resonance the time constants for
photoassociation and pair excitation become more com-
parable. Therefore, we generally release the particles
from the trap 0.3 ms before applying the laser pulse. The
subsequent expansion lowers the cloud density by about

a factor of 4 and assures additionally that photoassocia-
tion is negligible. Furthermore, lowering the density also
strongly suppresses regeneration of depleted Fermi pairs
during the laser pulse, since pair regeneration mainly oc-
curs via three-body recombination. We have checked that
during the expansion the fermion pairs do not break up.
For this, we carried out measurements at a magnetic field
of 780 G, working at the lowest temperatures of about
0.3TF, where only about 10− 15 % of the atoms are un-
bound and thus photoassociation does not play a signifi-
cant role. We measured the same pair numbers with and
without expansion.
In general the OT method works very well up to mag-

netic fields of about B = 820 G, close to the Feshbach
resonance. There, we observe marked deviations from
the exponential decay in Eq. (1), a behavior, that also
had been reported earlier by the Rice group [19]. An
analysis of these signals would require a better under-
standing of the nature of strongly interacting pairs. For
this reason, we decide to stay below magnetic fields of
820 G for the present investigations where the analysis is
unequivocal.

B. Magnetic transfer (MT) method

Here, we increase the binding energy of the pairs to
h × 80.6 MHz by quickly ramping the magnetic field at
20 G/ms down to 550 G, see Fig. 2(c). This works very ef-
ficiently without breaking up the molecules as previously
shown in [20, 21]. At 550 G the fermion pairs cannot
be resonantly excited anymore by the imaging laser and
become invisible to our detection scheme, see [31]. Np
is determined as the difference of the numbers for atoms
and pairs (Nσ) measured before the ramp and unbound
atoms (Na) obtained after the ramp. Figure 2(d) shows
these particle numbers for different temperatures at a
magnetic field of 726 G.

FIG. 3. Measured pair fractions Np/Nσ (blue circles) at 726 G
for various temperatures T/TF. (a) Optical transfer (OT)
method, (b) Magnetic transfer (MT) method (see Fig. 2). We
note that due to evaporative cooling (kFa)−1also changes with
T/TF (orange diamonds). The green curves are calculations
based on the classical model.
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We did not perform measurements with the MT
method for magnetic fields higher than 750 G because
of technical limitations for the ramping speed. If the
field ramp duration (≈ 10 ms for the case of 750 G) be-
comes comparable to the equilibration time for the atom-
molecule mixture (a few milliseconds at 750 G) the mea-
surement does not yield the correct molecule number any-
more. This restriction of the magnetic field ramp im-
plies that we cannot use the MT method in the strong
interaction crossover regime, but only in the far BEC
regime. There, however, the MT method is quite use-
ful to check for consistency with the OT method. This
consistency is shown in Fig. 3 where we plot the pair
fractions Np/Nσ obtained at 726 G from both methods
as a function of the temperature (blue circles). Since
the temperature was adjusted by varying the evapora-
tive cooling, different temperatures correspond to differ-
ent particle numbers Nσ and thus to different interaction
parameters (kFa)−1(orange diamonds). The green lines
are calculated pair fractions using the classical model.
In general, we find good agreement between the exper-
imental data and the theoretical prediction, which also
indicates consistency between the OT and MT methods.

III. RESULTS

We now apply the OT and MT methods to map out the
fraction of pairs on the BEC-side. For this, we perform
measurements for a variety of magnetic fields and tem-
peratures. The pair fractions Np/Nσ obtained from both
experimental methods are shown in Fig. 4 (circles: OT
method, diamonds: MT method). The area on the right
hand side of Fig. 4, as bounded by the thin dash-dotted
line, marks a region where we observe non-negligible loss
of particles (> 5 %) during our measurements due to in-
elastic collisions of bound pairs. This loss increases with
(kFa)−1, see e.g. [32, 33]. In order to simplify our dis-
cussion we only consider data points outside this area.

The solid/dashed lines in Fig. 4 represent the statisti-
cal mechanics model without any adjustable parameters.
For higher temperatures we generally observe larger fluc-
tuations and thus larger error bars, because of the larger
atom cloud within a limited field-of-view. Overall, we
find that the agreement between measurement and model
remains quite good even in the crossover regime where
this model of classical particles with no interaction energy
should be expected to break down. In fact, the model
could be expected to work to the extent that the internal
degrees of freedoms of the fermion pairs are frozen and
only the degrees of freedom associated with the center-of-
mass of the pair remain active. This approximately oc-
curs when the fermionic chemical potential changes sign
which, using a t-matrix approach, we estimate to occur
at a coupling value of about (kFa)−1 = 0.5 at Tc. This
might explain the good agreement found between the
model and the experimental data when (kFa)−1 & 0.5
as well as with the theoretical calculation based on a

15%
25%
50%
75%
95%

T    CT    C

FIG. 4. Map of the pair fraction Np/Nσ as a function of
temperature and interaction strength on the BEC-side of the
Feshbach resonance. The circles (diamonds) are measure-
ments obtained with the OT (MT) method. The thick solid
and dashed lines are classical model calculations (cf. Fig. 1).
They are dashed in the strong-interaction regime where the
classical model is expected to be no longer valid. The error
bars include both a statistical and a systematic part, i.e. the
standard deviation of the mean of 10 temperature measure-
ments and the uncertainty in determining the molecule frac-
tion from the fit, respectively. The upper-right area bounded
by the gray dash-dotted line exhibits > 5 % particle loss due
to inelastic collisions on the timescale of a measurement. The
gray shaded area indicates the superfluid phase below Tc, as
in Fig. 1.

self-consistent t-matrix approach.

IV. CONCLUSION

To conclude, we have systematically mapped out the
fermion pair fraction in a strongly interacting Fermi
gas as a function of both temperature and coupling
strength. Our measurements show how pairing of ul-
tracold fermions changes as we move from the BEC
regime into the strong interaction regime. We demon-
strate a novel method to measure the pair fractions from
the near-BEC limit to the pseudogap regime, which is
based on a number measurement of fermion pairs. This
method is complementary to existing excitation-gap mea-
surements and has no counterpart in conventional con-
densed matter systems. We find that a statistical me-
chanics model treating the fermions and pairs as clas-
sical particles describes the measured data quite well in
the investigated range, as we have also confirmed through
an advanced many-body calculation based on a t-matrix
approach. In the future, we plan to extend our measure-
ments and investigate more in detail the coupling region
(0.1 . (kFa)−1 . 0.5) where the preformed-pair and the
pseudogap regimes overlap with each other.
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Appendix A: Model of a canonical ensemble of
non-interacting atoms and molecules

In our simple statistical mechanics model we treat the
cold gas of fermions and fermion pairs as a classical
canonical ensemble of atoms and molecules, respectively,
with negligible interaction energy among each other. In
collisions a pair of | ↑〉 and | ↓〉 atoms can combine to
form a molecule, and vice versa a molecule can break up
into an unbound pair of | ↑〉, | ↓〉 atoms. At a given tem-
perature the atom and molecule numbers are in chem-
ical equilibrium. Following [22], the equilibrium condi-
tion is derived by minimizing the Helmholtz free energy
F = kBT lnZ, subject to the constraint of particle num-
ber conservation. Here

Z = Zs
2NaZs

NpeNpEb/kBT

Na!Na!Np!

is the partition function of the system and Zs and
Zse
−Eb/kBT are the single-particle partition functions for

atoms and molecules, respectively. ω = 3
√
ω2
rωa is the ge-

ometric mean of the trapping frequencies ωa, ωr in axial
and in radial direction, respectively. Using Stirling’s for-
mula to approximate the factorials a minimum in the free
energy is found at a molecule (pair) number

Np = 1
Zs
Na

2 e−Eb/kBT ,

for a given temperature T and binding energy Eb =
−~2/(ma2). Using the partition function Zs =
(kBT/~ω)3, the Fermi energy EF = kBTF = ~ω 3

√
6Nσ,

and the total pair fraction per spin state Nσ = Na +Np
we obtain the following implicit expression for the pair
fraction Np/Nσ in thermal equilibrium:

(1−Np/Nσ)2

Np/Nσ
= 6

(
T

TF

)3
exp

[
Eb
kBT

]
.

Appendix B: Measurements close to unitarity

As pointed out in the main text we only carry out mea-
surements at magnetic fields of up to 820 G because for
higher magnetic fields we observe deviations from an ex-
ponential decay during the optical excitation of the pairs
towards deeply bound molecules. Such deviations are
indeed expected close to resonance as a result of many
body effects [34]. In addition, as the optical excitation
cross section decreases towards the resonance its rate be-
comes increasingly comparable to the one of photoassoci-
ation. In order to clarify that an exponential fit towards
a constant value is still a good description at 820 G, we
show corresponding decay curves in Fig. 5. A slight non-
exponential behavior of the measured decay will increase
the uncertainty in the measured equilibrium pair frac-
tion.

FIG. 5. Pair fraction Nσ(∆t)/Nσ(0) after an optical transfer
pulse of length ∆t at a magnetic field of 820 G for various
temperatures (see legend). The solid lines are fits of an expo-
nential decay towards a constant offset.
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