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Recent experimental realizations of uniform confining potentials for ultracold atoms make it
possible to create quantum acoustic resonators and explore nonequilibrium dynamics of quantum
field theories. These systems offer a promising new platform for studying the dynamical Casimir effect,
since they allow one to achieve relativistic, i.e. near sonic, velocities of the boundaries. In comparison
to previously studied optical and classical hydrodynamic systems, ultracold atoms allow one to realize
a broader class of dynamical experiments combining both classical driving and vacuum squeezing.
In this paper we discuss theoretically two types of experiments with interacting one dimensional
condensates with moving boundaries. Our analysis is based on the Luttinger liquid model which
utilizes the emergent conformal symmetry of the low energy sector of the Lieb-Liniger model. The
first system we consider is a variable length interferometer with two Y-junctions connected back to
back. We demonstrate that dynamics of the relative phase between the two arms of the interferometer
can be analyzed using the formalism developed by Moore in the problem of electro-magnetic vacuum
squeezing in a cavity with moving mirrors. The second system we discuss is a single condensate
in a box potential with periodically moving walls. This system exhibits classical excitation of the
mode resonant with the drive as well as nonlinear generation of off-resonant modes. In addition we
find strong parametric multimode squeezing between modes whose energy difference matches integer
multiples of the drive frequency.

I. INTRODUCTION

Understanding quantum dynamics of many-body sys-
tems with time-dependent size and geometry is at the
heart of many fundamental problems in physics. In cos-
mology, inflation and subsequent expansion of the universe
resulted in strong quantum fluctuations of the inflanton
field which then froze into classical inhomogeneities[1].
This led to the formation of the lumpy nature of the
currently observed universe with its galaxies and cosmic
voids. In nuclear physics, emission of neutrons and α-
particles during the fission processes can be studied from
the perspective of particles moving in the presence of
time-dependent boundaries[2]. In field theory and quan-
tum gravity Hawking radiation has a direct analogue in
the phenomenon of photon creation by a relativistically
accelerating mirror[3].

Many common properties of systems with time-
dependent boundaries can be understood from the per-
spective of the dynamical Casimir effect[4] (see Ref. [5] for
a review). In this paradigmatic problem one considers an
optical cavity with mirrors moving relative to each other.
While classically changing the length of the cavity should
not change its vacuum state, quantum mechanically mir-
rors moving at velocities comparable to the speed of light
produce a ”squeezed vacuum” state. In the ground state
of a cavity one finds only virtual photons arising from
the zero point motion of harmonic oscillators describing
eigenmodes of the cavity. When mirrors move, they can
turn these virtual photons into real particles. Moreover
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one finds that photons created in such process appear
as entangled pairs, which is why the dynamical Casimir
effect has been suggested as a resource for several applica-
tions in quantum information[6]. What makes dynamical
Casimir effect particularly subtle is that the entire Hilbert
space changes in time. Thus one faces the problem of
not just understanding evolution of many degrees of free-
dom in Hilbert space but of combining the ”old” and the
”newly created” ones.

While dynamical Casimir effect has been originally for-
mulated for optical cavities, it is rather challenging to
realize with electromagnetic fields. The main obstacle is
the requirement of mirrors moving at speeds comparable
to the speed of light. This motivated the search for al-
ternative realizations of this fundamental phenomenon.
Important milestones in this direction have been achieved
in recent experiments with one dimensional arrays of su-
perconducting Josephson junctions[7] and Bose-Einstein
Condensates of ultracold atoms[8]. In Josephson Junction
arrays parameters of the SQUIDs could be changed in
time thus modifying the optical path length. This resulted
in excitation of photons analogous to dynamical Casimir
effect although the geometric size of the system remained
fixed. In experiments with Bose-Einstein Condensates of
ultracold atoms modulation of the transverse confining
potential was shown to lead to the production of pairs of
excitations at half of the modulation frequency. These
experiments provided the first demonstration of coherent
particle production in systems with time-dependent pa-
rameters and gave the first indications of the correlated
nature of the dynamical Casimir effect. In particular, in
experiments of Jaskula et al. it was shown that modu-
lation excited particles at opposite momenta. However,
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Figure 1: Quantum zipper. One of our proposed
experiments is a variable length interferometer made up
of two Y-junctions back to back. The relative phase
between the BECs on the two arms of the
intereferometer, φrel, obeys Dirichlet boundary
conditions at the junctions, φ1(0, t) = φ2(0, t) and
φ1(L(t), t) = φ2(L(t), t). Oscillating one of the
Y-junctions, simulates the moving mirror in an
electromagnetic cavity with the relative phase being
identified with the QED gauge field, φrel ↔ A.

the full extent of the coherent nature of the dynamical
Casimir effect remains largely unexplored. Absence of the
moving walls in these experiments implied that there was
no mixing between different modes although there was
squeezing of individual modes.

Motivated by recent progress in creating flat box po-
tentials for ultracold atoms [9], we discuss theoretically
a new approach for exploring the dynamical Casimir ef-
fect in experiments with one dimensional condensates.
Weakly interacting bosons in 1d exhibit emergent Lorentz
symmetry because their low energy dynamics can be de-
scribed using the Luttinger liquid formalism of sound-like
excitations[10]. A system of finite size with a uniform
density can then be interpreted as an acoustic resonator.

We consider in this project two distinct systems for
exploring the intrguing physics of the dynamical Casimir
effect, both of which can be realized using currently avail-
able experimental techniques.

a. The quantum zipper: The first system we propose
consists of two Y-junctions[11] connected back to back.
It can also be understood as a variable length one dimen-
sional atomic interferometer (see Fig. 1). The relevant
degrees of freedom come from the relative phase between
the two arms of the interferometer, φrel = φ1 − φ2. In
the connecting point of the Y junctions the relative phase
must be equal to zero, which provides the analogue of the
mirror boundary conditions of electromagnetic cavities.
The time-dependent geometry arises from changing the
length of the ”split” part of the condensate, which can be
achieved,for example, with RF potentials. As we discuss
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Figure 2: 1d quantum fluid shaken by a moving wall.
The moving wall excites both classical expectations as
well as quantum fluctuations of the density and current
density of the fluid.

below it offers a faithful representation of the original dy-
namical Casimir effect considered in the context of cavity
QED (for details see Sec. II). The sound velocity in a
BEC is of the order of a few millimeters per second, allow-
ing near sonic velocities to be achieved by the boundary,
required for resonant effects to be significant. We note
however, that one should avoid supersonic motion where
the Luttinger liquid approach breaks down. The primary
experimental observable, the relative phase between the
two condensates, φrel, can be measured by observing the
interference after a transverse expansion of the atoms
[12][13][14].

In our analysis we primarily address the problem of
periodic modulation of the atomic interferometer, L(t) =
L0 (1 + ε(1− cos (ωt)), although the same approach can
be used to study other types of dynamical excitations.
The main consequences of the time-dependent change of
the boundary is the generation of a squeezed state and
the associated particle creation(phonons). These effects
are encoded in the quantum fluctuations of φrel and the
energy stored in the relative degrees of freedom. The most
interesting dynamics occurs when the driving frequency
matches an integer multiple of the fundamental energy
difference of the Luttinger liquid acoustic resonator. At
short times the moving boundary excites multiple modes
in the system with the number of phonons in every mode
growing quadratically in time. In this regime we observe
strong correlations between modes whose frequencies differ
by the drive frequency. This results in a checker-board
type correlation matrix, 〈φrel(n, t)φrel(m, t)〉, shown in
Fig. 3. At late times parametric pair production process is
dominant in which pairs of identical phonons are produced,
each at half the frequency of the drive. At this stage
the number of phonons in non-resonant modes starts to
decrease, whereas in the parametrically resonant mode
the number of phonons increases linearly in time (see
Fig. 6).
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b. Shaking a box: In the second set-up, we consider
a single 1d box containing interacting ultracold bosons.
We discuss a shaking type protocol, in which one of the
confining walls of the trap oscillates at a fixed frequency,
resulting again in the periodic modulation of the conden-
sate length. Similar results are obtained when both walls
are moving. The primary experimental observable that
we discuss in this set-up is the local density profile (see
Fig. 2).

It is useful to put our analysis in perspective of earlier
work on related systems. In the area of classical acoustics
and hydrodynamics the problem of a pipe with a moving
piston has received considerable attention (see refs.[15][16]
and references therein). The main limitation of these
studies is the restriction to classical expectation values
of operators and disregard of correlations. Furthermore,
most of the papers used simplified boundary conditions
in which the flow velocity was set to match the wall’s
velocity not at the actual moving position of the walls but
at some fixed point. In the linear response regime such
an approximation is justified, however in many cases we
are interested in dynamics beyond linear response. In this
case changing the boundary conditions leads to dramatic
changes of the long time dynamics. On the other hand,
the advantage of the classical treatment is that it allows
one to include effects of non-linearities, which have been
shown to lead to the proliferation of shock waves.

In the area of non-equilibrium quantum field theories
the most closely related problem to what we discuss in this
paper is the dynamical Casimir effect originally studied
by Moore in the context of electromagnetic cavities[4]. In
this class of problems one only considers time evolution
of correlation functions, since classical expectation values
of the fields are forbidden by symmetry ( −→A → −−→A is
the symmetry of both the Hamiltonian and the Dirichlet
boundary conditions, −→A

∣∣∣
boundary

= 0, on the moving
mirrors). In our analysis of the cold atoms in a periodically
squeezed box we consider both the classical expectation
values of operators and their correlation functions. At
first sight it may appear that the problem of a quantum
fluid in a box of variable length is very different from the
canonical Casimir effect. In the former case the boundary
conditions correspond to the flow velocity at the position
of the moving walls to equal the wall’s velocity. In the
case of the optical cavity of variable length the boundary
conditions for the vector potential is to vanish at the
boundary [4].

We begin our analysis of the shaken box problem by
introducing an exact transformation that allows one to
convert the hydrodynamic boundary conditions for this
system into Dirichlet type conditions with j = 0 on the
moving walls, where j is the current of the atoms. As
a consequence of this transformation an additional time-
dependent quadratic potential is introduced, which is
responsible for producing the classical expectation values
of the fields. Experimentally, it may be useful to have
separate controls over the classical and quantum compo-

nents of the drive. This can be achieved by combining
the motion of the walls with a compensating external
time-dependent parabolic potential, which is readily avail-
able in experiments with ultracold atoms. Motivated by
this consideration we include both types of driving in our
analysis. Correlation functions are closely related to the
Greens functions introduced for solving classical linear
differential equations. Hence, the transformation that we
introduced and correlation functions that we found are
useful for the classical solution of the moving piston prob-
lem. They allow one to treat the boundary conditions in
the linearized dynamics exactly.

We find that results of this improved analysis of the
boundary conditions is rather dramatic at long modu-
lation times. This difference arises from the fact that
including moving walls introduces mixing between differ-
ent modes even in linear hydrodynamics. The physical
reason for the mixing is the Doppler shift of waves re-
flected from the moving walls. One of the most dramatic
results of the mode mixing is the non-trivial evolution of
the resonantly driven mode.

At short times the amplitude of this mode grows linearly
in time, similarly to the case of a resonantly driven sin-
gle harmonic oscillator. At the same time, non-resonant
modes become populated due to mixing with the reso-
nantly driven one. At longer times, the increase of the
amplitude of the resonantly driven mode saturates and
eventually this mode becomes suppressed. We attribute
this suppression to the destructive interference between
the drive and the previously excited non-resonant modes.
This should be contrasted to having simple damping in a
system without mode coupling. In the latter case, when
an eigenmode is driven resonantly, its amplitude first in-
creases and then saturates to some finite value when the
energy deposited by the drive balances the energy lost to
dissipation. The effect of mode squeezing coming from the
dynamical Casimir effect is much more dramatic: it sup-
presses the resonant mode amplitude(see Fig. 11). This
behavior is also to be contrasted with the usual non-linear
steady states. In the latter, as the amplitude increases the
resonant mode becomes detuned from the drive. In such
cases, we have again an increasing resonant amplitude
that eventually saturates when it goes off-resonance.

We arranged our paper so that the quantum zipper and
shaken box systems are discussed separately. When ana-
lyzing the zipper system we focus on correlation functions
and quantum fluctuations. In the case of the shaken box
our emphasis is on the classical expectation values of the
density and velocity, which corresponds to the coherent
part of the wavefunction for individual modes.

This paper is organized as follows. We begin with a brief
discussion of hydrodynamics of interacting bosons in 1d
which provides the basis of the Luttinger liquid model for
this system. We show that for the interferometer shown
in Fig. 1 the relative phase dynamics can be described by
the wave equation with the Dirichlet boundary conditions
at the points of the Y junctions. We present concrete
predicitions for the quantum zipper with periodically
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modulated length at the end of Sec. IV.
In Sec. V we switch to the shaken box problem and

discuss how conservation of mass leads to inhomoge-
neous boundary conditions in the shaken box experiment.
Through a series of transformations we derive a math-
ematical formulation of the model constructed in such
a way that it obeys Dirichlet type boundary conditions
j = 0 at the positions of the walls at the expense of
having an additional time-dependent potential. A naive
perturbative treatment of the problem is given in Sec. VI
that helps readers develop an intuition for the classical
behavior of the system. This is followed by introducing
mode quantization and analyzing correlation functions.
This formalism provides a natural way of including the
changing geometry of the system and allows us to solve
the classical problem of a moving piston. We note that
within linear hydrodynamics our solution is exact and
goes beyond previous papers that treated the boundary
conditions only approximately.

In linear hydrodynamics, dynamics of the classical ex-
pectation values of operators and of their second order
correlations are decoupled. Hence, one may be tempted
to conclude that quantum fluctuations in the shaken box
should be identical to those of the quantum zipper case
(i.e. vacuum squeezing in optical cavity). We point out
that there is a subtle difference in the character of com-
mutation relations between the two types of problems.
In Sec. VIII we discuss effects of non-linear dispersion,
non-linearities and thermal fluctuations, which should
be relevant for actual experiments with shaken conden-
sates and in Sec. IX we give an alternative Hamiltonian
prescription to go beyond Luttinger liquid. Finally, in
Sec. X we provide a summary and a brief discussion of
interesting open issues.

II. THE QUANTUM ZIPPER

A. Luttinger liquid formalism for interacting 1d
systems

A hydrodynamic approach is a general framework that
describes the long wavelength and small frequency limit
of dynamics in a large variety of systems. To make our
analysis more transparent, in this section we show explic-
itly how the hydrodynamic equations of motion can be
obtained for a cold gas of weakly interacting bosons. In
the hydrodynamic limit, a superfluid is described by its
low lying ”gapless” modes which correspond to current-
density fluctuations. The variables obey generically the
continuity equation and the Josephson relation.

∂tρ(x, t) = −~ρ0

m
∂x (∂xφ(x, t)) , (1a)

~∂tφ(x, t) = −U0ρ(x, t), (1b)
[ρ(x, t), φ(x′, t)] = iδ(x− x′) (1c)

where higher order derivative terms have been ignored
and we limited ourselves to equations of motion around

the equilibrium uniform state. The canonically conjugate
variables are the density, ρ(x, t) and the phase φ(x, t) of
the superfluid, where the quantum nature is manifested
through their commutation relations (Eq. 1c). ρ0 is the
average density of the superfluid, m is the mass of the
bosons and U0 the effective interaction strength of the
point interaction between the bosons.

More generally for gapless systems, low lying excitations
of interacting 1d systems, in the case of both bosonic and
fermionic particles, have a unified description given by
the standard Tomonaga-Luttinger liquid Hamiltonian[17]:

H =
∫
dx

2πvs
(
K(πj)2 + 1

K
(∂xθ)2

)
, (2a)

[j(x, t), θ(x, t)] = iδ(x− x′). (2b)

Here j is the current density and θ is its conjugate vari-
able. In this expression, variables are switched following
the conventional form found in the literature of Luttinger
liquids[17]. For general interacting systems, the speed of
sound, u, and parameter K should be found numerically.
K does not influence the dynamics but affects the overall
scale of the fluctuations. What is essential for our dis-
cussion is that the Luttinger liquid model gives rise to a
linear wave equation of the type:(

∂2
t − v2

s∂
2
x

)
φ(x, t) = 0 (3)

In the case of weakly interacting bosons (Eq. 1), the speed
of sound is given by v2

s = U0ρ0
m . The other scale of interest

needed to define our theory is the healing length, ξh. The
corresponding momentum, Λ = 1

ξh
, presents a cut-off

at which the dispersion relation is no longer linear. For
weakly interacting bosons this cut-off is given by ξh = ~

mvs
.

In more general scenarios, the cut-off corresponds to the
momentum whose energy is of the order of the chemical
potential.

Therefore, low energy excitations of a broad class of
gapless 1d interacting systems can be analyzed from the
perspective of sound modes in an acoustic resonator.

B. Mathematical formulation of the quantum
zipper problem

We consider a 1d interferometer of ultracold atoms
shown in Fig. 1. In the two arms of the interferometer we
have quantum fluids, which can be described with quan-
tum fields {ρ1, φ1} and {ρ2, φ2} respectively. We assume
that the average densities are equal so that the sound
velocities are the same. In this case we can separate the
symmetric variables ρ+ = ρ1 + ρ2, φ+ = φ1 +φ2 from the
relative degrees of freedom ρrel = ρ1 − ρ2, φrel = φ1 − φ2
[18]. We will only analyze dynamics of the relative de-
grees of freedom which can be measured using interference
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experiments. These obey[18]:

∂tρrel(x, t) = − ~
m
∂x (ρ∂xφrel(x, t)) , (4a)

~∂tφrel(x, t) = −U0ρrel(x, t), (4b)
[ρrel(x, t), φrel(x′, t)] = iδ(x− x′) (4c)

Note that any potential that acts the same way on
both arms of the interferometer does not affect the rel-
ative phase φrel. The boundary conditions obeyed by
the relative phase φrel are Dirichlet since at the point
where the two BECs meet they must have the same phase.
Combining the equations of motion then leads to the wave
equation: (

∂2
t − v2

s∂
2
x

)
φrel(x, t) = 0, (5a)

[φ(x, t), ∂tφrel(x′, t)] = iδ(x− x′), (5b)
φrel(0, t) = φrel(L(t), t) = 0 (5c)

where vs is the speed of sound. As promised Eq. 5 offers
a direct analogue to cavity QED (see below).

III. DYNAMICAL CASIMIR EFFECT

Discussion in this section is arranged as follows. We be-
gin by obtaining the quantum time-dependent eigenstates
of the quantum zipper problem following the formalism
developed by Moore. These modes are used to compute
both the retarded and Keldysh Greens functions of this
system. Quantum fluctuations in the system can be ob-
tained from the equal time values of the Keldysh Greens
functions. Retarded Greens functions will be used in the
discussion of the shaken box to analyze the classical part
of the response.

A. Generalized Formalism of the dynamical
Casimir effect

Moore pointed out that quantum resonators with
time-dependent length do not have a Hamiltonian
description[4]. Instead the fields should be quantized
using the equations of motion. Here, we follow closely
the discussion in the original paper by Moore[4], and
represent the main field by the letter A(x, t) making the
analogy between vector potential in cavity QED:(

∂2
t − ∂2

x

)
A(x, t) = 0, (6a)
A(0, t) = A(L(t), t) = 0 (6b)

To simplify the notations we set vs = 1 in the discussion
of this section. We will recover proper dimensions later
in the paper. The general strategy is to find a set of
orthonormal solutions of the Klein-Gordon equation with
a moving boundary, Eq. 6, and expand the field, A(x, t),

in terms of orthonormal solutions with respect to the
Klein-Gordon inner product:

{f |g} = −i
∫ L(t)

0
dx (f(x, t)∂tg(x, t)− g(x, t)∂tf(x, t))

(7)
Provided that f and g satisfy the Klein-Gordon equa-
tion, Eq. 6, the inner product defined in Eq. 7 is time-
independent. An orthonormal basis consists of a set of
solutions {fn} and its complex conjugate {f∗n} such that
{fn, f∗n} span the space of solutions of Eq. 6 and obey[3]

{fn|f∗m} = δn,m, (8a)
{fn|fm} = {f∗n|f∗m} = 0 (8b)

Using such a basis, any solution can be expanded as
linear combination of the basis functions:

A =
∑
n

(cnfn + c∗nf
∗
n) (9)

where the fact that A is real was used. Finally, quanti-
zation of this theory is achieved by promoting the time-
independent coefficients to creation/annihilation opera-
tors:

cm → ĉm, c∗m → ĉ†m, (10a)
ĉ†m = {fm|Â}, ĉm = −{f∗m|Â} (10b)

[ĉm, ĉ†n] = δn,m (10c)

The step of promoting coefficients to cre-
ation/annihilation operators using a basis with a
particular normalization, corresponds to a particular
choice of commutation relations obeyed by the field
A(x, t).

It is important to note that the creation/annihilation op-
erators defined in this way are time-independent and since
we are working in the Heisenberg picture the states are also
time-independent. As a result, if the initial ground state is
a vacuum for a set of annihilation operators cm, then the
state of the system will remain the vacuum state of those
operators while all the time-dependence of observables is
taken into account by the basis functions. Furthermore,
notice that the definition of creation/annihilation opera-
tors and the vacuum state depends on the choice of basis
functions we choose to expand our fields in.

In the fixed box case, L(t) = L0, expanding the field in
the basis functions amounts to a Fourier decomposition
of the field:

fn = 1√
nπ

e−i
nπ
L0
t sin

(
nπ

L0
x

)
(11)

With the positive frequency solutions corresponding to
creation operators and the negative frequency solutions
to annihilation operators.

Finding the eigenmodes while the wall is moving is
achieved by performing a conformal transformation which
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preserves the equations of motion but fixes the boundary:

s+ w = R(t+ x), (12a)
s− w = R(t− x), (12b)(

∂2
s − ∂2

w

)
A(s, w) = 0, (12c)

A(s, 0) = A(s, 1) = 0, (12d)
⇒ R(t+ L(t))−R(t− L(t)) = 2 (12e)

In the new frame, the solutions have the form of the fixed
box, Eq. 11, while the transformation function is found
by requiring that it fixes the boundary. In the original
coordinates the eigenmodes are given by:

fn(x, t) = i√
nπ

e−inπR(t+x) − e−inπR(t−x)

2 , (13a)

R(t+ L(t)) = R(t− L(t)) + 2 (13b)

Note that in order to define the transformation function
R(z) uniquely, one needs to set the value of R(z) in
an interval z ∈ (t− L(t), t+ L(t)) for some fixed value
of t, which can then be used to exactly evaluate R(z)
numerically [19]. The complete evolution of the system
is then given by realizing that for t ≤ 0 the box size was

constant and the system was in the ground state. The
system must then be in the vacuum state of annihilation
operators, {cm(0)}, defined such that their basis functions
take the fixed box form at t = 0:

fn(x, t = 0) = i√
nπ

(
e−inπ

(t+x)
L0 − e−inπ

(t−x)
L0

)
2 (14)

The modes should be identical to the fixed box modes
through-out the box, x ∈ (0, L(t)), which translates to
the following initial condition for R(z):

R(z) = z

L0
, z ∈ (−L0, L0) (15)

To recap: the set of modes in Eq. 13-15 define a set of anni-
hilation operators, {cm(0)}, for which the ground state at
t = 0 corresponds to their vacuum state. However, since
both the state and the operators are time-independent
the system remains in the vacuum of these operators
while all the time dependence is taken into account by
the eigenfunctions, fn(x, t).

Having successfully quantized the theory we are now
in a position to calculate the non-equilibrium Greens
functions of the system. We will be interested in both the
symmetric and antisymmetric correlation functions:

DK(x, t;x′, t′) = −i 〈{A(x, t), A(x′, t′)}〉 , (16a)

= −2iRe
[∑

n

fn(x, t)f∗n(x′, t′)
]
, (16b)

DR(x, t;x′, t′) = −iθ(t− t′) 〈[A(x, t), A(x′, t′)]〉 , (16c)

= 2θ(t− t′)Im
[∑

n

fn(x, t)f∗n(x′, t′)
]

(16d)

While most of the discussion in this section addresses
the problem described by the homogeneous equations (4),
let us make a detour and consider the inhomogeneous
version of this problem:(

∂2
t − ∂2

x

)
A(x, t) = −V (x, t) (17)

As we will see a problem of this type appears in our dis-
cussion of the single shaken box protocol. We observe that
solution to Eq. 17 can be easily obtained using the Greens
function for the homogeneous problem (Eq. 16d).We know
that the retarded Greens function, DR, satisfies the equa-
tion (see Appendix A for details):(

∂2
t − ∂2

x

)
DR(x, t;x′, t′) = −δ(x− x′)δ(t− t′) (18)

with the boundary conditionDR(t < t′) = 0. The solution

of Eq. 17 can then be written as:

〈A〉 (x, t) =
∫ t

0
dt′
∫ L(t′)

0
dx′DR(x, t;x′, t′)V (x′, t′)

(19)
Returning to the homogeneous problem, Eq. 4, we

observe that the covariance matrix, C(x, x′, t), encodes
the fluctuations of the variable Â through:

C(x, t;x′, t′) = 1
2 〈{A(x, t)A(x′, t)}〉 , (20a)

= i

2D
K(x, t;x′, t) (20b)

Therefore, the retarded and Keldysh Greens functions can
be used to analyze the classical response and quantum
fluctuations respectively.

In order to make concepts such as squeezing and para-
metric resonance more transparent, it is convenient to
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relate the eigenmodes to the instantaneous Fourier com-
ponents of the field and their fluctuations. This is
achieved by introducing the notion of instantaneously-at-
rest modes. Instead of using Eq. 15 as initial conditions
for R(z) so that the eigenmodes have the fixed box eigen-
modes’ form at t = 0, we could have chosen the initial
condition:

R(z) = z

L(t′) , z ∈ (t′ − L(t′), t′ + L(t′)) (21)

This would correspond to a different set of eigenmodes
that have the fixed box solution’s form at t = t′:

fn,t′(x, t = t′) = i√
nπ

(
e
−inπ (t+x)

L(t′) − e−inπ
(t−x)
L(t′)

)
2 (22)

In fact, we are always free to define fixed box initial
conditions for R(z) throughout the box for any time t′, as
long as the wall’s motion is not supersonic,

∣∣∣dL(t)
dt

∣∣∣ < vs, as
shown in Appendix B. Working with the instantaneously-
at-rest modes is convenient since they correspond to the
Fourier transform of the signal at t = t′. Different modes
define different sets of creation/annihilation operators that
define different vacua. A set of instantaneously-at-rest
operators at time t is related to the set of instantaneously-
at-rest operators at time t = 0, whose vacuum defines the
state of the system, via a Bogoliubov transformation that
is found using Eq. 9 and10:

c(t) = U(t) · c(0) + V (t) · c†(0), (23a)
Un,m = −{f∗n,t|fm,0} = {fm,0|f∗n,t}, (23b)
Vn,m = −{f∗n,t|f∗m,0} = {f∗m,0|f∗n,t} (23c)

Two bases that are related to each other via a Bogoliubov
transformation, generically, see each other’s vacuum as a
squeezed state. As a result, the instantaneously-at-rest
operators, c(t), will see the vacuum of the c(0) operators
as a squeezed state as long as V 6= 0. In other words,
the ground state is continuously squeezed with respect to
the instantaneously-at-rest phonon operators while the
boundary is moving. In particular, if we turn off the drive
at t = t′, the system will remain in the squeezed state
seen by the operators, {cm(t′)}.

IV. QUANTUM FLUCTUATIONS

We now use results of the previous section to discuss
quantum fluctuations of the phase, φrel, in the quantum
zipper problem. We use the standard description of the
fluctuations in terms of the symmetric correlator:

C(x, t;x′, t′) = 1
2 〈{φrel(x, t)φrel(x

′, t)}〉 , (24a)

= i

2D
K(x, t;x′, t) (24b)

We define instantaneous spatial eigenmodes using the
Fourier transform:

φrel(m, t) = 2
L(t)

∫ L(t)

0
sin
(
nπ

L(t)x
)
φrel(x, t)dx,

= 1√
nπ

(
cn(t)e−inπt/L(t) + c†n(t)einπt/L(t)

)
(25)

Quantum fluctuations due to squeezing can then be cal-
culated in the Fourier basis by the following formula, as
shown in Appendix C:

〈φrel(n, t)φrel(m, t)〉 = 1
π
√
nm
×∑

l

(
V †n,lVl,me

i(n−m)πt/L(t)+

Un,lU
†
l,me

−i(n−m)πt/L(t)+

V †n,lU
†
l,me

i(n+m)πt/L(t)+

Un,lVl,me
−iπ(n+m)t/L(t)

)
.

(26)

The covariance matrix in the Fourier representation takes
the form:

C(n,m; t) = Re [〈φrel(n, t)φrel(m, t)〉] (27)

The overlaps, Un,m(t), Vn,m(t), are given by

Un,m = −{j∗n,t|jm,0} = {jm,0|j∗n,t} (28a)

=
√
n

m

1
2L(t) ×

∫ L(t)

−L(t)
dxe

iπ
(
n t+x
L(t)−mR0(t+x)

)
, (28b)

Vn,m = −{j∗n,t|j∗m,0} = {j∗m,0|j∗n,t} (28c)

= −
√
n

m

1
2L(t) ×

∫ L(t)

−L(t)
dxe

iπ
(
n t+x
L(t) +mR0(t+x)

)
(28d)

A. Perturbative regime: Mode mixing

First, we study the problem using perturbation theory
valid only at short times. R(z) is expanded in powers
of the perturbing function ε(t) presented here up to 2nd
order:

R(z) = z

L0
− 2nε(z) + n2L0

dε2(z)
dz

,

z ∈ (−L0 + 2nL0, L0 + 2nL0),
(29)

In this situation, n is an integer labeling time intervals
of 2L0 i.e. n = tmod2L0. This expansion was first sug-
gested by Ref.[20], however for completeness we provide
an alternative derivation in Appendix D.

Because of the secular terms, this expansion is only
valid for:

tpert. <
1
εω

(30)
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Figure 3: Matrix plots of the correlation matrix 〈φres(n, t)φres(m, t)〉 for short times when driven on resonance at
different resonant frequencies, ωn = vs

nπ
L0

, (a) n = 1, (b) n = 2, (c) n = 3, (d) n = 4, (e) n = 5. At short time the
weight is transferred from the diagonal to off-diagonal elements that differ by the frequency of the drive. Units of the
plots are the phase quantum, while the plots where taken for ε = 0.01 and t = 10L0/vs.

at t = 1
εω the 2nd order term becomes comparable to the

first order term and the expansion breaks down. Expand-
ing the Bogoliubov matrices to linear order in ε gives:

Uk,l(t = n2L0) = eikπ2nε
(
δk,l − iπ

√
klnε(δk−l,ω + δk−l,−ω)

)
,

(31a)

Vk,l(t = n2L0) = e−ikπ2nε
(
iπ
√
klnε

)
(δk+l,ω + δk+l,−ω)

(31b)

Perturbation theory shows that at short times the drive
couples only modes that are related to each other by
adding or subtracting the drive’s frequency. However,
the non-zero V Bogoliubov matrix already demonstrates
phonon creation since the phonon number, Pn is given by

Pn =
(
V †V

)
n,n

(32)

This quantity grows quadratically with time since V grows
linearly in perturbation theory. Fig. 3 shows the fluctu-
ations of φrel when the system is driven on resonance
with the first 5 eigenmodes at stroboscopic times. In the
plots, we see the emergence of a checker-board pattern
where modes that differ by the driving frequency become
correlated.

B. Asymptotic state: Parametric pattern

We now discuss the driven quantum zipper in the limit
of long modulation time. When the boundary oscillates

R(z)
Asymptotic behavior

0

5

10

15

20

R(z)

0 5 10 15 20
z

Figure 4: Example of the transformation function, R(z),
plotted against its asymptotic behavior for a wall that
oscillates at the second harmonic frequency,
L(t) = L0

(
1 + ε

(
1− cos

(
2π
L0
t
)))

. At late times R(z)
approaches the staircase function. How quickly this
occurs depends on the driving amplitude, however in this
example for ε = 5% the asymptotic behavior is
established after a few oscillations.

at one of the resonant frequencies, the system is expected
to display parametric resonance, where the dominant
process is pair production of phonons whose individual
frequency adds up to the drive frequency. The signatures
of such resonances are enhanced correlations (divergent
in the limit at t → ∞ and in the absence of a cut-off)
between modes involved in this dominant process as well
as between all other modes connected to them by integer
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Figure 5: Matrix plots of 〈φres(n, t)φres(m, t)〉 − 〈φres(n, 0)φres(m, 0)〉 as t→∞, evaluated at stroboscopic times for
different drive frequencies, ωn = vs

nπ
L0

, (a) n = 1, (b) n = 2, (c) n = 3, (d) n = 4, (e) n = 5. The values are obtained
using up to 100 modes, corresponding to a momentum cut-off, Λ ∼ 100 π

L0
. As expected for parametric resonance, we

get resonances for n ≥ 2. The numerical values of the plots are of order O(10) as anticipated from Eq. 37.

multiples of the frequency leading to patterns shown in
Fig. 5. This can be demonstrated analytically using the
formalism developed by Cole and Schieve [19], which
states that in the case of resonant driving frequencies,
ω = nπ

L0
, the asymptotic behavior of R(z) is a staircase

function independent of the amplitude of the drive.
An example of the asymptotic behavior of R(z) for a

boundary motion of the form L(t) = L0(1−ε(1−cos (ωt)))
and frequency, ω = nπ

L0
, is given by:

R0(z)→ 2(l + 1)
n

+1, 2L0l

n
< z−L0 <

2L0(l + 1)
n

, l ∈ Z
(33)

where T = 2L0
n is the period of the drive. The case of

ω = 2π
L0

and ε = 5% is shown in Fig. 4, where one can see
that the numerically integrated transformation function
approaches the suggested staircase function at late times.

In this regime, the matrices U† and V † can be analyti-
cally calculated (for details see Appendix E):

Vν,µ =− n
√
µνπ

sin(µπ
n

)e−i
πµ
n eiπ(ν+µ)( 2l0

n −1+ 2
n )

×
ρ=∞∑
ρ=1

δµ+ν,ρn,
(34a)

Uν,µ = − n
√
µνπ

sin(µπ
n

)ei
πµ
n eiπ(ν−µ)( 2l0

n −1+ 2
n )

×
ρ=∞∑
ρ=−∞

δν−µ,ρn

(34b)

which shows that asymptotically Vν,µ is 0 everywhere
apart from when µ+ ν = λn where µ, ν, λ, n ∈ Z.

Parametric resonances are expected for ω = nπ
L0

at
n ≥ 2. As an illustration of the resonance at ω = 2π

L0
, the

element
∑
l U1,lU

†
l,1 is calculated which contributes to the

phase quantum fluctuations:

(U · U†)1,1 =
ρ=∞∑
ρ=0

4
2ρ+ 1 →∞ (35)

The divergence is associated with the fact that at infinite
time, the first mode obtains contributions from arbitrarily
high momenta. In any physical situation, there will be
a momentum cut-off Λ up to which our theory is valid.
As discussed in Sec II in the Luttinger liquid model this
cut-off is given by the healing length, Λ = 1

ξh
. Since

the expression in Eq. 35 diverges logarithmically with
the momentum cut-off we can find an estimate of the
asymptotic values of resonant quantum fluctuations:

(U · U†)1,1 ∼ 2 ln
(
L0

ξh

)
(36)

Therefore, if the box length, L0, is 2-3 orders of magnitude
larger than the healing length, ξh, the resonant quantum
fluctuations would be expected to be:

φ2
res(m = 1, t→∞)
φ2
res(m = 1, t = 0) ∼ O(10) (37)

With this figure falling off at higher momenta. This
estimate is confirmed numerically with a hard cut-off
as shown in Fig. 5, where the fluctuations’ matrix
〈φres(n, t)φres(m, t)〉 as t→∞ was plotted for different
resonant frequencies of the drive.
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Introducing a UV cutoff in the wave equation is justified
on physical grounds since at momenta 1

ξh
the dispersion

relation is no longer linear. As a result the mode coupling
mechanism is not efficient anymore and higher momenta
become off-resonant in relation to lower ones.

In order to show the range of validity of this approach,
we also investigate the cross over from the perturbative
state to the asymptotic one. To this end, it is more
convenient to consider the phonon occupation number
of the parametric resonant mode. Following the results
obtained in Ref. [21], the late time asymptotic expansion
of the V matrix when driving at frequency ωd = 2rπ

L0
is

given by:

Vm,n =
√
m

n

sin
(
π(2rnδ+m)

2r

)
π(2rnδ +m)

sin(π(m+ n)
sin
(
π(n+m)

2r

)eiπ(n+m)(1− 1
2r ),

(38a)

δ = e−rπεt

πr
(38b)

Thus for an infinite cut-off momentum the occupation
number of parametrically resonant modes, increases lin-
early without a bound:

P (m) =
∞∑
n=0
|Vn,m|2 ∝ t, for t >>

1
εω

(39)

Therefore there is a cross-over behavior between the
perturbative regime and the asymptotic regime, where
phonon occupation changes from a quadratic growth to a
linear one.

In Fig. 6, we present results for the system with the
wall oscillating at wdr = 2π

L0
. We compute occupation

number of the first eigenmode, which is parametrically
resonant with the drive. We use both the direct numerical
solution and the asymptotic expansion. The situation is
demonstrated both using the asymptotic expansion with a
momentum cutoff as well as numerically in Fig. 6 for a wall
oscillating at ωdr = 2 π

L0
vs and focusing on the occupation

of the first eigenmode which is parametrically resonant (in
this example even modes are not parametrically resonant
and their occupation number goes to zero at late times).
The figure shows that the linear occupation growth of a
particular mode is unaffected by the momentum cutoff
up until the maximum occupation is reached. For this
particular example the occupation grows as:

P (1) ∼ 2εvs
πL0

t (40)

Saturation to the cut-off dependent maximum occupation
value is reached at:

t = Log(Λ)
εω

(41)

As expected, due to the linear relationship between
occupation number and time, the saturation time also

grows logarithmically with the cut-off. As a result, there is
a window where perturbation theory breaks down and at
the same time the asymptotic state can make predictions
independent of the UV physics of the theory:

1 << εωtasym << log(Λ) (42)

Numerically, from Fig. 6, one can see the initial
quadratic growth in the perturbative regime and the
asymptotic approach to the saturation value.

Before concluding this section we note that a com-
plementary way of looking at the problem is through a
Floquet picture as discussed by I. Martin[22]. In our lan-
guage the Floquet map is the Bogoliubov transformation
relating two instantaneous reference frames that differ
by one period, T . From that point of view, fixed points
in the Floquet map is the cause of the staircase form of
the late time asymptotic solution of the transformation
function R(z).

V. SHAKING BOX

We now turn our attention to a different setup moti-
vated by the recent experiments in Ref. [9]. We consider
a single box of a 1d quantum fluid with a moving wall.
We parametrize the length dependence of the box as
L(t) = L0(1 + ε(t)). As before, we will use Luttinger
liquid based wave equation to describe dynamics. We also
allow for a time-dependent external potential, Vext. which
will be useful for separating the classical and quantum
parts of the response:

∂tρ(x, t) = − ~
m
∂x (ρ∂xφ(x, t)) , (43a)

~∂tφ(x, t) = −U0ρ(x, t)− Vext.(x, t), (43b)
[ρ(x, t), φ(x′, t)] = iδ(x− x′) (43c)

Boundary conditions: In the fixed box case bound-
ary conditions are given by the requirement that the
current, j(x, t) = ~ρ0

m ∂xφ(x, t), vanishes at the edges of
the box. However, when the wall is moving, the current
should be finite near the wall in order for the fluid to
follow the motion of the wall. To derive the new boundary
conditions, we start by writing the conservation of the
particle number: ∫ L(t)

0
ρ(x, t)dx = N0 (44)

We require that
dN0

dt
= 0 (45)

Which can be written as
~ρ(L(t))

m
(∂xφ (x = L(t))− ∂xφ (x = 0)) =

dL(t)
dt

ρ (L(t))
(46)
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Figure 6: Approach to the asymptotic state using (a) the analytic asymptotic expansion with various cut-off momenta
and (b) numerical results with a cut-off Λ = 10. One can see that before a time threshold is reached the phonon
occupation of a single mode is independent of the cut-off and grows linearly for resonant modes. From the analytical
graph one can see that both the time and the maximum occupation grow as log(Λ).

This gives us

~
m
∂xφ (x = 0) = 0, (47a)

~
m
∂xφ (x = L(t)) = dL(t)

dt
(47b)

Unsurprisingly, we find that the fluid velocity,
~
m∂xφ (x = L(t)), at the boundary should match the ve-
locity of the wall. This causes a sloshing motion which
is associated with the change of the average density due
to the change of the box length. It is convenient to sim-
plify the boundary conditions by subtracting this sloshing
motion using the transformation:

ρ(x, t) = ρ̃(x, t)− ε(t)ρ0, (48a)

φ(x, t) = φ̃(x, t) + dε(t)
dt

m

2~x
2 (48b)

This choice of transformation simplifies the boundary
conditions at the cost of introducing an effective quadratic
potential perturbation:

∂

∂t
ρ̃ (x, t) = −~ρ0

m
∂2
xφ̃(x, t), (49a)

~
∂

∂t
φ̃(x, t) = −U0ρ̃(x, t)− V (x, t)− Vext(x, t)

(49b)[
ρ̃(x, t), φ̃(x′, t)

]
= iδ(x− x′), (49c)

dφ̃

dx

∣∣∣∣
x=0

= dφ̃

dx

∣∣∣∣
x=L(t)

= 0, (49d)

V (x, t) = d2e(t)
dt2

mx2

2 − e(t)U0ρ0 (49e)

The new density variable, ρ̃(x, t), from which the slosing
motion has been subtracted, now has a constant average

density:

ρ̃av. = ρav. + ε(t)ρ0, (50a)

ρ̃av. = N0

L(t) + ε(t) N0

L(t) , (50b)

ρ̃av. = N0

L0
(50c)

In order to proceed, we make a change of variables to
the current density, j = ~ρ0

m ∂xφ̃(x, t), and its conjugate
momentum, ρ̃(x, t) = ~ρ0

m ∂xθ(x, t). Substituting these
definitions in Eq. 49 we find:

~ρ0

m
∂tθ = −j, (51a)

∂tj = −~ ρ
2
0

m2 ∂
2
xθ − ρ0

d2ε(t)
dt2

x− Vext(x, t),
(51b)[

j̃(x, t), θ̃(x′, t)
]

= iδ(x− x′), (51c)
j̃(0, t) = j̃(L(t), t) = 0 (51d)

Combining equation Eq. 51a and Eq. 51b, we finally arrive
at:(

∂2
t − v2

s∂
2
x

)
j(x, t) = −ρ0

d3ε(t)
dt3

x− ∂xVext(x, t) (52)

where the sound velocity, vs, is given by v2
s = U0ρ0

m . Eq. 52
with moving boundaries is what we will call inhomoge-
neous dynamical Casimir effect. This equation is an ana-
logue of the dynamical Casimir effect where the current
can be mapped onto the vector potential in a 1d cavity
and in the absence of the effective driving term. From
Eq. 52 it is clear that a compensating external potential
can be applied to modulate the strength of the inhomo-
geneous drive, even cancel it completely, by choosing a
suitably varying perturbing harmonic potential:

Vext(x, t) = (α− 1)d
2e(t)
dt2

mx2

2 (53)
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Eq. 52 becomes:

(
∂2
t − v2

s∂
2
x

)
j(x, t) = −αρ0

d3ε(t)
dt3

x (54)

where the inhomogeneous drive’s strength is now deter-
mined by the parameter α. The density response is found
by using the continuity equation:

∂tρ = −∂xj (55)

(In fact, calculating directly the density using the equa-
tions of motion may lead to results that do not take
into account the boundary conditions correctly. A small
discussion of this pitfall is discussed in App. F.)

In solving Eq. 52, one notices that, since the equation
is linear, the solution can be decomposed into a particular
solution that satisfies the inhomogeneous equation plus
an arbitrary solution of the homogeneous equation.

ĵ = jcl + ĵq, (56a)(
∂2
t − v2

s∂
2
x

)
jcl(x, t) = −αρ0

d3ε(t)
dt3

x, (56b)(
∂2
t − v2

s∂
2
x

)
ĵq(x, t) = 0 (56c)

We put hat on ĵq to point out that it should be interpreted
as an operator to be quantized, while jcl is a classical
function that satisfies the inhomogeneous equation. The
term, jcl, is the classical contribution generated by the
effective potential and is independent of the underlying
quantum state, while the term, jq, gives the quantum
fluctuations that depend sensitively on the quantum state
of the system and contain the effects of vacuum squeezing:

jcl = 〈j〉 , (57a)
〈jqjq〉 = 〈jj〉 − 〈j〉 〈j〉 (57b)

As a result, by studying the distribution function of the
current over many experiment realizations, the average
value of the current gives information about the classical
response of the field while the second cumulant contains
information about the quantum effects.

In the next section, the perturbative consequences of
the effective driving potential are presented to built up
intuition in a simple context. Then, we proceed to find the
coherent evolution exactly using the formalism developed
in Sec. III.

Before proceeding, however, we first comment on the
subtle way in which quantum fluctuations differ from the
cavity QED example of dynamical Casimir effect due to
the commutation relations.

A. Commutation Relations

As mentioned in the previous section, despite the seem-
ingly straightforward identification between the shaken

1d condensate and the gauge field in a 1d cavity QED
system due to the shared equations of motion and bound-
ary conditions, the two systems are different in a subtle
way. In particular, quantum variables in the former sys-
tem are interchanged relative to the latter one. This is
best demonstrated by the Hamiltonian formulation in the
fixed length problem, where the Hamiltonian density and
commutation relations for cavity QED is given by:

H =E2

2 + (∂xA)2

2 , (58a)

[E(x, t), A(x′, t)] =iδ(x− x′), (58b)
(58c)

While the Hamiltonian formulation of the current in
dimensionless units takes the form:

H =j2

2 + (∂xθ)2

2 , (59a)

[j(x, t), θ(x′, t)] =iδ(x− x′) (59b)

Comparing Eq. 58 to Eq. 59, we see that to preserve
commutations relations, we should identify A(x, t) with
θ(x, t) rather than the current. However, in the moving
box case, focusing on θ as the original field to quantize,
the boundary condition is no longer conformally invariant:

∂tθ(L(t), t) = 0 (60)

For j, we have conformally invariant boundary condi-
tions j|bound = 0 but the conjugate momentum is the
time integral of j and not the time derivative of j. This
follows from the equation on θ : ∂tθ = −j. If we tried to
follow the formalism we presented earlier in Eq. 7-10, we
would find the commutation relations

[A(x, t), ∂tA(x′, t)] = iδ(x− x′) (61)

which do not hold for j. Surprisingly, the retarded Greens
function DR is unaffected by the difference in the commu-
tation relations, as long as the function satisfies Eq. 18.
This follows from the fact that DR is a purely classical
object and is not affected by the commutations relations
of the system. The retarded Greens function defined in
Eq. 16 is applicable for the shaking box as well.

As a result, we will limit our discussion to the coherent
dynamics in the subsequent sections, while the quantum
fluctuations for the shaking box will be addressed in
subsequent publications.

VI. COHERENT DYNAMICS - 1ST ORDER
APPROXIMATION

When we want to analyze driving to linear order in
ε(t), it is sufficient to analyze Eq. 49 including V (x, t) +
Vext.(x, t) and neglecting the moving boundary condi-
tions. The effective quadratic potential V (x, t) + Vext.
is already linear in ε and boundary conditions can only
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Figure 7: In the absence of damping, driving leads to a
linearly growing resonant mode for ω = nπ

L0
vs. The slope

of the amplitude increase of the resonant mode is
proportional to the driving frequency.

modify 〈j〉 (x, t) and 〈θ〉 (x, t) at higher order in ε. Cor-
rections beyond linear order due to the moving boundary
will be discussed in Sec. VII. Within linear approxima-
tion, the phonon modes become a collection of uncoupled
harmonic oscillators with resonant frequencies ω = n π

L0
vs.

In Fourier space, Eq. 52 is easily solved by:

M(n, ω) = 2
L0

∫ L0

0
dx sin

(
nπ

L0
x

)
×∫ ∞

−∞
dteiωtαρ0

d3ε(t)
dt3

x,

(62a)

jcl(n, ω) = 2
L0

∫ L0

0
dx sin

(
nπ

L0
x

)
×∫ ∞

−∞
dteiωtjcl(x, t),

(62b)

jcl(n, ω) = M(n, ω)

(ω + iη)2 −
(
nπ
L0

)2 (62c)

In the absence of damping, η → 0 (included infinitesimally
to preserve causality), the real time evolution for each
mode is non-zero only for the resonant mode, ω = n π

L0
,

which oscillates with a linearly increasing amplitude as
a function of driving time as shown in Fig. 7. The slope
of the amplitude increase on resonance is proportional
to the resonant frequency and the average density of the
superfluid:

Amplitude [jcl(n, t)] = αεvsωnρ0t (63)

a. Effects of damping: In this subsection we include
the possibility of damping at each mode. The main mech-
anism with which coherent dynamics can be damped is
through phonon-phonon non-linearities. Taking the point
of view that a standing density wave is a condensate of

the particular phonon mode resonant with the drive, in-
teractions would be expected to deplete this condensate.
Another way to say it is that through phonon-phonon
interactions a phonon mode can decay into other phonon
modes through real or virtual processes. Damping in a
single mode 1D models is expected to be suppressed due
to integrability as argued by Tan et al.[23]. However,
integrability-breaking contributions such as 3 body colli-
sions and virtual hopping to higher transverse modes can
still lead to damping, which was investigated in earlier
works both theoretically and experimentally [24] [25] [26]
[27] [28]. Additionally, moving the boundary could break
integrability such that protection from damping is not
present. Here, we will simply include it as a phenomeno-
logical parameter and leave the discussion of its origin for
future publications.

Including this term, each mode becomes a damped
driven harmonic oscillator with a potentially frequency
and mode dependent decay rate:

(
∂2
t + 2γ(n, ω)∂t + ω2

n

)
jcl(n, t) = −M(n, t) (64)

where ωn = nπ
L0
vs. We point out that decay in this context

is merely a redistribution of energy from the classical
expectation value to quantum noise.

Substituting d3ε(t)
dt3 = εω3 sin(ωt), the driving term has

the form:

M(n, t) = αερ0
L0ω

3

nπ
sin(ωt)(−1)1+n (65)

where we have used F.T.[x] = (−1)1+nL0
nπ . Defining the

response function as:

χ(ω, n) = 1
ω2 + iγ(n, ω)ω − ω2

n

(66)

the solution is given by:

jcl(n, t) = (−1)1+nαερ0
L0ω

3

nπ
×(

Im{χ(ω, n)}
(

cos(ωt)− e−γ(n,ωres.n )t cos(ωres.n t)
)

+Re{χ(ω, n)}
(

sin(ωt)− ω

ωres.n

e−γ(n,ωres.n )t sin(ωres.n t)
))

(67)

Note that this solution satisfies the initial conditions
jcl(n, t) = ∂tjcl(n, t) = 0, ωres.n = ω2 + γ2 (n, ωres.n ).

b. On resonance: For ω = ωn, the bare resonance
frequency, the early time behavior for t < 1

γ(n,ωres.n ) is
independent of damping with the amplitude growing lin-
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Figure 8: The plot shows that in the case of resonance
where ω = ωn, the amplitude of the mode grows linearly
with a rate independent of damping at early times. For
times, t > 1/γ, the current reaches a steady state with
an amplitude determined by the damping. The steady
state value is illustrated in the figure with dashed
horizontal lines.

early as in Eq. 63:

χ(n, ωn) = 1
iγ(n, ωn)ωn

, (68a)

jcl(n, ωn) =(−1)nαερ0L0ω
2
n

nπγ(n, ωn) ×(
cos(ωnt)− e−γ(ωresn ,n)t cos(ωres.n t)

)
,

(68b)
=(−1)nαερ0vsωnt cos(ωnt) (68c)

where in the last equality the fact that cos(ωnt) ≈
cos(ωres.n t), for t < 1/γ(n, ωn), was used i.e. Fourier
broadening doesn’t allow us to distinguish between the
two frequencies. Moreover, the frequency dependence on
γ is assumed to be weak such that γ(n, ωn) ≈ γ(n, ωres.n ).
Eventually, it reaches a steady state with an amplitude
given by the damping:

jcl.

(
n, t >

1
γ(nωn)

)
= (−1)nαερ0vsωn

γ(n, ωn) cos(ωnt) (69)

This situation is illustrated in Fig. 8 for n = 2 and several
values of γ(n, ωn).

c. Off-resonance: For ω 6= ωn, as illustrated in Fig 9,
the transient response is less predictable. However one
can still extract information about the damping from the
steady state solution that will have an amplitude:

Amplitude [jcl.(n, t > 1/γ)] =
αερ0

L0ω
3

nπ√
γ(n, ω)2ω2 + (ω2 − ω2

0)2

(70)

Finally, note that the decay rate of the transient dynam-
ics depends on γ(n, ωres.n ) while the decay of the steady
state once the driving is switched off depends on γ(n, ω).

jcl(n,t)

0 5 10 15 20
t/(No. of cycles)

Figure 9: This an example of an off-resonant response,
for which ω = 2π

L0
, ωn = 3π

L0
and γ(n, ω) = 0.05 2π

L0
. The

initial response is no longer an oscillating function with a
linearly increasing amplitude but for t > 1/γ it settles
into a steady state.

VII. COHERENT DYNAMICS - FULL
EVOLUTION

In this section, we revisit the coherent response of the
superfluid to the effective external field, jcl., in order to
derive an exact solution of Eq. 52 and go beyond the
perturbative expansion. Using the tools developed in the
previous sections, we notice that remarkably the retarded
Greens function of the quantum homogeneous theory
defined in Eq.16, in terms of jq, constitutes the desired
response function which obeys:

(
∂2
t − v2

s∂
2
x

)
GR(x, t;x′, t′) = −δ(x− x′)δ(t− t′) (71)

This is shown explicitly in Appendix A (in dimensionless
units t± x

vs
→ t± x). As a result, the classical response

of the fluid obeying Eq. 52 is then given by:

jcl(x, t) =
∫ ∞
−∞

dt′
∫ L(t′)

0
dxGR(x, t;x′, t′)M(x′, t′),

= 2Im
[∑

n

jn,0(x, t)

×
∫ t

0
dt′
∫ L(t′)

0
dx′j∗n,0 (x′, t′)M(x′, t′)

]
(72)

where M(x, t) = αερ0
d3ε(t)
dt3 x is the effective driving force.

This expression gives the full non-perturbative solution of
the classical response in the presence of moving boundaries
and allows one to study jcl beyond perturbative short
time expansion. As before we gain intuition by moving
to the Fourier basis and by decomposing {jn,0(x, t)} in
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terms of {jn,t(x, t)}:

jn,0(x, t) =
∑
m

−{j∗m,t|jn,0}jm,t(x, t)

+ {jm,t|jn,0}j∗m,t(x, t)
(73a)

=
∑
m

Um,n(t)jm,t(x, t) + V ∗m,n(t)j∗m,t(x, t),

(73b)

=
∑
m

Um,n(t)e−i
mπ
L(t) t + V ∗m,n(t)ei

mπ
L(t) t

√
mπ

× sin
(
mπ

L(t)x
) (73c)

Fourier transforming this result simply gives the coefficient
in front of the sin-function:

jn,0(m, t) =
Um,n(t)e−i

mπ
L(t) t + V ∗m,n(t)ei

mπ
L(t) t

√
mπ

(74)

Finally, using Eq. 74, 72 the classical response is given in
Fourier space by:

jcl(m, t) =2Im
[∑

n

Um,n(t)e−i
mπ
L(t) t + V ∗m,n(t)ei

mπ
L(t) t

√
mπ

×
∫ t

0
dt′
∫ L(t′)

0
dx′j∗n,0 (x′, t′)M(x′, t′)

]
(75)

A. Frequency conversion

In the fixed box case: Un,m = δn,m and Vn,m = 0. As a
result the system oscillates at the frequency of the drive,
increasing in amplitude linearly for resonant modes as
predicted in Sec. VI. However, to 2nd order in the drive
strength O

(
ε2
)

the resonant mode couples to twice the
resonant mode, ωd → 2ωd. Remarkably, this frequency
conversion, a hall mark of non-linearities, happens in the
absence of any non-linearity. Perhaps, this phenomenon
is unsurprising since moving the boundary breaks time-
translation invariance and temporal Fourier components
are no longer a good basis for the system causing them to
mix. In particular, we find that when driving at the nth
eigenfrequency, the nth eigenmode and the 2nth eigen-
mode have the following amplitude ratio:

jωd
j2ωd

= 2L0

ε
√
ntvs

(76)

This relationship should be a quantitative test of the
theory. The situation is illustrated in Fig. 10

Perturbation theory breaks down at t ∼ 1
εω as men-

tioned earlier at which time the above ratio no longer
holds.

B. Late time suppression

The linear growth of the resonant mode at perturbative
times,

jres(t) ≈ αvsρ0ωt, (77a)
ρres(t) ≈ αρ0ωt, (77b)

together with the time at which perturbation theory
breaks down,

t = 1
εω

(78)

conspire so that the resonant mode stops increasing at:

jres. ∼ αvsρ0, (79a)
ρres. ∼ αρ0. (79b)

By introducing an external potential that interferes with
the effective potential created by the shaking we have effec-
tively introduced a control parameter α, that determines
the overall magnitude of coherent dynamics.

Surprisingly, following the saturation at times where
perturbation breaks down is a suppression of the resonant
mode at late times even as the box is continuously driven
at resonance with this very mode. This counter intuitive
effect can be explained by first noting that a significant
mode coupling causes the mode to ”transfer” amplitude
to higher modes, at late times these modes couple back
to the resonant distractively interfering with it causing
a suppression even as the drive stays turned on. This
process starts as soon as perturbation theory breaks down
and it is demonstrated for resonance with 2nd mode at
different driving amplitudes in Fig. 11.

Mathematically, this is also seen in the asymptotic
behaviour of U and V where as shown in Appendix E
at stroboscopic times both U and V decouple from the
resonant mode and their multiples:

U, V ∝ sin
(µπ
n

)
(80)

where n is the resonant mode and µ is one of the indices
of the two matrices. While this appears as a checkered
pattern in the quantum fluctuations of the quantum zip-
per, in the classical response it appears as a suppression
of the resonant mode.

C. Density Response

For convenience, we used current as our main variable.
To translate back to density we use Eq. 55, repeated here:

∂tρ = −∂xj (81)

An experimental protocol to relate the current ampli-
tude of Fourier modes to density amplitude is to switch
off the drive at stroboscopic times and let the fluid evolve
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Figure 10: The graph shows the current amplitude of the resonant mode and the second harmonic when driving at the
first four resonances, ωn = vs

nπ
L0

with (a) n = 1, (b) n = 2, (c) n = 3, (d) n = 4 and an amplitude of ε = 0.5%. At
early times, there is a linear growth of the resonant mode as well as a quadratic 2nd order growth of the 2nd harmonic.
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Figure 11: Response of the resonant mode when driving
at the 2nd harmonic for 4 different driving amplitudes.
For large amplitudes perturbation theory breaks
relatively quickly and and the resonant mode starts
becoming suppressed.

freely in a box of constant size. During the free evolution,
current and density modes oscillate at their natural fre-
quency out of phase with each other and their amplitude

is related by:

ρampl(n) = jampl(n)
vs

(82)

VIII. RANGE OF VALIDITY AND
EXTENSIONS

In this section we provide a discussion of several contri-
butions to dynamics beyond the T = 0 Luttinger liquid
model that we discussed so far. We give a parameter re-
gion where our theory is expected to work well and more
importantly how control parameters of the experiment
can be used to access this region. The effects that go
beyond our analysis include non-linearities, temperature
and non-linear dispersion. When these effects become
important, we give a discussion on how they might affect
the results and propose ways of how one could take these
into account.

In the case of the shaking box, one might further object
that the walls are not perfectly steep. This aspect is
discussed in Appendix H.

A. Non-linearities

There are several sources of non-linear corrections to the
Luttinger liquid formalism. The full continuity equation
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in Eq. 1a is non-linear (speed of sound depends on density)
although so far we analyzed its linearized version. The ex-
act fluid derivative in the Navier-Stokes equation is intrin-
sically non-linear Dtv(x, t) = ∂tv(x, t) + v(x, t)∂xv(x, t),
and we only used its linear part in the Luttinger liquid
formalism. Finally, when relating pressure to changes
in the density one generally expects terms beyond lin-
ear ones, which should offer equally important sources of
nonlinearities.

Non-linearities in the system can affect dynamic evolu-
tion in two qualitatively different ways. Classically, this is
the realm of nonlinear hydrodynamics where interactions
can lead to typical nonlinear effects such as shock waves
and soliton formation. On the other hand, these inter-
acting terms couple fluctuations to expectation values.
For the coherent dynamics, this can appear as a damping
term that we took into account only phenomenologically.
Physically, the process where the classical expectation val-
ues can be converted into quantum fluctuations through
the interaction appears as dissipation in the classical
equations of motion.

While the latter was addressed in Sec. VI, the former
and its relative importance to the effects presented up to
now is discussed below.

1. Classical nonlinear hydrodynamics

In the nonlinear acoustics community, a lot of attention
was given to the problem of resonant oscillations in a 1d
closed tube with a moving piston[16]. This represents the
classical limit of our theory where a classical fluid in a
tube is driven by a moving boundary.

The magnitude of non-linear effects can be deduced
by the so-called Kuznetsov’s equation, which represents
the fluid equations up to 2nd order in small parameters
(see Ref.[16] for details) such as velocity amplitude and
damping for an irrotational flow(for an ideal adiabatic
gas):

∂2
t φ−v2

s∂
2
xφ = ∂t

[
(∂xφ)2 + 1

2v2
s

(γ − 1) (∂tφ)2 + b

ρ0
∂2
xφ

]
(83)

where b is the damping coefficient and φ in this equation
plays the same role as the variable φ defined earlier in this
paper. For the classical limit of a BEC a similar equation
can be derived which is given by:

∂2
t φ−v2

s∂
2
xφ+v2

sξ
2
h∂

4
xφ = ∂t

[
(∂xφ)2 + 1

2v2
s

(∂tφ)2 + b

ρ0
∂2
xφ

]
(84)

where the main difference is the inclusion of a non-linear
dispersion whose effects are addressed in in Subsec. VIII C.

In both equations the left hand side represents linear
hydrodynamics and is accounted for simply by a dispersion
relation. The right hand side contains non-linear terms.
The relative magnitude of the non-linear terms compared

to the linear once is given by:

Linear terms
Non-linear terms = vs

v(x, t) (85)

This relationship shows that linear hydrodynamics break
down only when the fluid velocity approaches the speed
of sound.

From Sec. VII, it was shown that under the influence
of wall oscillations the fluid velocity grows linearly until
perturbation theory breaks down where it starts getting
suppressed. The maximum velocity achieved during this
evolution is therefore given by:

v(x, t) ∼ αvs (86)

Applying a compensating external potential as described
in Sec. V tunes α and can adjust the overall amplitude
of the classical dynamics. The corresponding time scales
at which the moving boundaries and nonlinearities affect
the system are given by

tmov.bound. = 1
εω
, (87a)

tnon−lin. = α

εω
(87b)

This implies in the regime

α << 1, (88)

the non-linearity effectively plays no role in the problem,
throughout the duration of the experiment.

It is useful to compare our solution of the linearized
version of the moving piston problem to what has been
discussed in the acoustics community before. Several
earlier papers ([15] and citations therein) attempted to
solve the problem with linear hydrodynamics and moving
boundaries by introducing an approximate non-linear
equation which takes the moving boundaries into account.
In their analysis they found a formation of cusps that
increase in height logarithmically in time[15].

Our treatment is exact and takes into account the
boundary conditions fully within linear hydrodynamics.
Our answer is expressed as infinite sum of modes, hence
the only approximation in our numerical calculations was
the choice of the mode cut-off. We have argued however
in Sec. III that there is a window in the evolution of the
system that is unaffected by this cutoff. Our theory does
not predict cusps and predicts a late time suppression
in the Fourier component of the resonant mode that is
neglected in the approximate solution as seen in Fig. 12.

In the opposite limit:

α >> 1 (89)

nonlinear effects develop at time-scales much shorter than
effects from the moving boundary. Therefore, the system
can be treated as a nonlinear hydrodynamic system with
fixed boundaries but inhomogeneous boundary conditions.
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Figure 12: Comparison between the resonant mode
behaviour predicted by the dynamical Casimir approach
and the acoustic approach. While in the acoustic
approximation the resonant mode seems to saturate
under continuous driving, we argue that the correct
behaviour is a suppression that is somehow neglected in
the acoustic approximation.

While the details involve a series of simplifying approx-
imations found in Ref. [15] it is useful to present here
the final equation used to model these systems for right
moving and left moving waves:

∂TU(x, t) + ∆∂ξU(x, t)− πεU(x, t)∂ξU(x, t)

−∆∂2
ξU(x, t) = −M2 sin (ωξ) ,

(90a)
v(x, t) = vs (U (ωt− kx)− U (ωt+ kx)) , (90b)

ξ = ω

(
t± x

vs

)
, (90c)

where ξ is the light cone coordinate depending on whether
we are talking about the right moving or left moving wave
and T is a time coordinate of the slowly changing profile
of these waves.

At late times, T → ∞, the system reaches a steady
state with a constants profile ∂T → 0 and the equation is
solved by:

F (χ) = bωd
v2
sρ0g

d

dχ
log(ce0

(
χ

2 , q = 2gεv4
sρ

2
0

b2

)
, (91a)

v(x, t) = vs

(
U

(
ω

(
t− x

vs

))
− U

(
ω

(
t+ x

vs

)))
(91b)

where ce0 is the even Mathieu function and the small
damping limit is q →∞. The behaviour of the profile in
Eq. 91 is in general very complicated but qualitatively, it
includes the formation of sharp shocks and on parametric
resonance the solution blows up which is qualitatively
different than the results predicted by our approach.

Interestingly, in the spirit of expanding the equation of
motion to 2nd order in small parameters, in this regime,
α >> 1, the conformal coordinate transformation pre-
sented in the previous sections can be used to include

the effects of the moving boundary perturbatively. The
coordinate transformation for times t < 1

εω will leave
the equation of motion unchanged while the effects of
breaking conformal invariance via the interaction will
contribute only to higher than 2nd order terms in the
equations of motion. As a result, one can replace the
lightcone coordinates u, v with the conformal transformed
ones to obtain an answer that both obeys the boundary
conditions on the moving boundaries and satisfies the
equations of motion to the same level of approximation:

v(x, t) = vs

(
U

(
ωvs
L0

R

(
t− x

vs

))
− U

(
ωvs
L0

R

(
t+ x

vs

)))
(92)

where R(z) is the transformation function defined in
Sec. III

B. Temperature

Temperature in many cases acts in a way that broadens
and washes out features of the spectrum. This is not the
case for the quantum noise predictions made in Sec. IV.
In particular the parametric resonance pattern of the cor-
relation matrix, 〈φrel(m, t)φrel(n, t)〉, defined in Eq. 26
remains the same while the effect of the temperature is
simply to enhance noise across the board, but only for
the non-zero values of the correlation matrix. Remark-
ably, this only serves to improve the signal to noise ratio
between resonant and non-resonant correlations as can be
seen in Fig. 13 where the correlation matrix has been plot-
ted at stroboscopic late times for 3 different temperatures
at driven and undriven systems (the undriven state can
be thought of as the initial thermal state before driving).
Details of the calculation of the correlation matrix in the
presence of a thermal distribution are given in App. G.

For the coherent dynamics within linear hydrodynamics
there is no concept of temperature since thermal fluctua-
tions and expectation value of fields decouple.

Temperature is expected to be important when consid-
ered in combination with interactions, that allows classical
expectation value amplitude to be converted in to quan-
tum noise by exciting quasiparticles. This process can
be highly temperature dependent since pre-existing high
momentum quasiparticles would make interaction with
the resonant mode possible by providing more ways to
satisfy energy-momentum conservation and depleting the
classical expectation. This can lead to an effective highly
temperature dependent damping.

C. Dispersion

Working with the linearized dispersion rather than the
full Bogoliubov dispersion relation is a standard approxi-
mation used in order to be able to invoke the power of
conformal invariance and arrive at the analytic formulas
presented earlier in the paper. At high enough momenta
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Figure 13: Fluctuation matrix plotted for a driven system at ω = vs
5π
L0

at various temperatures, (a) T = 0, (b)
T = vs~ π

L0
, (c) T = 10vs~ π

L0
and compared against the undriven fluctuations for the same temperatures, (d) T = 0,

(e) T = vs~ π
L0

, (f) T = 10vs~ π
L0

. The pattern of resonances is not affected by the temperature, in fact temperature
makes the peaks more prominent and correlations of the driven state are more greatly enhanced by temperature
compared to the undriven state. The undriven state at each temperature can be thought of as the initial thermal state
before driving takes place.

the Luttinger-Liquid theory eventually breaks down and
the non-linear dispersion relation becomes evident. This
occurs at mode numbers :

kh = L0

ξh
(93)

In Sec. IV, we showed that low energy modes of the
system will not be affected by the cut-off up to times:

t ∝ log(kh)
εω

(94)

This suggests that taking a quantum fluid in a box
large enough we can make this time to be longer than the
duration of the experiment. If one wishes to examine the
behaviour after that time this term should be included,
which would probably offer corrections to our prediction of
a complete leveling off of the energy absorbed. Modeling
the system by a hard cut-off is physically motivated by
arguing that once higher orders in the dispersion become
important the spacing between energy levels starts to
increase making those higher energy modes off-resonant
with the drive.

The equation that includes the dispersion has the form:

(
∂2
t − ∂2

x + ξ2
h∂

4
x

)
φ(x, t) = 0, (95a)

φ(0, t) = φ(L(t), t) = 0 (95b)

To investigate approximately the effects of dispersion,
corrections to the fixed box eigenstates from the nonlinear
dispersion could be used and the effects of the boundaries
included perturbatively:

fn(w, s) = i

2
√(

n+ n3 ξ2
h

2L2
0

)
π

(
e
−iπ
((

n+n3 ξ2
h

2L2
0

)
s+nw

)

− e
−iπ
((

n+n3 ξ2
h

2L2
0

)
s−nw

))
(96a)

fn(x, t) = i

2
√(

n+ n3 ξ2
h

2L2
0

)
π

(
e−iπnR(t+x) − e−iπnR(t−x)

)

× e
−iπn3 ξ2

h
4L2

0
(R(t−x)+R(t+x))

(96b)

where s and w are the conformal coordinates as usual.

This is a good set of eigenstates in the perturbative
regime t < 1

εω because it solves Eq. 95 to order O( ξ
2
h

L2
0
ε)

which is an improvement of order O (ε). Moreover, it is
an orthonormal set which can be easily verified by direct
calculation of the KG inner product in the conformal
frame, and of course it satisfies the boundary conditions.
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IX. BEYOND LUTTINGER LIQUID

Our analysis relied heavily on the emergent conformal
symmetry of the low energy dynamics of 1 dimensional
systems. This, however, is not true for the entire spec-
trum. It is then important to consider generalizations of
the space-time transformations which allow one to map
systems with time-dependent geometry to more familiar
classes of problems. In this section we discuss the scaling
transformation which allows one to map the system of
atoms in a time-dependent box into a system in a fixed
box but with time-dependent parameters. In a different
context such transformations have been discussed earlier
in Ref.[29],[30]. We note that transforming the problem
into a more familiar setting of the Hamiltonian with time
varying parameters makes it easier to connect to the
general ideas of linear response formalism. We will see
however that time-dependent perturbations that appear
in this case are very non-local: they involve changes in
the mass of the particles, the interaction strength, and
the overall quadratic potential.

In the absence of shaking, the system is described by
the Hamiltonian:

H0 =
∑
i

p2
i

2m −
U0

2
∑
i,j

δD(xi − xj) (97)

where m is the mass of the atoms and U0 the strength
of the point interaction. Upon shaking we can recover
the constant length of the box by performing a time-
dependent dilation transformation

Udil. = e−iα(t)
∑

i
xipi , (98a)

U†dil.xjUdil. = eα(t)xj , (98b)
U†dil.pjUdil. = e−α(t)pj , (98c)

where we need to take α(t) = − ln
(
L(t)
L0

)
, so that

the length of the box is restored to its original value,
L(t) → L0. After the scaling transformation, the new
Hamiltonian will contain terms that couple position and
momentum, Hnew ⊃ xipi. These can be simplified by an
additional rotating frame transformation:

Urot = e−iF (t)
∑

i

x̂i
2

2 (99)

with F (t) = m∂tL(t)
2L(t) . The full transformation

U = Udil.Urot. (100)

leads to the following Schrödinger equation:

i
∂

∂t
|Φ({xi}, t)〉 =Ĥ ′ |Φ({xi}, t)〉 , (101a)

Ĥ ′ = UĤU† − iU∂tU† = 1
2m(t)

∑
i

p2
i + a(t)

2
∑
i

x2
i+

g(t)
2

∑
i,j,i 6=j

δD (xi − xj) ,

(101b)
|Φ({xi = 0}, t)〉 = |Φ({xi = L0}, t)〉 (101c)

the time-dependent parameters are given by:

m(t) =mL2(t)
L2

0
, (102a)

a(t) =mL(t)
L3

0
∂2
tL(t), (102b)

g(t) = gLD0
L(t)D (102c)

If the model requires a high energy cut-off Λ (for example
in higher dimensions), it would also be affected by the
transformation as Λ(t) = ΛL(t)

L0
. Therefore, we can re-

place the effects of the moving boundaries by introducing
time-dependence into both the mass and the interaction
strength, while adding a time-varying quadratic exter-
nal potential. In particular, note that to first order this
quadratic potential is the same as the one found within
the Luttinger liquid formalism in Eq. 49.

Experimentally, this can be an indispensable tool for
probing the system in new ways, potentially capable of
exciting collective excitation that were elusive in experi-
ments with previous probes.

X. SUMMARY AND OUTLOOK

In this paper we considered two types of geometric
parametric driving of 1d systems and provided a detailed
theoretical analysis for both. The first set-up that we
discussed is based on an atomic interferometer of variable
length. It provides an acoustic resonator analogue of
the dynamical Casimir effect in cavity QED. The second
system that we analyzed is a 1d condensate in a box with
periodically modulated length. The unique feature of this
system is that it combines classical driving with dynam-
ical Casimir like parametric mode squeezing. In both
systems, we focused on analyzing dynamics of the low
energy modes which can be described within the Luttinger
liquid framework and thus exhibit effective conformal in-
variance. The key advantage of cold atoms analogues of
the dynamical Casimir effect is that relativistic dynamics
require velocities comparable to the speed of sound, in
contrast to the speed of light in the case of QED. Hence,
the systems that we discuss should make it possible to
achieve inter-mode coherence and not only the squeezing
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of individual modes observed in earlier experiments. We
used the intricate connection between correlation func-
tions and Greens functions to determine the classical
evolution of expectation values of a single BEC in a box
with a moving wall. A moving boundary through Doppler
shift gives rise to mode coupling. Mode coupling appears,
in this context, as higher harmonic generation, where on
resonance the resonant mode increases linearly, while the
2nd harmonic grows quadratically in time. Interestingly,
at late times the amplitude of the resonant mode becomes
suppressed even under continuous driving, an effect we
ascribe to higher modes coupling back to the resonant
one and destructively interfering.

Our results are expected to be accurate when the fol-
lowing conditions are satisfied:

ξh
L0

<< 1, (103a)

α→ 0, (103b)
T << µ, ωL (103c)

where the ratio of the healing length over the size of the
box ξh

L0
is indicative of how important effects from the

true non-linear dispersion are in both the zipper and the
shaken box. The parameter α, defined in Eq. 53, controls
the overall scale of the classical response by including
a compensating quadratic potential in the shaken box
experiment. A small α suppresses non-linear dynamics
of the classical evolution without influencing the mode
squeezing effects from the boundaries. Finally, T is the
temperature which has to be low enough so that the
system is truly 1d and thermal excitations are within the
linear dispersion regime.

Before concluding the paper, we mention several inter-
esting directions in which our work can be extended. The
main part of our discussion relied on the Luttinger Liquid
formalism with a high energy cut-off on the scale of the
healing length. We pointed out however that one can
define a general dilation transformation which eliminates
the time-dependence of the system size at the expense
of introducing time-dependent interactions and masses
and adding a time-varying parabolic potential. The non-
perturbative effects of the strong potential perturbation
at the edges are swapped with a perturbation of a more
complicated operator that can be analyzed within conven-
tional linear response theory. This procedure is applicable
in any dimension and can be used as a probe in more com-
plicated systems to detect collective excitations of many
body systems that do not couple to density perturbations,
e.g. the Higgs mode in Fermi superfluids. Another future
direction is to extend our analysis from 1d systems to 2d
superfluids in box potentials, such as realized in experi-
ments by Chomaz et al. [31]. In this case one can consider
protocols that involve moving the walls of the box in a
way that excites modes in both directions. Systems that
we discuss offer interesting questions about dynamics of
nearly-integrable models. For particles in a fixed 1d box
integrability can be understood as arising from the fact

that momenta are exactly conserved during both colli-
sions of particles and reflections from static walls. In the
case of a shaken box, particles can change their momenta
due to Doppler shifts on moving walls. This should act
as integrability breaking, however its role and efficiency
are not immediately clear. Finally, we point out that in
addition to exploring the dynamical Casimir effect, cold
atoms quantum resonators can be used to explore other
analogues of non-equilibrium phenomena in field thoeries
in non-stationary space-time. For example, by moving
the wall of the box or the connection point in the case of
the zipper with relativistic acceleration one can realize
the Unruh effect [32], or even simulate inflation of the
universe of a rapidly expanding gas[33].
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Appendix A: Retarded Greens function

In this section, we show explicitly that the retarded
Greens function, defined as the commutator of the quan-
tum component of the field in Eq. 16, is indeed a Greens
function of the equations of motion and satisfies:(
−∂2

t + ∂2
x

)
DR (x, t;x′, t′) = δ(x− x′)δ(t− t′) (A1)

Re-writing the definition of GR here for convenience:

DR(x, t;x′, t′) = 2θ(t− t′)Im
[∑

n

fn,t′′(x, t)f∗n,t′′(x′, t′)
]

(A2)
note that the subscript t′′ implies that any valid set of
modes can be used in the summation since the retarded
Greens function depends only on the commutator of the
fields and as a result is independent of the underlying
quantum state.

Explicit substitution of Eq. A2 into the left hand side
of Eq. A1 gives:(

−∂2
t + ∂2

x

)
DR (x, t;x′, t′) =

=− ∂tδ(t− t′)2Im
[∑

n

∂t (fn,t′′(x, t)) f∗n,t′′(x′, t′)
]

− 2δ(t− t′)2Im
[∑

n

∂t (fn,t′′(x, t)) f∗n,t′′(x′, t′)
]
(A3)

where the identity
(
−∂2

t + ∂2
x

)
fn,t′′(x, t) = 0 was used.

The delta function is only defined under integration and
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as a result we use the property:

− ∂t (δ(t− t′)) f(t) = δ(t− t′)∂tf(t) (A4)

This leads to the equation:(
−∂2

t + ∂2
x

)
DR (x, t;x′, t′) =

=− δ(t− t′)2Im
[∑
n

∂t (fn,t′′(x, t)) f∗n,t′′(x′, t)
]

(A5)

In order to calculate the sum we can now use the freedom
of choosing any modes we like and in particular we can
choose t′′ = t. Under this choice we have:

fn,t′′=t(x, t) =
e−i

nπ
L(t) t sin

(
nπ
L(t)x

)
√
nπ

(A6a)

∂tfn,t′′=t(x, t) = − inπ
L(t)jn,t

′′=t(x, t) (A6b)

Finally, putting everything together we have:(
−∂2

t + ∂2
x

)
DR (x, t;x′, t′) =

=− δ(t− t′) 2
L(t)

∑
n

(−nπ)
sin
(
nπ
L(t)x

)
sin
(
nπ
L(t)x

′
)

nπ

,

(A7a)

=δ(t− t′) 2
L(t)

∑
n

sin
(
nπ

L(t)x
)

sin
(
nπ

L(t)x
′
)
, (A7b)

=δ(t− t′)δ(x− x′) (A7c)

Completing the proof.

Appendix B: Instantaneously-at-rest modes

In this Appendix, it is shown that as long as the wall
is moving with subsonic speeds, it is always possible to
construct a basis of eigenmodes that have the fixed box
eigenmodes’ form instantaneously at t = t′. To achieve
that we need to be able to assign the following boundary
conditions to the transformation function R(z):

R(z) = z

L(t) , z ∈ (t− L(t), t+ L(t)) (B1)

the rest of the function can then be determined using the
recursion relation, Eq. 13b. This is possible as long as the
recursion relation does not couple any two points with in
the interval (t+ L(t), t− L(t)). In particular, we need to
show that

• for any t′ such that t−L(t) < t′+L(t′) < t+L(t), the
quantity t′−L(t′) is outside this interval, t′−L(t′) <
t− L(t).

• similarly for any t′ such that t−L(t) < t′−L(t′) <
t+L(t), the quantity t′+L(t′) is again outside this
interval, t+ L(t) < t′ + L(t′).

Consider two times, t0, t1 such that t0 +L(t0) > t1+ =
L(t1)

⇒ t0 − t1 = ∆t > −∆x = −(L(t0)− L(t1))

and also require that the speed of the wall at any point
is smaller than the sound velocity i.e.

∣∣∆x
∆t
∣∣ < vs = 1. In

this situation we have 4 scenarios:

1. For ∆t > 0
∆x > 0 , trivially satisfies ∆t > −∆x

2. For ∆t < 0
∆x > 0 ⇒ |∆t| < |∆x| and hence it is not

allowed.

3. For ∆t > 0
∆x < 0⇒ |∆t| > |∆x| and hence it is allowed.

4. For ∆t < 0
∆x < 0, ∆t > −∆x is not satisfied and hence

it is not allowed.

Now consider the quantity ∆s = t0−L(t0)−(t1−L(t1)) =
∆t−∆x from the two allowed scenario:

• For ∆t > 0
∆x > 0 , ∆s = |∆t| − |∆x| > 0 since |∆t| >

|∆x|.

• For ∆t > 0
∆x < 0 , ∆s = |∆t|+ |∆x| > 0, trivially.

From the above analysis we deduce that as long as∣∣∣dL(t)
dt

∣∣∣ < 1, if t1 + L(t1) ∈ (t0 − L(t0), t0 + L(t0)) then
t1 − L(t1) /∈ (t0 − L(t0), t0 + L(t0)). A similar analysis
shows that if if t1 − L(t1) ∈ (t0 − L(t0), t0 + L(t0)) then
t1 + L(t1) /∈ (t0 − L(t0), t0 + L(t0)).
⇒ No two points are coupled in a chosen interval and

we are free to choose the value of R(z), through out such
an interval. This choice uniquely specifies the transforma-
tion.

Appendix C: Computing overlaps

For general two sets of solutions we have:

gn(x, t) = i√
nπ

e−inπR(t+x) − e−inπR(t−x)

2 , (C1a)

fn(x, t) = i√
nπ

e−inπR
′(t+x) − e−inπR′(t−x)

2 (C1b)

It is convenient to define complementary functions:

g̃n(x, t) = i√
nπ

e−inπR(t+x) + e−inπR(t−x)

2 , (C2a)

f̃n(x, t) = i√
nπ

e−inπR
′(t+x) + e−inπR

′(t−x)

2 (C2b)



23

for which we have the following relations:

∂tfn = ∂xf̃n (C3)

and similarly for gn. The inner product between two
modes takes the form:

{fm|gn} = −i
∫
dx (fm∂tgn − gn∂tfm) , (C4a)

= −i
∫
dx
(
fm∂tgn + f̃n∂xgn

)
(C4b)

This inner product is itself time-independent. As a result,
we are free to choose to evaluate it at any time. In
particular, it is convenient to choose the time for which
gn looks like the stationary solution, Eq. 11:

gn(x, t) = i√
nπ

e−inπ
t+x
L(t) − e−inπ

t−x
L(t)

2 , (C5a)

∂tgn = − inπ
L(t)gn, (C5b)

∂xgn = − inπ
L(t) g̃n, (C5c)

⇒ {fm|gn} = − nπ

L(t)

∫
dx
(
fmgm + f̃mg̃n

)
, (C5d)

=
√
n

m

1
2L(t)× (C5e)∫ L(t)

0
dx

(
e
−iπ
(
n t+x
L(t) +mR′(t+x)

)
(C5f)

+ e
−iπ
(
n t−x
L(t) +mR′(t−x)

))
(C5g)

The two terms in the integrand of the final expression
can be combined by changing the variables of the second
term, x→ −x, leading to:

{fm|gn} =√
n

m

1
2L(t) ×

∫ L(t)

−L(t)
dxe
−iπ
(
n t+x
L(t) +mR′(t+x)

) (C6)

Similarly, one can derive the formulas shown in the text
for the Bogoliubov coefficients.

Appendix D: Pertubartive expansion of R(z)

A pertubative expansion of R(z) is found using the
recursion relation and initial conditions of R(z):

R(z + L(z))−R(z − L(z)) = 2, (D1a)

R(z) = z

L0
, for z ∈ (−L0, L0) (D1b)

The next step is to expand R(z) in power series of the
perturbating function, ε(t):

L(t) = L0(1 + e(t)), (D2a)

R(z) =
∑
n

R(n)(z)e(z)n (D2b)

Expanding terms in the recursion relation and matching
term by term gives us the perturbative expansion. The
recursion relation becomes:∑

n

1
n!

(
dnR(x)
dxn

∣∣∣∣
z=z+L0

(L0e(z))n

− (−1)n dnR(x)
dxn

∣∣∣∣
x=z−L0

(L0e(z))n
)

= 2
(D3)

Using the equation above the 0th order term is:
R(0)(z + L0)−R(0)(z − L0) = 2, (D4a)

R(0)(z) = z

L0
, for z ∈ (−L0, L0), (D4b)

⇒R(0)(z) = z

L0
(D4c)

To 1st order we have:
R(1)(z + L0)e(z)− e(z)R(1)(z − L0)) = −2e(z),

(D5a)
R(1)(z) = 0, for z ∈ (−L0, L0), (D5b)
⇒R(1)(z) = −2n,

for z ∈ (−L0 + 2nL0, L0 + 2nL0)
(D5c)

The 2nd order term becomes:
R(2)(z + L0)e2(z)−R(2)(z − L0))e2(z) =

−R(1)(z + L0)
(
de(x)
dx

∣∣∣∣
x=z+L0

)
(L0e(z))

−R(1)(z − L0)
(
de(x)
dx

∣∣∣∣
x=z−L0

)
(L0e(z)),

(D6a)

R(2)(z) = 0, for z ∈ (−L0, L0), (D6b)
(D6c)

for resonant wall motion we have e(z ±L0) = e(z), hence
the 2nd order term obtains the form:

e2(z)R(2)(z) =e2(z)R(2)(z − 2L0)

+ (2n− 1)L0
de(z)2

dz
,

(D7a)

e2(z)R(2)(z) =n2L0
de2(z)
dz

,

for z ∈(−L0 + 2nL0, L0 + 2nL0)
(D7b)

Finally, joining the pieces together up to 2nd-order, our
expansion takes the form:

R(z) = z

L0
− 2ne(z) + n2L0

de2(z)
dz

, (D8a)

z ∈ (−L0 + 2nL0, L0 + 2nL0) (D8b)
As claimed in the text, given Eq. 29, one can estimate
where the perturbative expansion breaks down. The nth
order scales a (te)nω(n−1). As a result this perturbation
is valid up to times:

tpert. <
1
eω

(D9)
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Appendix E: Late time behavior of Bogoliubov
matrices

The asymptotic form of the Bogoliubov matrices can
be calculated using Eq. 28 and the asymptotic form of
R(z), Eq. 33.

Here we will concentrate on calculating the Bogoliubov
matrices at stroboscopic times i.e. integer multiples of
the period of the drive, t = l02L0/n, l0 ∈ Z

Vν,µ = −
√
µ

ν

ei
2µπl0
n

2L0

∫ L0

−L0

dxei
µπx
L0 eiνπR(l0T+x)

= −
√
µ

ν

ei
2µπl0
n

2L0

∫ 0

−2L0

duei
µπ
L0

(u+1)eiνπR( 2l0L0
n +u+L0)

= −
√
µ

ν

ei
2µπl0
n

2L0

n−1∑
k=0

∫ −2L0+ 2L0(k+1)
n

−2L0+ 2L0k
n

due
iµπ(u+L0)

L0

× eiνπ
(

2l0
n +−2L0+2L0(k+1)/n

L0
+1
)
,

(E1a)∫ −2L0+ 2L0(k+1)
n

−2L0+ 2L0k
n

dxe
iµπx
L0 =

= L0

iµπ

(
e
iµπ
(
−2+ 2(k+1)

n

)
− eiµπ(−2+ 2k

n )
)

= 2L0

µπ
eiµπ( 2k

n + 1
n ) sin

(µπ
n

)
,

(E1b)

n−1∑
k=0

ei2πk
µ+ν
n = nδµ+ν,ρn, where ρ ∈ Z, (E1c)

⇒ Vν,µ =

− ei
2µπl0
n

√
µνπ

sin(µπ
n

)neiµπ(−1+ 1
n )eiνπ( 2l0

n −1+ 2
n )

×
ρ=∞∑
ρ=1

δµ+ν,ρn

(E1d)

Vν,µ = − n
√
µνπ

sin(µπ
n

)e−i
πµ
n eiπ(ν+µ)( 2l0

n −1+ 2
n )

×
ρ=∞∑
ρ=1

δµ+ν,ρn

(E1e)

As required. Uν,µ is found similarly.

Appendix F: Inhomogeneous Differential Equations

The possible pitfalls of dealing with inhomogeneous
differential equations are presented here by way of a sim-
plified example similar to the equations of motion found
in the main text. To present the core issue it is enough to
work with an inhomogeneous differential equation with
fixed boundaries and then discuss the consequences for
the moving boundary case. We wish to solve the following

equation:(
∂2
t − ∂2

x

)
j = 0, (F1a)

j(x = L0) = a(t), j(x = 0) = 0 (F1b)

The most straightforward way to deal with this equation
is to shift j by a linear function:

j = j̃ + x
a(t)
L0

(F2)

Now, the variable j̃ satisfies homogeneous boundary con-
ditions and in particular, can be expanded in terms of a
sin-series:

j̃(x = 0) = j̃(x = L0) = 0, (F3a)

⇒ j̃(x, t) =
∑
n

an(t) sin
(
nπ

L0
x

)
(F3b)

The cost is introducing an inhomogeneous term in the
wave equation:

(
∂2
t − ∂2

x

)
j = −xa

′′(t)
L0

(F4)

where a′′ denotes 2nd derivative with respect to time.
This equation is solved by substituting the expansion of
Eq. F3b in Eq. F4 and take the Fourier transform on both
sides:(
∂2
t +

(
nπ

L0

)2
)
a(t) = 2

L0

∫ L0

0
dx

(
−xa

′′(t)
L0

)
sin
(
nπ

L0

)
(F5)

However, in arriving at Eq. F5 we have effectively replaced
the linear potential by its sin-series expansion:

x→
∑
n

bn sin
(
nπ

L0
x

)
(F6)

This is a drastic step, effectively eliminating all the cosine
contributions from the expansion. This is justified by the
fact that even though there is an external potential, the
boundaries exert normal forces effectively cancelling all
cosine contributions in order to preserve the boundary
conditions. The apparent paradox comes from trying to
calculate the density in this model, which involves taking
the spatial derivative of current, h(x, t) = ∂xj̃(x, t). As
before, h(x, t), can be expanded in cosine-series:

h(x, t) =
∑
n

cn cos
(
nπ

L0
x

)
(F7)

Naively, the equations of motion for h would be:

(
∂2
t − ∂2

x

)
h(x, t) = −a

′′(t)
L0

(F8)

However, the operation of taking a spatial derivative of
the inhomogeneous term and expanding that term in the
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suitable cosine or sine series do not commute.

x→
∑
n

bn sin
(
nπ

L0
x

)
, bn →

1
n
, (F9a)

∂xx→
∑
n

dn cos
(
nπ

L0
x

)
, dn → 1, (F9b)

or ∂xx = 1→
∑
n

gn cos
(
nπ

L0
x

)
, gn → 0, (F9c)

Eq. F9b represents expressing x in a sine-series first and
then taking a spatial derivative, while Eq. F9b represents
taking the derivative of x and then expanding in a cosine-
series. It is clear however, that the correct procedure is
the one that gives consistent results of the solution of h
and j in Eq. F9b. Upon re-summing the expansion one
can show that:

∂xx→
∑
n

dn cos
(
nπ

L0
x

)
= 1− δ(x− L0) (F10)

As a consequence, the naive guess Eq. F8, derived by
taking a spatial derivative of the equation of motion for j
to find the equation of motion for h is wrong. Instead, we
can find the correct result by replacing x→ θ(x)xθ(1−x).
In the moving wall case, relevant for this paper, the
eigenmodes are not simple sines and cosines in space and
it becomes unclear what the equations of motion for the
density are imposed by the boundary conditions of the
current. Instead, to avoid this pitfall one should calculate
the response of the current first and from there find the
density using the continuity equation.

Appendix G: Thermal fluctuations

As mentioned in Sec. III, we are working in the Heisen-
berg picture where the state is time-independent but the
operators like the current operator, ĵ, evolve in time.
However, using the relativistic formalism we were able
to define time-independent creation and annihilation op-
erators, {cm(t), c†m(t)}. The variable t denotes the time
the corresponding orthonormal basis functions have the
fixed box basis functions’ form. The generalization of the
state of the system being the ground state of the {cm(0)}
annihilation operators at all times, for finite temperature,
T, is the following thermal density matrix:

ρ(T ) = e−β
∑

l

lπ
L0
c†
l
(0)cl(0)

Z
(G1)

As a result the Keldysh function, using
〈
c†n(0)cm(0)

〉
=

δn,mnb

(
nπ
L0

)
, (nb is the bose distribution function) takes

the form:

GK(x, t;x′, t′) = −i 〈{jq(x, t)jq(x′, t′)}〉 (G2a)

=− 2i
∑
n

Re
[
jn,0(x, t)j∗n,0(x′, t′)

×
(

1 + 2nb
(
nπ

L0

))] (G2b)

This equation is the finite temperature generalization of
Eq. 24. In the absence of interactions thermal fluctuations
leave the classical response unaffected. However, quan-
tum/thermal fluctuations are included in the self-energy
in the presence of interactions leading to temperature
depended damping factors.

In order to understand the effect of temperature, it is
helpful writing out the equivalent expression of Eq. 26 for
finite temperature, T :

〈φrel(n, t)φrel(m, t)〉 = 1
π
√
nm
×∑

l

(
V †n,lVl,me

i(n−m)πt/L(t)+

Un,lU
†
l,me

−i(n−m)πt/L(t)+

V †n,lU
†
l,me

i(n+m)πt/L(t)+

Un,lVl,me
−iπ(n+m)t/L(t)

)
×
(

1 + nb

(
lπ

L0

))

(G3)

It differs only, by a thermal factor on the summation
over l. For kbT < ~vs πL0

, thermal effects are exponen-
tially suppressed. This factor enhances the significance
of lower modes in the summation, but preserves the ma-
trix pattern of resonances as it can be seen in Fig. 13.
The mode n = 5 was used as an example for tempera-
tures kbT =

{
0, ~vs πL0

, 10~vs πL0

}
and compared to the

undriven fluctuations of the system. The resonance ef-
fect is in fact enhanced by temperature, with peaks in
the correlations becoming more prominent. Furthermore,
fluctuations of the driven state are more greatly enhanced
by temperature compared to the undriven case.

Appendix H: Squeezing in realistic systems

In realistic systems, the box potential is not perfectly
steep and moving of the boundary occurs by thickening
the wall via amplitude modulation of the light creating
the wall. An imperfect box potential can be thought of,
expanding around the middle of the box, as a Taylor series
where low order terms have been eliminated making it
look very flat. The box potential and the actual potential
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have the form:

VBox = V0Θ
(
|x| − L0

2

)
, V0 →∞, (H1a)

Vactual =
(

2x
L0

)2N
, N >> 2 (H1b)

The actual potential becomes the box potential in the
limit of N →∞. Upon driving, intensity modulation of
the laser creating the wall translates to a time-dependent
multiplicative factor in the potential:

Vactual = A(t)
(

2x
L0

)2N
, (H2a)

=
(

2x
L(t)

)2N
(H2b)

where A(t) is the intensity modulation and L(t) =
L0

A1/2N (t) the effective time-dependent box potential. For
small intensity fluctuations, A(t) = 1 + εf(t) , ⇒ L(t) ≈
L0(1 + ε

2N f(t)). The box limit N →∞ must be associ-
ated with ε → ∞ such that ε

N → const. As a result for
sufficiently steep boxes we expect our analysis to be valid.

[1] S. Dodelson, Modern Cosmology (Academic Press, San
Diego, 2003).

[2] D. J. Rowe, Nuclear Collective Motion: Models and The-
ory (World Scientific, Singapore, 2010).

[3] S. A. Fulling and P. C. W. Davies, Proc. R. Soc. London,
Ser. A (1976).

[4] G. T. Moore, J. Math. Phys. 11 (1970).
[5] V. V. Dodonov, Phys. Scr. 82, 038105 (2010).
[6] G. Benenti, A. D’Arrigo, S. Siccardi, and G. Strini, Phys.

Rev. A 90, 052313 (2014).
[7] C. M. Wilson et al., Nature 479, 376 (2011).
[8] J.-C. Jaskula, G. B. Partridge, M. Bonneau, R. Lopes,

J. Ruaudel, D. Boiron, and C. I. Westbrook, Phys. Rev.
Lett. 109, 220401 (2012).

[9] B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yef-
sah, J. Struck, and M. W. Zwierlein, Phys. Rev. Lett.
118, 123401 (2017).

[10] T. Giamarchi and O. U. Press, Quantum Physics in One
Dimension, International Series of Monographs on Physics
(Clarendon Press, Oxford, 2004).
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