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We study the quantum dynamics of many-body arrays of two-level atoms in a driven cavity subject
to collective decay and interactions mediated by the cavity field. We work in the bad cavity limit
accessible, for example, using long-lived electronic clock states of alkaline earth atoms, for which
the bare atomic linewidth is much less than the cavity linewidth. In the absence of interactions,
our system reduces to previously studied models of collective fluorescence. We show that while
interactions do not qualitatively change the steady state properties, they lead to a drastic change
in the dynamical properties. We find that, for some interval of driving strengths, the system shows
two very distinct types of transient behaviors that depend on the initial state of the system. In
particular, there is a parameter regime where the system features oscillatory dynamics with a period
of oscillation that becomes much shorter than the duration of the overall transient dynamics as the
atom number increases. We use both mean field and exact numerical calculations of the quantum
system to investigate the dynamics.

I. INTRODUCTION

Driven-dissipative systems are ubiquitous in nature
and are fundamental to modern quantum science. Even
in the classical realm non-linear driven dissipative sys-
tems can display fascinating behavior. For example, a
macroscopic number of intrinsically noisy driven coupled
oscillators can exhibit the phenomenon of synchroniza-
tion [1], which describes the spontaneous locking of the
oscillators to a common phase. At the quantum level
their behavior can become extremely complex and in-
triguing [2, 3]. While dissipation generally tends to de-
grade quantum correlations, it is now widely appreciated
that it can also give rise to many-body physics not pos-
sible with strictly coherent dynamics, and can be used
explicitly for the creation of entanglement [4–6]. Harness-
ing dissipation, and determining its effect on interacting
many-body systems is a fundamental step for advancing
quantum information and the technological promise of
quantum computers and ultra-precise sensors.

Collective spin models are among the most amenable
systems to investigate the interplay between dissipation
and interactions, since their reduced Hilbert space al-
lows for exact solutions with current computational re-
sources and at the same time their collective nature in-
creases the parameter regime where simple mean field
treatments are valid. Recently, collective spin models
and generalizations with independent decay and dephas-
ing have regained theoretical interest [7–19] given im-
pressive experimental advances in quantum laboratories.
These studies have shown that these systems have steady
states with very rich phase diagrams [13, 16], can un-
dergo dynamical phase transitions [9, 20] including self-
organized criticality [21] and bistability [22–24], as well as
emergent quantum synchronization [25–27], and for some
parameter regimes in the thermodynamic limit, steady
states characterized by oscillating observables [17, 28–30]
in close connection with recently proposed time-crystals

[11, 31, 32]. Spin squeezing has also been a prominent
quantity of study in collective systems with strong dissi-
pation [33–38].

In this paper we consider a dissipative version of the
Lipkin-Meshkov-Glick [39] model that arises in the study
of ultra long-lived atoms inside a rapidly decaying QED
cavity [40], where the bare atomic linewidth is much less
than the cavity linewidth. In this limit the rapidly de-
caying cavity field can be adiabatically eliminated giv-
ing rise both to effective elastic interactions between
the atoms and to a collective decay process responsible,
among other things, for superradiance [41]. Cavity me-
diated interactions alone lead to a steady state where all
atoms are de-excited, and as such we incorporate an ad-
ditional coherent drive to pump energy into the system
and thus realize a nontrivial steady state. Such a driven-
dissipative system has been studied with exact and mean
field calculations in the case of zero interactions [28, 42–
44], where at a critical value of the driving strength a
dissipative phase transition was identified in the steady
state. Below the critical driving strength there exists a
superradiant phase, which features a steady state with
non-zero inversion, whilst above this critical value there
is a normal phase characterized by zero net inversion and
slowly decaying transient oscillations.

Here, we first show (sec. III) that interactions don’t
qualitatively change the properties of the steady state
and just induce a renormalization of the critical drive
and an overall rotation of the spin observables. In line
with other reports in the literature [7, 8, 17], we also
find parameter regimes where the steady state is highly
squeezed, scaling with particle number in a similar way
to previous studies [17]. However, interactions signifi-
cantly modify the dynamics (sec. IV). Using a mean
field formulation we find that there is a window of driv-
ing strengths, which disappears without interactions, in
which the transient dynamics is strongly sensitive to the
initial conditions. This results in the existence of three
distinct regions, instead of two, as compared to the exact
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steady state or to the dynamics of the non-interacting
system (sec. IVA).

While in general mean field theory describes poorly the
long time dynamics, specifically for systems with large
enough drive strengths and finite N , we find that the
mean field phases remain present in the exact solution
(sec. IVB) by integrating numerically the master equa-
tion of the system. Accounting for quantum correlations
we observe that, in contrast to the mean field predic-
tions, Rabi oscillations do decay (for large enough drives).
The decay rate scales much faster with the number of
atoms compared to the cases when there is no dissipa-
tion ([45, 46]) or no interactions. In the latter case it
reduces to simple exponential decay. Finally, in sec. V
we relate the phase boundaries of the mean field phase
diagram with the opening or closing of gaps in the real
and imaginary parts of the spectrum of the Liouville op-
erator. In this way, we tie features of the mean field
dynamics to properties of the exact quantum solution.

While studies of fluorescence of driven atoms in the
presence of dissipation, both collective and independent,
have a very long history [28, 42–44] and a myriad results
about them have been obtained throughout the years, the
investigations presented here are timely since only very
recently, atoms featuring ultra long-lived optical transi-
tions, such as the clock transition in strontium, have been
cooled down and loaded in optical cavities [40, 41]. These
capabilities are opening a path for the first experimental
observation of dynamical phases in driven dipoles. This
is thanks to the extremely long lifetime (larger than a
hundred seconds) of the clock transition which allows
the system to attain the predicted non-trivial steady
states before spontaneous decay destroys correlations be-
tween atoms. At the same time, the weak dipole moment
slows down the collective dynamics making it to occur at
times accessible with standard probes in current cavity
QED experiments. This is strikingly different to stan-
dard dipole allowed transitions which need much faster
probes for detection.

II. MODEL

We consider first a system composed of a single cavity
mode interacting collectively with N atoms whose dy-
namics are determined by a master equation:

dρ̂

dt
= −i

[
g
(
âĴ+ + â†Ĵ−

)
−∆â†â, ρ̂

]
+ κ
(
âρ̂â† − 1

2
{â†â, ρ̂}

)
, (1)

where {·, ·} denotes the anticommutator, â is the destruc-
tion operator that acts on the cavity mode, Ĵ± = Ĵx±iĴy
and Ĵx,y,z = 1

2

∑N
j σ̂

x,y,z
j are collective pseudospin opera-

tors, σ̂x,y,zj are Pauli spin operators that act on the inter-
nal two level system of atom j, ∆ is the cavity detuning
with respect to the atomic transition frequency, κ is the

cavity decay rate and g is the atom-light coupling con-
stant.

In the bad cavity limit, accessible with long lived
dipoles, the spontaneous decay rate of the atoms, γ, is
much smaller than the cavity decay, κ and can be ne-
glected, to an excellent approximation. For example in
the case of the clock transition in 87Sr, γ is of the order
of millihertz while κ is typically of the order of hundreds
of kilohertz and thus eight orders of magnitude larger. In
the bad cavity limit, κ � g, we can adiabatically elimi-
nate the cavity field from Eq. (1) leading to a collective
spin model [47],

dρ̂

dt
= −i

[
χĴ+Ĵ−, ρ̂

]
+ Γ

(
Ĵ−ρ̂Ĵ+ − 1

2

{
Ĵ+Ĵ−, ρ̂

})
, (2)

where

χ =
4g2∆

4∆2 + κ2
,

Γ =
4g2κ

4∆2 + κ2
.

(3)

Here, χ describes effective elastic exchange interactions
and Γ describes collective coherent decay of the atomic
system, responsible for superradiance. As mentioned be-
fore, under Eq. (2) the system reaches a steady state with
all atoms de-excited so we add a single particle driving
term on resonance with the atomic transition and with
a Rabi frequency Ω. The full evolution of the system is
thus given by

dρ̂

dt
= −i

[
χĴ+Ĵ− + ΩĴx, ρ̂

]
+ Γ

(
Ĵ−ρ̂Ĵ+ − 1

2

{
Ĵ+Ĵ−, ρ̂

})
,

≡ Lρ̂.
(4)

The Hamiltonian part, when restricted to the collective
manifold, can be reduced to a particular realization of
the Lipkin-Meshkov-Glick model:

Ĥ = χĴ+Ĵ− + ΩĴx = χĴ2 − χĴ2
z + χĴz + ΩĴx,

≈ χN
2

(N
2

+ 1
)
− χĴ2

z + ΩĴx,
(5)

where we have neglected χĴz on account of it being a
factor of N smaller than the other terms in Ĥ. Here we
focus on initial states that are eigenstates of Ĵ2, which is
a conserved quantity of the dynamics given by Eq. (4).
Consequently, this term only leads to a uniform energy
shift in the Hamiltonian. It is important to point out,
however, that the Ĵ2 term gives some degree of protec-
tion against single particle inhomogeneities or slow non-
collective noise sources [41]. Thus, Eq. (5) can also be un-
derstood as a one-axis twisting Hamiltonian in the pres-
ence of driving. As a final comment, we remark that the-
oretical studies of the Lipkin-Meshkov-Glick model typi-
cally consider χ and Γ to scale as 1

N to keep the energy



3

extensive, in contrast to our case in which χ and Γ are in-
dependent of N . As a consequence, when the number of
atoms increases, we observe dynamics that become faster
in real time.

III. STEADY STATE PROPERTIES

The steady state of the system, ρ̂ss is characterized by
Lρ̂ss = 0. To solve it, we use the methods of [44, 48]
and introduce displaced spin operators: Ô+ = Ĵ+ − αÎ,
where Î is the identity matrix. If we choose:

α =
iΩ

Γ− 2iχ
, (6)

then the master equation simplifies to:

iχ

(
Ô+Ô−ρ̂ss − ρ̂ssÔ+Ô−

)
+ Γ

(
Ô−ρ̂ssÔ

+ − 1

2
Ô+Ô−ρ̂ss −

1

2
ρ̂ssÔ

+Ô−
)

= 0. (7)

From it, it can be seen that the ansatz:

ρ̂ss ∝
1

Ô−
1

Ô+
(8)

solves independently the Hamiltonian and dissipative
parts. Thus, a closed form expression can be written
for the system’s density matrix:

ρ̂ss = C|α|2
(

1

Ĵ− − α∗Î

)(
1

Ĵ+ − αÎ

)
, (9)

where C is a normalization factor that ensures Tr(ρ̂) = 1.
This allows us to calculate, for example, the expectation
value of Ĵz in the large N limit (keeping Ω

N fixed). The
result is:

〈Ĵz〉ss =


−N2

√
1− Ω2

Ω2
c

Ω < Ωc

0 Ω > Ωc,

(10)

where

Ωc =
N

2

√
Γ2 + 4χ2. (11)

Equation (10) shows that there is a phase transition at
Ω = Ωc for which 〈Ĵz〉ss is a good order parameter. We
refer to these phases as superradiant (S) and normal (N )
for Ω < Ωc and Ω > Ωc respectively (see Fig. 1), consis-
tent with previous studies in the absence of elastic inter-
actions [28]. These works also found phenomena such as
spin squeezing [49], which we find persists in the presence
of elastic interactions as shown in Fig. 2. There, we use

Figure 1. We show the phase diagram of the system in the
Ω − χ plane. The transition line is determined by 2Ωc

NΓ
=√

1 +
(

2χ
Γ

)2. When Ω < Ωc, we have the superradiant phase,
with nonzero atomic inversion. When Ω > Ωc, atomic inver-
sion is 0 and we are in the normal phase.

the definition of the squeezing parameter ξ introduced by
Wineland et al. [50]:

ξ2 = min
n⊥

(
N 〈∆Ĵ2

n⊥
〉

| 〈Ĵ〉 |2

)
, (12)

〈Ĵ〉 =
(
〈Ĵx〉 , 〈Ĵy〉 , 〈Ĵz〉

)
is the expectation value of

the spin vector, 〈∆Ĵ2
n〉 = 〈(Ĵ · n)2〉 − (〈Ĵ · n〉)2 is the

variance of the projection of the spin in direction n, n⊥
is a direction orthogonal to 〈Ĵ〉 (that is, n⊥ · 〈Ĵ〉 = 0)
and we are minimizing the quantity in parentheses in
Eq. (12) among all possible n⊥ directions. If ξ2 < 1,
then the system is entangled [51]. In Fig. 2 we plot
− log10 ξ

2 and it clearly shows that the phases defined
by Eq. (10) have very different squeezing properties: it
is positive in the S phase (thus entangled) and negative
in the N phase. The best squeezing is obtained in a
very small region around the transition line and is, quite
surprisingly, independent of the interaction strength
χ. This should become clear by looking at Eq. (9),
from which we can deduce that the squeezing can
only be a function of |α| so that any change in χ can
be compensated by a change in Ω that keeps |α| constant.

To get more insight into the squeezing we calculate the
Husimi distribution, defined by

Q(θ, φ) =
(N + 1)

4π
〈θ, φ| ρ̂ |θ, φ〉 , (13)

where |θ, φ〉 is a spin coherent state, defined as the
eigenstate of n · Ĵ with positive eigenvalue, where n =
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Figure 2. In panel (a), we plot − log10 ξ
2 (spin squeezing) as a function of 2Ω

NΓ
and χ

Γ
for N = 1000. The lower red plane

marks ξ2 = 1, while the translucent upper blue plane indicates the maximum squeezing (log10 ξ
2
max ≈ −6.4). At fixed χ

Γ
, as

Ω is increased from 0, squeezing gets increasingly better reaching a maximum close to Ω = Ωc. Beyond Ωc squeezing gets
worse very quickly. This can be seen also in panel (b) which shows a top down view of panel (a) and further confirms that
the best squeezing is obtained for Ω in a narrow region below Ωc. Panel (c) shows the optimum squeezing as a function of N .
The scaling exponent obtained shows that this squeezing does improve with increasing particle number but does not reach the
Heisenberg limit ξ2 ∼ N−1. We extrapolate this behaviour because, in modern experiments, attaining N ≈ 105 is feasible [40].
For that specific particle numer, squeezing should be at about 12 dB. The inset shows that the best squeezing is independent
of χ, as discussed in the text.

(sin θ cosφ, sin θ sinφ, cos θ). We show the Husimi distri-
butions of states in different regions of the phase diagram
in Fig. 3. Inside the S region, the state is very close to
being a spin coherent state, with the noise ellipse close to
being isotropic. When Ω = 0, the steady state is clearly
a coherent state pointing in the −ẑ direction, so the in-
clusion of a small driving just lifts this state a little bit
but doesn’t change its qualitative properties. The steady

state is reached in a situation where the rate at which
the state is lifted by Ω is compensated by the rate at
which the state relaxes back to −ẑ due to dissipation. If
there were no interactions, the state would be pointing
in the yz plane (perpendicular to the driving axis), but
χ induces a rotation about the ẑ axis. As we increase
Ω and move closer to the transition region, the driving
starts winning over the dissipation shearing the noise el-
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Figure 3. Upper: Husimi distributions (Q(θ, φ)) of the steady state for different values of Ω. a) Ω = 0.45Ωc, b) Ω = 0.96Ωc,
c) Ω = 1.79Ωc. The size of the bulge protruding from the sphere is proportional to the length of the Bloch vector and the
translucent plane is the XY plane. Lower: Contour plots of the Husimi distributions showing contours spaced by 10% of Qmax,
where Qmax is the maximum value of Q(θ, φ) on the sphere, normalized such that Qmax = 1 for a coherent state.

lipse in the vertical direction and moving the collective
Bloch vector closer to the equator since a larger dissi-
pation is needed to equilibrate the system. Note that
dissipation is the greatest at the equator. Finally, when
increasing Ω past the transition point, dissipation is not
strong enough to equilibrate the drive at any point in the
sphere and the Bloch vector keeps rotating. Dissipation
then just decoheres the state, which results in the state
spreading over a large area of the Bloch sphere.

IV. DYNAMICS

Given that a simple closed form solution of the ex-
act many-body dynamics is not possible, we instead use
a mean field analysis and then compare it to the exact
steady state presented in the previous section and the
results from exact numerical solutions. The exact equa-
tions of motion for the expectation values of the spin

observables derived from Eq. (2) are:

d 〈Ĵx〉
dt

= χ 〈{Ĵy, Ĵz}〉+
Γ

2
〈{Ĵx, Ĵz}〉 −

Γ

2
〈Ĵx〉 ,

d 〈Ĵy〉
dt

= −Ω 〈Ĵz〉 − χ 〈{Ĵx, Ĵz}〉+
Γ

2
〈{Ĵy, Ĵz}〉 −

Γ

2
〈Ĵy〉 ,

d 〈Ĵz〉
dt

= Ω 〈Ĵy〉 − Γ 〈Ĵ2
x + Ĵ2

y 〉 − Γ 〈Ĵz〉 .
(14)

A. Mean field analysis

The mean field approximation assumes the spin vari-
ables are uncorrelated and replaces 〈ĴiĴk〉 ≈ 〈Ĵi〉 〈Ĵk〉
in Eq. (14). Furthermore, for convenience we define
si = 〈Ĵi〉

N/2 . At the mean field level the equations for si
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are then:

ṡx = Nχsysz +
NΓ

2
sxsz,

ṡy = −Ωsz −Nχsxsz +
NΓ

2
sysz,

ṡz = Ωsy −
NΓ

2
(s2
x + s2

y),

(15)

and we have assumed here that NΓ, Nχ and Ω are com-
parable. Regardless of the nonlinear character of the
mean field equations, the solution can be parameterized
in terms of a variable b(t):

sz(t) = −ḃ(t),
s+(t) = sx(t) + isy(t),

= s+(0)e−
(
NΓ
2 −iNχ

)
b(t)

+
2iΩ

NΓ− 2iNχ

(
1− e−

(
NΓ
2 −iNχ

)
b(t)

)
.

(16)

The first line of Eq. 16 defines b(t), which leaves us free
to choose its initial value. The second line of Eq. 16 is
obtained through an integration of the equation for s+(t)
and setting b(0) = 0. Thus, b(t) satisfies:

b(0) = 0,

ḃ(t)2 + V (b(t)) = 1.
(17)

where

V (b) =
4 Ω2

N2

Γ2 + 4χ2

(
1− 2e−

NΓ
2 b cos(Nχb) + e−NΓb

)
+ |s+(0)|2e−NΓb(t)

+ 2|s+(0)|

√
4 Ω2

N2

Γ2 + 4χ2
e−

NΓb
2

×
(

cos(φ−Nχb) + e−
NΓb

2 cos(φ)

)
,

(18)

and

φ = arg

(
2iΩ

NΓ− 2iNχ
s∗+(0)

)
. (19)

The time evolution of b(t) can then be understood as the
coordinate of a particle of unit mass and energy moving
in the effective potential V (b), which clearly depends on
the initial conditions. This analogy makes it easier to
visualize the solution.

In the case of starting with all the atoms de-excited
(that is, the south pole), s+(0) = 0 and the equations

simplify to

b(0) = 0,

1 = ḃ(t)2+
4Ω2

N2(Γ2 + 4χ2)

×
(

1− 2e−
NΓ
2 b(t) cos

[
Nχb(t)

]
+ e−NΓb(t)

)
.

(20)

As is shown in Fig. 4, there are two different situations
depending on whether Ω is greater or smaller than some
Ω̃ (not equal to the critical value Ωc derived before for
the steady state). For Ω < Ω̃: b is unbounded, so ḃ never
changes sign. Thus sz remains negative throughout the
evolution and tends to a constant value in the infinite
future which agrees with the exact value calculated from
the steady state density matrix. For Ω > Ω̃: b keeps
oscillating indefinitely and so does sz. There is no equi-
libration and the system never reaches a steady state.

The importance of Ω̃ is not its precise value but instead
two facts: (1) it depends on the initial conditions (since
V (b) itself depends on them), and (2) as all different ini-
tial conditions are explored, Ω̃ acquires values in the finite
interval

[
NΓ/2,Ωc

]
. As a result, when Ω < NΓ/2, the

system relaxes to the steady state for any initial condi-
tion. When NΓ/2 < Ω < Ωc, whether the system relaxes
or oscillates indefinitely depends on the initial condition
chosen, and when Ωc < Ω, the system oscillates indef-
initely no matter the initial condition (see Fig. 5). To
justify this, we computed the possible steady states pre-
dicted by Eqs. (15), analyzed the behaviour of small per-
turbations and found that:

1) For Ω < NΓ
2 , there is one set of steady states with

spin observables given by

sss+ =
2iΩ

NΓ− 2iNχ
,

sssz = ±

√
1− 4Ω2

N2Γ2 + 4N2χ2
= ±

√
1− Ω2

Ω2
c

,

(21)

and stability eigenvalues:

λ = N

(
Γ

2
± iχ

)
sssz . (22)

Thus, only the state with sssz < 0 is stable and we denote
it by SS1.

2) For NΓ
2 < Ω < Ωc, SS1 is still a valid steady state

but there is another set of solutions, with spin observables
given by

sssz = 0,

sssy =
NΓ

2Ω
,

sssx = ±
√

1− N2Γ2

4Ω2
,

(23)
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Figure 4. Panel (a) shows the effective potential for Ω < Ω̃ (lower orange line) and Ω > Ω̃ (upper blue line). b is a variable in
terms of which all spin projections can be expressed (see Eq. 16). It starts at 0 and with ḃ > 0 (since sz(0) < 0). When Ω < Ω̃,
b is not constrained by the potential, can increase without bound and ḃ reaches a constant value at long times. When Ω > Ω̃,
b is constrained to remain between the turning points shown in the figure, thus showing oscillatory behaviour. Panel (b) shows
the time evolution of sz(t) for Ω < Ω̃ (orange, decaying) and Ω > Ω̃ (blue, oscillatory).

and stability eigenvalues:

λ2 = −Ω2

(√
1− N2Γ2

4Ω2
+ sgn(sx)

Nχ

Ω

)√
1− N2Γ2

4Ω2
.

(24)
One of the solutions, which we call SS2, is unstable in
the region NΓ

2 < Ω < Ωc while the other one (SS3) has
imaginary eigenvalues. Thus, if the system starts close
to SS3, then it will keep oscillating indefinitely (as found
numerically), and if it starts close to SS1 it will decay
towards it.

3) For Ωc < Ω, SS1 is no longer a valid steady state,
so only SS2 and SS3 remain. In this case, however, both
have imaginary stability eigenvalues, so the system will
oscillate, no matter where it starts.

This allows the construction of the phase diagram
shown in Fig. 5. For Ω < NΓ/2 (blue) we have the
superradiant region, where the system always decays to
a steady state with a time constant tdecay ∼ N−1 [see
Eq. (22)], hence the name superradiant. For NΓ/2 <
Ω < Ωc (red), we have a region of multistability, with
more than one possible steady state. Finally for Ω > Ωc
(yellow), we have a region where the driving term dom-
inates and generates oscillations in the spin inversion
that can be understood from a single particle perspec-
tive, hence the name normal. Note that the boundary
between the red and the yellow regions is the same as
the boundary between the superradiant S and the nor-
mal N steady state phases, with the yellow phase exactly
corresponding to the N phase.

Furthermore, if we do a time average of sz,

s̄z = lim
T→∞

1

T

∫ T

0

sz(t)dt, (25)

as is usually done in the context of dynamical phase tran-

sitions [20], we find a jump at Ω̃ (shown in Fig. 6), charac-
teristic of a first order transition. This can be understood
as follows: in the decaying region, the average is always
going to be dominated by the steady state value of sz,
so both the average and steady state calculations agree.
This does not hold all the way to Ωc, however. Instead,
once the oscillating behaviour sets in, sz will average to
0.

The mean field predictions and in particular the oscil-
latory dynamics in the normal phase seem to contradict
the steady state exact solution. In fact, while mean field
works well for Ω < NΓ

2 and accurately predicts the steady
state values of the spin observables, it completely misses
the relaxation process for Ω > Ωc. In between these
two values, depending on the initial condition, the mean
field treatment may or may not describe the relaxation
towards the steady state.

B. Exact solution

To investigate the extent to which the mean field be-
haviour is correct, we numerically integrate the master
equation for N = 400. We fix χ and Γ, vary Ω and start
at the south pole of the Bloch sphere. The resulting plots
of inversion, shown in Fig. 7, reveal many interesting fea-
tures:

In the metastable phase and for drive strengths much
less than Ω̃ (A in Fig. 7), mean field offers a good descrip-
tion of the dynamics, including the relaxation towards
the steady state, which is shown to occur rather quickly
compared to Γ−1. The decay time predicted by mean
field is ∼ 0.005Γ−1 [Eq. (22)], which is faster than ob-
served in Fig. 7. However, the discrepancy is explained
by the fact that the system is initialized far from the
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Figure 6. When Ω < Ω̃, the long time average is equal to the
(exact) steady state value. Beyond Ω̃, oscillations average the
inversion to 0.

steady state.
As Ω is increased, the mean field transition is reached

(B and C in Fig. 7), which is signaled in the exact solution
by the fact that for Ω > Ω̃, the inversion 〈Ĵz〉 crosses 0
at some time during the evolution. Traces of oscillations
can also be seen, but the qualitative behaviour of the
exact solution is very similar in B and C (in contrast
to the mean field predictions). Note, however, that the

relaxation towards the steady state is very slow in this
region (especially after crossing the boundary towards
C).

In the vicinity of Ωc (D and E in Fig. 7), oscillations
have already kicked in, and to a great extent the mean
field solution is able to capture the oscillation frequency
(as can be seen by looking at the zero crossings). How-
ever, there is an envelope that describes relaxation to-
wards 〈Ĵz〉 = 0. This is the correct steady state for E
since it is already in the N phase, but for D, which is
still in the metastable phase the real steady state is at-
tained after a much longer time (set by Γ, see Fig. 8,
right panel).

Finally, deep in the normal phase (F in Fig. 7), the
picture of oscillations modulated by an envelope is ac-
curate. Note that it seems to be independent of Ω
and thus the effect of increasing Ω is just to increase
the oscillation frequency compared to its characteristic
decay rate. This envelope is a beyond mean field ef-
fect and, as shown in Appendix A, is characterized by
tdecay ∼ N−2/3. This is much faster than would be ex-
pected purely from interactions (tdecay ∼ N−1/2) or sin-
gle particle decay (tdecay ∼ Γ−1) and indicates the pres-
ence of a non trivial interplay between both.

Relaxation in C and D is very slow, so we extend the
simulations to long times to be able to observe the decay.
The results are shown in Fig. 8. The decay is still expo-



9

21 3 4

A CB D E F

-1.0

-0.5

0.0

0.5

1.0

0 0.04 0.08 0.12

A

0 0.04 0.08 0.12

B

0

5

0

0

0 0.04 0.08 0.12

C

-1.0

-0.5

0.0

0.5

1.0

0 0.04 0.08 0.12

D

200

0

5

0

5

0 0.04 0.08 0.12

E

0

0

0

0 0.04 0.08 0.12

F

Exact

Steady state

Mean field

Õ

Figure 7. The main panels show the results of the exact simulations for N = 400, 2χ = 1.875Γ and six values of 2Ω
NΓ

: 1.48
(A), 1.69 (B), 1.76 (C), 2.09 (D), 2.17 (E) and 3.86 (F). The insets show the initial condition (dot in the center), the region of
initial conditions in which the mean field solution decays (blue) and in which it oscillates (yellow). The critical values of Ω for
the plotted initial condition are 2Ω̃

NΓ
= 1.74 and 2Ωc

NΓ
= 2.125. In the main panels, the solid orange lines are the exact numerical

simulations, the oscillating dashed black lines are the mean field predictions and the horizontal dashed red lines are the exact
steady state values. Even though the spontaneous emission rate sets a characteristic time scale of the order of hundreds of
seconds, one observes much faster dynamics due to the fact that Ω should scale proportionally to N to compete with collective
emission and dissipation in the appropriate parts of the phase diagram. Thus, for typical experimental atom numbers N ≈ 105

one expects that most of the characteristic features (decay in A and B, and oscillations in D, E and F) can be observed at
t < 1s.

nential, but, in contrast to the superradiant region, there
is no N -fold enhancement. The decay constants are al-
most independent of N , giving an interesting separation
of scales for 〈Ĵz〉, especially in point D: oscillations occur
on a timescale of O(N−1) (this is the mean field predic-
tion), modulated by an envelope that decays to 0 on a
timescale O(N−2/3) and then relaxes to its true steady
state in a time ∼ O(1). We can also perform a time aver-
age. The time window is chosen to be short enough such
that D has not yet reached its true quantum steady state
but long enough that it has relaxed to its metastable
value. We take this characteristic time to be ∼ 0.13Γ
and plot in Fig. 9 the corresponding time average value
against the prediction of the mean field and exact steady
state (see Fig. 6). In contrast to the first order transition
observed at the mean field level, quantum fluctuations
soften the sharp jump in the time average, especially at

finite N . The sharp behaviour is only recovered in the
thermodynamic limit N →∞.

C. Squeezing dynamics

It is also worthwile to consider the dynamical be-
haviour of spin squeezing for two reasons: (1) To char-
acterize the amount of spin squeeezing generated dur-
ing transient dynamics, and (2) to analyze how fast the
steady state squeezing described in sec. III can be at-
tained. We show a plot of the spin squeezing as a func-
tion of time in Fig. 10, where we have chosen the value
of Ω to be identical to the one that results in the largest
steady state squeezing (the fact that it occurs at Ω 6= Ωc
is a finite size effect). We also show the Husimi distri-
bution of the state at specific points in time to better
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Figure 8. Simulations show that equilibration to the exact steady state in the metastable region occurs at an extremely long
timescale, of order ∼ Γ−1. Right inset in C and upper inset in D show the same plot but for a much shorter timespan. Left
inset in C and lower inset in D compare the equilibration for different N (with 〈Ĵz〉 measured relative to its steady state), with
the conclusion that 〈Ĵz〉 approaches its steady state exponentially and with an N independent decay constant.

visualize the nature of the squeezing. At short times, we
find a minimum, marked by α in Fig. 10, which rapidly
evolves into an oversqueezed state, indicated by β. This
is illustrated by the associated Husimi function for these
points in Fig. 10: for α, the state remains strongly polar-
ized in one direction with a sheared noise ellipse, whereas
for β the state wraps around the Bloch sphere. At later
times, the distribution relocalizes on the Bloch sphere
(point γ) and slowly relaxes to its steady state at much
longer times (notice the timescale in Fig. 10).

V. SPECTRUM OF LIOUVILLE OPERATOR

To better understand the different decay timescales
and the onset of oscillatory behaviour, we study the spec-
trum of the Liouville operator, Eq. (2), and try to find
signatures of the mean field transition in its eigenvalues.
A gap in the real part of the spectrum translates into ex-
ponential decay of observables to their steady state. On
the other hand, the imaginary part of the spectrum leads
to nontrivial transient oscillatory dynamics.

For a system with N = 200, in Fig. 11 we plot the
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exact dynamics follow approximately the first order jump,
but the transition is smoothed out by quantum fluctuations.
The transition region seems to become narrower and the jump
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.

real and imaginary parts of the first 150 eigenvalues (or-
dered ascendingly with respect to their magnitude). Very
clearly, a gap closes in the real part at a value close to
NΓ/2, which implies that the decay times for Ω > NΓ/2
can become very long. This is consistent with mean field
since this is the region where oscillating nondecaying so-
lutions begin to exist. The imaginary part of the eigenval-
ues remains gapless, however, indicating that nonoscillat-
ing behaviour is also allowed (metastable region). Fur-
thermore, a gap opens in the imaginary part close to
Ωc, which implies that observables of the system should
generally show oscillatory behaviour for Ω > Ωc. Once
again, this is consistent with the mean field analysis since
in this region only oscillatory solutions exist. From the
computed spectra, we expect that, as N increases, the
gap in the real (imaginary) part should open(close) pro-
gressively closer to NΓ/2 (Ωc) and in a more abrupt way.

In Fig. 12 we confirm this hypothesis. In panel (a) we
show the region around which the gap in the real part
of the spectrum closes. As N → ∞, the curve becomes
sharper and moves closer to NΓ/2. In panel (b), we
show the gap in the imaginary part of the spectrum for
different values of N and observe evidence that the gap
at Ωc closes as N → ∞ [see inset in panel (b)]. In both
cases, this occurs in a scale invariant way, as is expected
from critical behaviour.

VI. CONCLUSIONS

In this work, we have shown that the addition of inter-
actions to a driven-dissipative collective system doesn’t
change qualitatively the steady state properties but does
affect significantly its dynamical behaviour in the limit

of a large number of atoms. While in the noninteract-
ing case both a slow relaxation and oscillations of the
atomic inversion occur beyond a critical driving strength,
in the presence of interactions a new metastable region
appears. We showed that this emergent behavior could
be understood both via a mean field analysis, in which
case the metastable region manifests in the dynamics,
and via an exact treatment, where for a finite system
fingerprints of the metastable region can be observed in
the spectrum of the Liouville operator. Finally, we also
demonstrated that the slow relaxation present in one of
the phases follows a scaling law different from the cases
of pure interactions or pure dissipation, i.e. both must
be present with comparably equal strengths to generate
a non-trivial relaxation dynamics.

Given recent progress in loading arrays of strontium
atoms in an optical cavity [40], and the capability to
probe the associated electronic clock transition 1S0 →
3P0 we believe experiments are reaching the level of con-
trol to observe the predicted behavior. Nevertheless given
the ultra-long relaxation time in some of the phases it is
worthwhile to re-examine in the future our predictions
including possible extra decoherence processes such as
light scattering and atom loss, which are unavoidable in
real experiments.

An interesting parallel direction for future work would
be to use the 1S0 → 3P1 transitions, which is still quite
narrow compared to other dipole allowed transitions (life-
time of the order of 20 µs) but at the same time six orders
of magnitude faster that the clock transition. The faster
dynamics relaxes the stringent requirements on atom loss
and decoherence on one hand, but on the other might
invalidate the adiabatic elimination of the cavity pho-
tons. This is due to the comparable decay rates of the
atomic transition and cavity. The necessity of includ-
ing the photons during the dynamics might nevertheless
make the dynamical phases richer and the phase diagram
more complex than the one studied here, thus opening
interesting new avenues of research.
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Figure 10. Exact spin squezing as a function of time for N = 200, 2χ = 1.875Γ and Ω = 0.938Ωc. We chose this Ω because it
gives the best squeezing for this number of particles. We show the numerical simulation (orange) and steady state squeezing
(dashed red). We also show the Husimi distribution of the state at three points, marked α, β and γ as well as the distribution
of the steady state. We can clearly see that there is a dip at very short times (α) beyond which the state becomes oversqueezed
(e.g. β). As the system relaxes to equilibrium, beyond γ, the squeezing monotonically approaches its steady state value, though
this occurs at very long times.

Figure 11. First 150 eigenvalues of the Liouville operator for 2χ
Γ

= 1.875 and N = 200. The solid rectangles show the regions
plotted in Fig. 12. a) The real part shows a gap for small Ω. After a critical value, this gap closes and a continuum below 0
seems to arise in the thermodynamic limit. Note that the gap closes due to two eigenvalues crossing. b) The imaginary part
shows the opposite behaviour. For small Ω the eigenvalues seem to fill a continuum (in the thermodynamic limit) but after
another critical value, a gap opens in a seemingly continuous way.
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Appendix A: Envelope of oscillations in N phase

To understand the envelope in Fig. 7(F), we go into the
interaction picture generated by the driving term, ΩĴx,
and time average the resulting Liouville superoperator
over one oscillation. The ensuing equation for the time
averaged density matrix, ρ̂E , is:

dρ̂E

dt
= −iχ

2

[
Ĵ2
x , ρ̂

E
]

+
Γ

2

[
Ĵx,
[
ρ̂E , Ĵx

]]
+

Γ

4

[
Ĵz,
[
ρ̂E , Ĵz

]]
+

Γ

4

[
Ĵy,
[
ρ̂E , Ĵy

]]
, (A1)

and, as shown in Fig. 13(a), describes correctly the en-
velope of Ĵz. The situation for Ĵx and Ĵy is worse, how-
ever, because for finite Ω they have a nonzero steady
state value. To describe them accurately, higher order
terms in the averaging expansion are needed (which is
effectively an expansion in 1

Ω ). The fact that Eq. (A1) is
independent of Ω translates directly into the previously
mentioned fact that the envelope is Ω independent. It
would be useful to understand how does the envelope
scale with N , but even when working with Eq. (A1),
there is no closed form solution. The decay of Ĵz is given
by:

〈Ĵz〉 = −N
2
e−

3Γt
4 , (A2)

in the case of χ = 0 with tdecay ∼ Γ−1 and

〈Ĵz〉 = −N
2

(
cos

χt

2

)N−1

≈ −N
2
e−

Nχ2t2

8 , (A3)

for Γ = 0 with tdecay ∼ χ−1N−
1
2 . To determine the

scaling when both terms are present and χ ∼ Γ (as is
our case), we plotted the envelope for N = 200, 400,
800, extracted the e−

3Γt
4 time dependence (since it always

dominates at short times) and then scaled the graphs to
put them on top of each other, as shown in Fig. 13(b).
The scaling exponent found was tdecay ∼ N−0.66, which is
corroborated by perturbation theory calculations, which
indicate a leading dependence of the form of Eq. (A4) to
sixth order. The exponent is then predicted to be 2

3 , very
much in accordance with the numerical result,

−N
2
e−

Γχ2

48 N2t3 . (A4)
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Figure 13. (a) Simulation of the point F in Fig. 7 and of the
envelope described by Eq. (A1) for N = 400. There is almost
perfect agreement. (b) Simulation of Eq. (A1) for N = 200,
400 and 800. There are some subtle differences, especially at
early times, but they become smaller the larger N is.

A more satisfactory description of this behaviour can be
obtained in the following way: we multiply Eq. (A1) by
J̃+ = Ĵz − iĴy on the right and then do a projection
to obtain the equation satisfied by the matrix element
〈m| ρ̂J̃+ |m〉 ≡ f(m), where |m〉 are eigenstates of Ĵx.

∂f(m)

∂t
=− Γ

4
f(m) +

iχ(2m+ 1)

2
f(m)

+
Γ

4

[
N

2

(
N

2
+ 1

)
−m(m+ 1)

]
×
[
f(m+ 1) + f(m− 1)− 2f(m)

]
.

(A5)

Since f(t = 0,m) ≈ −
√

N
2π e
− m2

N/2 we introduce a variable
x = m√

N/2
, which becomes continuous in the limit N →

∞, and define the small quantity ∆ = 1√
N/2

. In terms of

these, Eq. (A5) takes the more sugestive form of Eq. (A6).

∂f(x)

∂t
=− Γ

4
f(x) + iχ

(√
N

2
x+

1

2

)
f(x)

+
Γ

4∆4

(
1−∆2x2 + ∆2 − x∆3

)
×
[
f(x+ ∆) + f(x−∆)− 2f(x)

]
,

(A6)

and we are now considering f as a function of x too.
The limit N →∞ corresponds to ∆→ 0 upon which we
obtain a partial differential equation (omitting terms of
order ∆),

∂f

∂t
= − Γ

4
f + iχ

(√
N

2
x+

1

2

)
f +

NΓ

8

∂2f

∂x2

+
Γ

4
(1− x2)

∂2f

∂x2
+

Γ

48

∂4f

∂x4
.

(A7)

In principle, we would have to solve this equation with
the initial condition f(0, x) =

√
N
2π e
−x2

, corresponding
to a spin pointing in the z direction, and then integrate
with respect to x to obtain the average value of 〈Ĵz − iĴy〉
at later times, since:

〈J̃+〉 = Tr(ρJ̃+)

=
∑
m

〈m| ρJ̃+ |m〉 =
∑
m

f(m) =

√
N

2

∫
f(x)dx.

(A8)

This becomes easier to treat in Fourier space (with re-
spect to x), in which case the relevant equations are:

f̃(0, k) = −
√
N

2
e−

k2

4 ,

〈J̃+〉 =

√
N

2
f̃(t, 0),

∂f̃

∂t
=

(
− 3Γ

4
+
iχ

2
− NΓk2

8
− Γk2

4
+

Γk4

48

)
f̃

−
(
Nχ

2
+ Γk

)
∂f̃

∂k
− Γk2

4

∂2f̃

∂k2
.

(A9)

If we neglect the second order partial derivative (since
f̃(0, k) is slowly varying) a closed form expression can be
written for the solution (we also neglect the k4 term for
simplicity),

〈Ĵz〉 = −N
2

exp

[
−3Γt

4
− Nχ2(1− e−Γt)2

8Γ2

+
N(N + 2)χ2(e−2Γt − 4e−Γt + 3− 2Γt)

32Γ2

]
cos

χt

2
.

(A10)
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Figure 14. We plot the exact envelope against the approxi-
mations given by Eqs. (A10) and (A11). The left panel cor-
responds to N = 400 and the right one to N = 10000. The
insets show the difference between both approximations and
the exact solution.

For χt,Γt� 1, this becomes

〈Ĵz〉 = −N
2

exp

[
− 3Γt

4
− χ2Nt2

8
− χ2ΓN(N + 2)t3

48

]
,

(A11)
which agrees with the results from perturbation theory.
We can compare both expressions, Eqs. (A10) and (A11),
to the exact solution of Eq. (A1) for N = 400 and N =
10000 (Fig. 14). Note that we are able to push the numer-
ical simulations to a higher particle number in this case
because the model described by Eq. (A1) has an emergent
symmetry (rotations about Jx) that reduces the num-
ber of relevant variables. Finally, we remark that this
formulation of long time corrections to mean field using
a single partial differential equation is always achievable
after doing an averaging over a single particle constant
drive, as in the case of Eq. (A1). If we tried to do this
with the original master equation, we would find, instead,
a set of O(N) coupled partial differential equations.


