
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Analytic description of high-order harmonic generation in
the adiabatic limit with application to an initial s state in an

intense bicircular laser pulse
M. V. Frolov, N. L. Manakov, A. A. Minina, A. A. Silaev, N. V. Vvedenskii, M. Yu. Ivanov, and

Anthony F. Starace
Phys. Rev. A 99, 053403 — Published  2 May 2019

DOI: 10.1103/PhysRevA.99.053403

http://dx.doi.org/10.1103/PhysRevA.99.053403


Analytic description of high-order harmonic generation in the adiabatic limit1

with application to an initial s-state in an intense bicircular laser pulse2

M.V. Frolov,1 N.L. Manakov,1 A.A. Minina,1 A.A. Silaev,1, 2, 33

N.V. Vvedenskii,1, 2, 3 M.Yu. Ivanov,4, 5, 6 and Anthony F. Starace74

1Department of Physics, Voronezh State University, Voronezh 394018, Russia5

2Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia6

3University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia7

4Max-Born Institute, Max-Born-Strasse 2A, Berlin D-12489, Germany8

5Blackett Laboratory, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom9

6Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany10

7Department of Physics and Astronomy, The University of Nebraska, Lincoln NE 68588-0299, USA11

(Dated: April 8, 2019)12

An analytic description of high-order harmonic generation (HHG) is proposed in the adiabatic
(low-frequency) limit for an initial s-state and a laser field having an arbitrary waveform. The
approach is based on the two-state time-dependent effective range theory and is extended to the
case of neutral atoms and positively-charged ions by introducing ad hoc the Coulomb corrections
for HHG. The resulting closed analytical form for the HHG amplitude is discussed in terms of real
classical trajectories. The accuracy of the results of our analytic model is demonstrated by com-
parison with numerical solutions of the time-dependent Schrödinger equation for a strong bicircular
field comprised of two equally intense components with carrier frequencies ω and 2ω and opposite
helicities. In particular, we demonstrate the effect of ionization gating on HHG in a bicircular field,
both for the case that the two field components are quasimonochromatic and for the case that the
field components are time-delayed short pulses. We show how ionization in a strong laser field not
only smooths the usual peak structures in HHG spectra, but also changes the positions and po-
larization properties of the generated harmonics, seemingly violating the standard dipole selection
rules. These effects appear for both short and long incident laser pulses. In the case of time-delayed
short laser pulses, ionization gating provides an effective tool for control of both the HHG yield and
the harmonic polarizations [M.V. Frolov et al., Phys. Rev. Lett. 120, 263203 (2018)]. For the case
of short laser pulses, we introduce a simple two-dipole model that captures the physics underlying
the harmonic emission process, describing both the oscillation patterns in HHG spectra and also
the dependence of the harmonic polarizations on the harmonic energy.

I. INTRODUCTION13

High-order harmonic generation (HHG) is an effective14

tool for converting intense low-frequency laser radiation15

into coherent high-frequency radiation. This nonlinear16

light conversion process has found a wide range of prac-17

tical applications in laser physics [1], including in devel-18

opment of table-top sources of coherent X-ray light [2–19

4], in attosecond pulse generation and attosecond spec-20

troscopy [5, 6], and in ultrafast spectroscopy in general21

(see, e.g., Refs. [7, 8]). The importance of HHG has con-22

sequently stimulated many experimental and theoretical23

studies aimed at understanding this nonlinear process.24

The theoretical description of HHG and other non-25

linear processes in a strong nonperturbative laser field26

encounters several obstacles, which remain a challenge27

even a half-century after the advent of strong field28

physics [9, 10]. The key challenge is the need to describe29

the nonperturbative laser field on the same footing as the30

field of the ionic core, as together they govern the elec-31

tron dynamics. While this challenge is met by numer-32

ical solutions of the time-dependent three-dimensional33

Schrödinger equation (TDSE), exact solutions are only34

rarely possible. Even in the single-active-electron ap-35

proximation (see, e.g., Refs. [8, 11–13]), numerical sim-36

ulations are feasible only in limited ranges of the laser37

parameters. For example, numerical simulations of the38

nonlinear interactions in the very important regime of39

intense mid-infrared (MIR) fields, e.g., for wavelengths40

& 3µm, are numerically extremely challenging, especially41

in the case when the polarization of laser pulse is not lin-42

ear. Simulations for elliptically polarized laser pulses or43

for those having unusual spatial waveforms are rather44

difficult and require special treatments [14–17]. Includ-45

ing multielectron correlations is more difficult still, with46

practical algorithms limited to the case of linear polar-47

ization and restricted frequency and intensity ranges [18–48

26].49

Although exact numerical solution of the TDSE re-50

mains the premier theoretical method, owing to its lim-51

ited range of applicability, the development of quanti-52

tative analytical theories, benchmarked against accurate53

numerical simulations, have a role to play in the analysis54

of HHG. This is especially true in parameter regions cur-55

rently inaccessible to accurate numerical analysis, such56

as, e.g., in the MIR frequency range. In such cases, an-57

alytical methods and models can enable significant ad-58

vances in physical understanding.59

The workhorse of strong field physics is the strong field60

approximation (SFA) [27, 28], whose essential ideas were61

formulated in the 1960s and 1970s [29–33]. The main62

idea is to consider the interaction of the laser field with63
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an active atomic electron exactly, while either neglect-64

ing the electron-atom interaction following ionization (in65

zero order) or taking it into account perturbatively. This66

approach leads to a formal Born-like series (in the atomic67

potential) for transition amplitudes, the convergence of68

which remains an open mathematical question. In prac-69

tice, however, the first few terms of such an expansion70

(as in the so-called “improved” SFA) are sufficient to de-71

scribe the general features of HHG [27, 34–38].72

Crucially, the SFA led to a very important insight73

into the theoretical description of strong field phenom-74

ena, namely, the applicability of the quantum orbit ap-75

proach (QOA) [34, 39–42]. In terms of the QOA, the76

HHG amplitude is represented as a sum of partial ampli-77

tudes, each of which is associated with a complex closed78

electron trajectory in the laser field. These trajectories79

formally satisfy Newton’s equations, although they cor-80

respond to complex starting and ending times that are81

found from adiabaticity conditions [43] for the ionization82

and recombination steps [34, 39–42]. In the strong field83

limit, the QOA results are in good agreement with SFA84

results. Moreover, the QOA provides a natural means of85

including the Coulomb-induced corrections to the HHG86

amplitude within quasiclassical perturbation theory [44].87

(In the quasiclassical limit, the HHG process may be split88

into its well-known three steps [45]: ionization, propaga-89

tion, and recombination.) A similar picture of quantum90

orbits also naturally arises within the analytical R-matrix91

theory [46–50], which uses semiclassical perturbation the-92

ory in the action to include the effects of the Coulomb93

potential on strong-field-driven electron dynamics. Using94

the QOA and either quasiclassical perturbation theory or95

the analytical R-matrix theory, Coulomb corrections may96

be derived for the first two steps of the HHG process [50–97

52], including Coulomb corrections to the ionization and98

recombination times.99

The quantum orbits picture thus provides a natural100

basis for alleviating the main drawback of the SFA, the101

lack of an accurate treatment of the electron-core inter-102

action. It suggests introducing ad hoc corrections to103

the SFA amplitude, utilizing the known parametriza-104

tion of the HHG amplitude [53, 54]. The key correc-105

tions amount to replacing the plane-wave photorecom-106

bination amplitude by the exact one [37, 38] and us-107

ing accurate strong-field ionization amplitudes. This ap-108

proach has now been successfully extended to HHG in109

molecules, including multi-electron effects during ion-110

ization, active electron motion in the continuum, and111

recombination (see, e.g., Refs. [42, 55–60]). Applica-112

tions include analysis of enantio-sentitivity of HHG in113

chiral molecules [61–63], description of HHG by atoms114

with initial p-orbitals [64, 65], and control of the spin-115

polarization of recolliding electrons [66].116

The study of strong field phenomena has also been117

greatly advanced by exactly-solvable analytical models.118

The first such model of an atomic system in a strong119

laser field was the δ-potential (or zero-range potential)120

model [67]. It was used initially to describe the de-121

tachment of a weakly-bound electron in a negative ion122

induced by a nonperturbative ac-field [68–70]. Later it123

was extended to describe the HHG process [71, 72]. A124

main drawback of the δ-potential model is that its prac-125

tical application is restricted to systems with weakly-126

bound electrons in an initial s-state. Its extension to127

the case of higher angular momenta in the initial bound128

state was achieved within the time-dependent effective129

range (TDER) approach [73, 74]. This method com-130

bines the effective range theory for the description of131

the non-perturbative electron interaction with an atomic132

core [75, 76] and the Floquet-formalism-based quasista-133

tionary quasienergy description of the electron interac-134

tion with a nonperturbative laser field [68, 77]. It coin-135

cides with the δ-potential model in an appropriate limit.136

In a periodic laser field, the HHG process can naturally137

be treated within the TDER model using the relation138

between the complex quasienergy and the HHG ampli-139

tude [78]. For short laser pulses, direct application of the140

Floquet formalism is impossible, but appropriate exten-141

sions of the TDER model have been developed [79, 80].142

A one-dimensional δ-potential model has also been suc-143

cessfully used to analyze HHG for the case of a few-cycle144

laser pulse [81].145

The main advantage of the analytical models is their146

innate applicability in the low-frequency regime of MIR147

laser fields, precisely where numerical simulations be-148

come prohibitively expensive. The analytical structure149

of the HHG amplitude in this regime has been studied150

in detail [54, 80–85]. For the case of linear polarization,151

these results provide a rigorous theoretical justification152

for the factorization of the HHG yield as the product153

of an electronic wave packet (EWP) and the exact pho-154

torecombination cross section [54, 80–84], as was sug-155

gested in Refs. [53, 86, 87] based upon numerical TDSE156

results. However, for both the case of an elliptically po-157

larized monochromatic laser field [17, 84] and the case of158

a two-color laser field having orthogonal linearly polar-159

ized monochromatic components [85] other parametriza-160

tions of the HHG amplitude were obtained, different from161

that for the case of linear polarization.162

In this paper we develop an analytic description of the163

HHG amplitude for the case of a laser field having an164

arbitrary spatial and temporal waveform. Although ex-165

perimental data exist for some complex field configura-166

tions [88, 89], up to now there have been no corresponding167

analytical studies. More specifically, for an active elec-168

tron in an initial s-state we develop here an analytical169

description of HHG applicable in the low-frequency (or170

adiabatic) limit for a laser pulse having an arbitrary spa-171

tial and temporal waveform. We then apply this theory172

to the case of HHG driven by a bicircular laser field com-173

prised of pulses having carrier frequencies ω and 2ω and174

opposite circular polarizations. Both the low-frequency175

approximation and the case of HHG driven by a bicir-176

cular laser field have long histories, which we summarize177

briefly and relate to the present work prior to presenting178

the organization of this paper.179
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The low-frequency (or adiabatic) approximation for180

the case of ionization of a weakly bound electron in181

a zero-range potential driven by an elliptically polar-182

ized laser field was analyzed in 1980 using the quasis-183

tationary quasienergy state formalism [70]. More re-184

cently, an alternative adiabatic approximation formal-185

ism has been employed to analyze both ionization [90]186

and HHG [81] for the case of an electron bound in a187

zero-range potential and interacting with a linearly po-188

larized laser field; its use for the case of ionization of an189

electron in a finite range potential has also been stud-190

ied [91]. Most recently, the low-frequency approxima-191

tion has been used to study HHG driven by bicircular192

(monochromatic) laser fields [38]. The physics of the low-193

frequency (or adiabatic) approximation is similar to that194

used by P.L. Kapitza to describe a particle in a rapidly os-195

cillating field in classical mechanics [92, 93]. Specifically,196

the time-dependent (periodic in time) wave function is197

decoupled into slowly and rapidly changing parts, where198

the latter part is found using a basis unperturbed by the199

laser field, while the slowly changing part is found includ-200

ing effects of the rapidly changing part. Such decoupling201

can be realized in the case of a slowly changing laser field202

(relative to an atomic time scale) [91].203

The study of HHG driven by a bicircular laser field204

was initiated over twenty years ago [94, 95]. It has be-205

come a very hot topic recently, both experimentally and206

theoretically, owing to the polarization properties of high207

harmonics generated in such fields. Specifically, the use208

of bicircular driving laser fields has been shown to pro-209

duce circularly or elliptically polarized harmonics or at-210

tosecond pulses [38, 88, 94–103]. Moreover, means for211

controlling the polarization of the emitted coherent radi-212

ation have been proposed and/or experimentally demon-213

strated [64, 88, 89, 94, 95, 97, 99–110]. There exist many214

important applications of isolated short laser pulses in215

the extreme ultraviolet and X-ray regimes with controlled216

polarization for studying chiral-sensitive light-matter in-217

teractions in, e.g., magnetic materials [88, 97, 100, 111–218

113] or polyatomic molecules [58, 96, 101, 108, 114].219

Note that existing theoretical descriptions of HHG in220

a bicircular field are based on the SFA [64, 65, 95, 98,221

107, 115], which ignores effects of the Coulomb poten-222

tial. In a recent study [38], the low-frequency approxi-223

mation is employed to analyze the HHG amplitude and224

it is shown how the exact photorecombination amplitude225

(for the studied atomic model) appears in that ampli-226

tude. However, although Coulomb phases are introduced227

ad hoc, the analysis is mainly suitable for short-range po-228

tentials, as the boundary conditions for the wave func-229

tion at large distances do not take into account the long-230

range Coulomb interaction. Thus, additional Coulomb231

corrections to the HHG amplitude (taking into account232

ionization and propagation in the Coulomb field) are re-233

quired [51, 52].234

This paper is organized as follows. In Sec. II we gen-235

eralize our two-state TDER model for HHG, which ini-236

tially was developed for a linearly polarized monochro-237

matic field [54], to the general case of a driving laser pulse238

having an arbitrary spatial and temporal waveform. In239

Sec. III we discuss the extension of our theory to neutral240

atoms and positively-charged ions. A number of applica-241

tions for the case of a bicircular driving field are presented242

in Sec. IV, including results for both long and short driv-243

ing laser fields, a comparison with numerical solutions244

of the TDSE, a trajectory analysis, and, for the case of245

short bicircular fields, a two-dipole model for HHG emis-246

sion. We summarize our results and present our conclu-247

sions in Sec. V. Some mathematical details and deriva-248

tions concerning the HHG amplitude and the recombi-249

nation dipole moment are presented in Appendices A,250

B, C, and D. Atomic units (a.u.) are used throughout251

this paper unless specified otherwise.252

II. GENERAL FORMULATION AND RESULTS253

FOR THE TWO-STATE TDER MODEL254

In this Section we generalize the two-state TDER255

model, initially developed for a linearly polarized256

monochromatic field [54], to the general case of a laser257

pulse having an arbitrary waveform. As was found in258

Ref. [54], the use of the two-state model allows us to259

confirm that the factorized result for the HHG rate in-260

volves the exact TDER result for the photorecombina-261

tion cross section (which is more accurate than the SFA262

result), at least for an initial s-state. This model also al-263

lows us to formulate the exact equations for the complex264

quasienergy for a system having a dynamical continuum265

and two bound states. Moreover, it allows us to extend266

the low-frequency (or adiabatic) approximation initially267

suggested in Ref. [70] (see also Refs. [81, 91]) to the case268

of HHG, whose amplitude can be related to the system’s269

complex quasienergy [78].270

The adiabatic approach requires an accurate choice of271

unperturbed wave functions for the active atomic elec-272

tron. Indeed, if the initial state has nonzero angular273

momentum, then the wave functions for the magnetic274

sublevels can be mixed by an elliptically polarized laser275

field [17, 84] or by a two-color field with orthogonal276

linearly polarized components [16]. Since the case of277

nonzero angular momentum requires these special con-278

siderations, we shall restrict our considerations here to279

the simplest case of an initial s-state.280

The two-state TDER model and the equations for the281

complex quasienergy are treated in Sec. II A. In Sec. II B282

we develop an adiabatic approximation for the complex283

quasienergy and derive adiabatic approximation expres-284

sions for the HHG amplitude for a driving laser field hav-285

ing an arbitrary spatial and temporal waveform. We dis-286

cuss the relation of the present results to previous ana-287

lytical results in Sec. II C.
288

A. Equations for the complex quasienergy289

We shall analyse the complex quasienergy in a peri-290

odic laser field with a period T and corresponding fre-291
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quency ωτ = 2π/T within the framework of TDER the-292

ory [73, 74]. The TDER theory is based on the boundary293

condition for a quasistationary quasienergy wave function294

Φǫ(r, t) [77, 116] formulated at small distances from the295

core [73, 74] (see Appendix A for details):296

∫∫
Φǫ(r, t)Y

∗
l m(Ω)einωτ tdΩdt

= f (l,m)
n

[(
r−l−1 + · · ·

)
+ Bl(ǫ+ nωτ )

(
rl + · · ·

)]
, (1)

(2l − 1)!!(2l + 1)!!Bl(ǫ) = k2l+1 cot δl(k), k =
√
2ǫ,

where ǫ is the complex quasienergy, Yl m(Ω) is a spherical297

harmonic, f
(l,m)
n is the Fourier-coefficient of a periodic298

function f (l,m)(t) = f (l,m)(t + T ) =
∑

n f
(l,m)
n e−inωτ t

299

with period T = 2π/ωτ , and δl(k) is the scattering phase300

for the l-th angular momentum channel. A wave function301

satisfying boundary condition (1) can be composed from302

the partial wave functions, Φ
(l,m)
ǫ (r, t) [74]:303

Φ(l,m)
ǫ (r, t) = −2π(−i)l

∫ t

−∞
eiǫ(t−t′)f (l,m)(t′)

×Yl m

[
r

t− t′
+K ′(t, t′)

]
G(r, t; 0, t′)dt′, (2)

K ′(t, t′) = A(t′)− 1

t− t′

∫ t

t′
A(ξ)dξ, (3)

where G(r, t; r′, t′) is the retarded Green function for304

a free electron in a laser field with vector potential305

A(t) [116], and Yl m(n) is a solid harmonic. In our ana-306

lytical model we take into account only two phases δl(k)307

with l = 0 and l = 1. Equivalently, this means that our308

model atomic system has only two (s and p) bound states.309

Thus, the total wave function should be composed from310

the partial wave functions for l = 0, 1:311

Φǫ(r, t) =
∑

l=0,1

l∑

m=−l

Φ(l,m)
ǫ (r, t). (4)

Expansions of partial wave functions with l = 0 and312

l = 1 at small distances have the form (cf. Ref. [74]):313

Φ(0,0)
ǫ (r, t) ≈ Y0,0(Ω)

∑

n

(
1

r
+ iκn

)
f (0,0)
n e−inωτ t

+Y0,0(Ω)

∫ t

−∞
G′
ǫ(t, t

′)f (0,0)(t′)dt′

+ir
1∑

µ=−1

(−1)µY1,µ(Ω)√
3

∫ t

−∞
Gǫ(t, t

′)

×f (0,0)(t′)K−µdt
′, (5a)

314

Φ(1,m)
ǫ (r, t) ≈ Y1,m(Ω)

∑

n

(
1

r2
+

κ
2
n

2
+
iκ3

nr

3

)

×f (1,m)
n e−inωτ t

−iY0,0(Ω)
√
3

∫ t

−∞
Gǫ(t, t

′)f (1,m)(t′)K ′
mdt

′

−irY1,m(Ω)

∫ t

−∞

G′
ǫ(t, t

′)f (1,m)(t′)

t− t′
dt′

+r
1∑

µ=−1

(−1)µY1,µ(Ω)

×
∫ t

−∞
Gǫ(t, t

′)f (1,m)(t′)K ′
mK−µdt

′, (5b)

315

G′
ǫ(t, t

′) =

[
ei∆(t,t′) − 1

]
eiǫ(t−t′)

√
2πi(t− t′)3/2

, (5c)

Gǫ(t, t
′) =

ei∆(t,t′)+iǫ(t−t′)

√
2πi(t− t′)3/2

, (5d)

∆(t, t′) = −1

2

∫ t

t′

[
A(ξ)− 1

t− t′

∫ t

t′
A(ξ′)dξ′

]2
dξ,(5e)

K(t, t′) = A(t)− 1

t− t′

∫ t

t′
A(ξ)dξ, (5f)

where m = 0, ±1, κn =
√
2(ǫ+ nωτ ) (the square316

root is taken on the upper sheet of the Riemann sur-317

face), and K ′
m, Km are the circular components of vec-318

tors K ′ and K , which are given by expressions n±1 =319

∓(nx ± iny)/
√
2, n0 = nz, where the vector n is either320

the vector K ′ ≡ K ′(t, t′) or the vector K ≡ K(t, t′).321

It should be noted that the first terms in Eqs. (5a) and322

(5b) correspond to the first few terms of an expansion323

of the spherical Hankel function hl(iκnr), which is the324

solution of the Schrödinger equation for a free electron325

with a given l and “energy” κ
2
n/2 [43]. These terms are326

not affected by the laser field, while other (regular in r)327

terms of Eqs. (5a) and (5b) are laser-induced and tend328

to zero when the laser field is turned off.329

By taking into account expansions (5a) and (5b),330

we match the wave function (4) to the boundary331

condition (1) and obtain equations for the complex332

quasienergy ǫ and the Fourier-coefficients f
(l,m)
n :333

[B0(ǫ + nωτ )− iκn] f
(0,0)
n

=
1

T

T /2∫

−T /2

t∫

−∞

G′
ǫ(t, t

′)f (0,0)(t′)einωτ tdt′dt

−i
√
3

T
∑

m′

T /2∫

−T /2

t∫

−∞

Gǫ(t, t
′)f (1,m′)(t′)K ′

m′

×einωτ tdt′dt, (6a)
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334

[
B1(ǫ + nωτ )−

iκ3
n

3

]
f (1,m)
n

=
(−1)m

T
∑

m′

T /2∫

−T /2

t∫

−∞

Gǫ(t, t
′)f (1,m′)(t′)K ′

m′K−m

×einωτ tdt′dt− i

T

T /2∫

−T /2

t∫

−∞

G′
ǫ(t, t

′)

(t− t′)
f (1,m)(t′)einωτ tdt′dt

+i
(−1)m√

3T

T /2∫

−T /2

t∫

−∞

Gǫ(t, t
′)f (0,0)(t′)K−me

inωτ tdt′dt.(6b)

Although Eqs. (6a) and (6b) are rather cumbersome,335

their solution is greatly simplified in the adiabatic ap-336

proximation (see Refs. [70, 91, 117]). For simplicity,337

we do not consider the resonant case between two (s338

and p) atomic states, which requires detailed consider-339

ation. In the adiabatic approximation for an initial s-340

state, the Fourier-coefficients f
(0,0)
n and f

(1,m)
n can be341

obtained from Eqs. (6a) and (6b) by substituting on the342

right-hand sides of these equations f (0,0)(t) = f
(0,0)
0 and343

f (1,m)(t) = 0:344

f (0,0)
n =

f
(0,0)
0

T [B0(ǫ+ nωτ )− iκn]
−1

×
T /2∫

−T /2

t∫

−∞

G′
ǫ(t, t

′)einωτ tdt′dt, (7a)

f (1,m)
n =

i(−1)mf
(0,0)
0√

3T

[
B1(ǫ+ nωτ )−

iκ3
n

3

]−1

×
T /2∫

−T /2

t∫

−∞

Gǫ(t, t
′)K−me

inωτ tdt′dt. (7b)

For n 6= 0, G′
ǫ(t, t

′) in the integrand of Eq. (7a) can be345

replaced by Gǫ(t, t
′).346

B. Adiabatic approximation for the HHG347

amplitude in the TDER model348

The HHG amplitude in a strong periodic laser field349

can be found as the first derivative of the complex350

quasienergy in a two-component field [78] equal to the351

sum of the strong periodic laser field and a weak (in-352

finitesimal) harmonic field of frequency Ω with electric353

vector FΩ(t) = FΩRe[eΩe
−iΩt], where eΩ is the polar-354

ization vector. According to Ref. [78], the laser-induced355

dipole moment is given by expression356

DΩ = −4
∂∆ǫ

∂F ∗
Ω

, F ∗
Ω = FΩe

∗
Ω, (8)

where ∆ǫ is linear in the FΩ correction to the complex357

quasienergy of the target atom in the strong periodic358

laser field.359

For a short laser pulse having an arbitrary waveform,360

the HHG amplitude can be found by replacing the iso-361

lated short pulse by a train of such short pulses, with the362

period of the train equal to T = 2π/ωτ . In this case, the363

HHG amplitude, A(Ω), can be found in the limit ωτ → 0364

for fixed Ω = Nωτ [80]:365

A(Ω) = eΩ
∗ ·D(Ω), D(Ω) = lim

ωτ→0
DΩ/ωτ . (9)

The equation for the complex quasienergy ǫ in a strong366

periodic field and a weak harmonic field can be obtained367

from Eq. (6) by replacing A(t) → Ã(t), where Ã(t) is368

the vector potential of the two-component field,369

Ã(t) = Aτ (t) +
FΩ

Ω
Im
[
eΩe

−iΩt
]
, (10)

and Aτ (t) is the vector potential of the train of short370

pulses separated in time by T .371

The detailed calculation of ∆ǫ in the TDER model is372

presented in Appendix B. Using that result, the result373

for D(Ω) can be presented in the form:374

D(Ω) = D1(Ω) +D2(Ω) +D3(Ω), (11)

where each term will now be discussed in turn.375

The first term in Eq. (11) for the dipole has the form:376

D1(Ω) =

∫ ∞

−∞
D1(t)e

iΩtdt, (12)

D1(t) = −iCg(Ω)
∫ t

−∞
G−Ip(t, t

′)K(t, t′)dt′, (13)

g(Ω) =
1

2Ω2
+

a(−Ω)

B1(−Ip +Ω)− iκ3
Ω/3

,

a(−Ω) =
1

2Ω

[
κ+ i

(2Ω− 2Ip)
3/2

3Ω
− κ3

3Ω

]
,

κΩ =
√
2(Ω− Ip), C = C2

κκ/π,

where the definition of K(t, t′) is given by Eq. (5f), that377

of G−Ip(t, t
′) by Eq. (5d), and Ip = κ2/2 is the ionization378

potential.379

The second term in Eq. (11) has the form:380

D2(Ω) =

∫ ∞

−∞
D2(t)dt, (14)

D2(t) = −i C
2Ω2

∫ t

−∞
G−Ip(t, t

′)K ′(t, t′)eiΩt′dt′, (15)

where K ′(t, t′) is defined in Eq. (3). For Ω ≫ Ip ≫381

ω (where ω is the carrier frequency of the driving laser382

pulse), the term D2(t) is much smaller than D1(t) and383

can be neglected. Indeed, since Ip ≫ ω, the integral in384

t′ can be estimated using the saddle point method. The385

saddle points for the integral (15) are given by386

K ′2(t, t′) = −2(Ip +Ω), (16)
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while for the integral (13) they are given by the equation387

K ′2(t, t′) = −2Ip. (17)

Obviously, the solutions of Eq. (16) have larger imagi-388

nary parts than the corresponding solutions of Eq. (17),389

resulting in D2(t) being exponentially small compared390

to D1(t). Physically, the dipole D2(Ω) describes a sup-391

pressed harmonic generation channel in which the bound392

electron, instead of tunneling, emits a high-energy har-393

monic and then returns to the initial state by absorbing394

driving laser photons (cf. the discussion in Ref. [36]).395

The third term in (11) can be presented as follows:396

D3(Ω) =

∫ ∞

−∞
D3(t)dt, (18)

D3(t) = −i C
2Ω2

t∫

−∞

G−Ip(t, t
′)

∫ t

t′
F (ξ)eiΩξdξdt′,(19)

where F (t) = −∂A(t)/∂t. The integral (19) is also small397

compared to the integral in Eq. (13) for Ω ≫ Ip ≫ ω.398

Indeed, if ω and F are the carrier frequency and the399

strength of the laser pulse, then A(t) is of the order of400

F/ω, while the integral over ξ in Eq. (19) is of the order401

of F/Ω. Thus D3(Ω) is Ω/ω times smaller than D1(Ω)402

for Ω ≫ ω. Therefore, by analyzing the three terms in403

Eq. (11), we find that only D1(Ω) contributes in the case404

that Ω ≫ Ip ≫ ω, i.e., D(t) ≈ D1(t).405

The dipole moment D1(Ω) in Eq. (12) can be evalu-406

ated analytically in the adiabatic limit (as shown in Ap-407

pendix C) and D(Ω) can then be presented in the form:408

D(Ω) =
∑

j

dj. (20)

Each partial sub-cycle dipole dj is associated with a409

closed real trajectory, which starts at the moment t′j and410

finishes at time tj . Starting and returning times are given411

by solutions of a system of transcendental equations:412

K ′
j · K̇ ′

j = 0, (21a)

K2
j

2
= E −∆Ej , (21b)

∆Ej = −K ′2
j + κ2

2(tj − t′j)




2
Kj ·K ′

j

t− t′j
− F ′

j · (Kj −K ′
j)

F ′
j
2 −K ′

j · Ḟ ′
j


 ,

where K ′
j ≡ K ′(tj , t

′
j), K̇ ′

j ≡ ∂K ′(tj , t
′
j)/∂t

′
j, Kj ≡413

K(tj , t
′
j), F

′
j ≡ F (t′j), and Ḟ ′

j ≡ Ḟ (t′j). Equation (21a)414

shows that at the starting time t′j the kinetic energy of415

the electron in the laser field is minimal, while Eq. (21b)416

ensures that at the moment of return the electron has417

kinetic energy E − ∆Ej . The sub-cycle dipole can be418

presented in a factorized form:419

dj = a
(tun)
j a

(prop)
j frec(E), (22)

where each of the three factors is discussed below.420

The tunneling ionization factor, a
(tun)
j , is given by421

the detachment amplitude in the adiabatic approxima-422

tion [51, 118] [see Eq. (13) in Ref. [51]]:423

a
(tun)
j =

Cκ

π

√
κ

2

e
−

κ
3
j

3Fj

√
κjFj

eiS(pj ,t
′

j), (23)

where424

Fj =
√
F ′2

j −K ′
j · Ḟ ′

j , κj =
√
2Ip +K ′

j
2,

S(p, t) =
∫ t

−∞

{
1

2
[p+A(t′)]

2
+ Ip

}
dt′,

pj = − 1

tj − t′j

∫ tj

t′j

A(ξ)dξ.

The factor a
(tun)
j describes the ionization step in the425

three-step scenario of HHG [45].426

The propagation factor, a
(prop)
j , is given by the expres-427

sion:428

a
(prop)
j = i

e−iS(pj ,tj)+iΩtj k̂j

(tj − t′j)3/2
√
Kj · K̇j

, (24)

where k̂j = Kj/
√
2E. This factor describes the propa-429

gation of the EWP in the continuum from the moment430

of ionization, t′j , to the moment of recombination, tj .431

The last factor in dj , frec(E), is the exact amplitude432

for radiative recombination to the ground state with l =433

0 in the two-state TDER model for the electron with434

wave vector k (k =
√
2E), whose direction coincides with435

the polarization vector of the emitted linearly polarized436

photon [54]:437

frec(E) = iCκ
4k

√
πκ

(k2 + κ2)2

×
[
1− i

4k̃3

(
1− 2ik̃

)(
1 + ik̃

)2 (
e2iδ1(k) − 1

)]
.(25)

where k̃ = k/κ. [Note that if one neglects the scattering438

phase, i.e., if one sets δ1(k) = 0, the result (25) reduces439

to that in the Born approximation (cf. Ref. [54]).]440

The analytic approach developed above does not take441

into account depletion of the ground state due to tunnel-442

ing ionization. To overcome this limitation, we introduce443

the depletion factor, Pj , for each partial dipole dj :444

Pj = exp

[
−1

2

∫ t′j

−∞
Γ(F (t))dt − 1

2

∫ tj

−∞
Γ(F (t))dt

]
,

(26)
where Γ(F ) is the detachment rate for the initial state445

in a DC field with strength F . This factor describes446

depletion effects at the moment of ionization and recom-447

bination in the adiabatic limit [81]. Taking into account448
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the depletion factor, D(Ω) has the form:449

D(Ω) =
∑

j

Pjdj . (27)

With given D(Ω), the dimensionless spectral density450

of the emitted radiation is given by (see, e.g., Ref. [80]):451

ρ(Ω) =
Ω4

4c3
|D(Ω)|2 , (28)

where c ≈ 137 is the speed of light. Substituting the452

explicit form of the dipole moment (27) into Eq. (28)453

and taking into account that454

σrec(E) =
Ω3

2πkc3
|frec(E)|2, (29)

we obtain the spectral density ρ(Ω) in the form:455

ρ(Ω) =W (E)σrec(E), Ω = E + Ip, (30)

where W (E) is the EWP. The explicit form of W (E) is456

obvious from Eqs. (28) and (29):457

W (E) =
π

2
Ωk

∣∣∣∣∣∣

∑

j

Pja
(tun)
j a

(prop)
j

∣∣∣∣∣∣

2

. (31)

We note that the result (30) is applicable for Ω ≫ Ip.458

C. Connection with alternative analytic459

approaches and studies460

1. Quantum orbits approach461

The workhorse for treating strong field phenomena is462

the QOA [34, 39, 41]. In the framework of this approach,463

the HHG amplitude is presented as a sum of partial am-464

plitudes, each of which is associated with a closed com-465

plex electron trajectory in the laser field. Although these466

trajectories are associated with complex times, they still467

satisfy classical Newton equations. The complex closed468

trajectories are determined by their starting (t′) and re-469

turning (t) times, which are the solutions of the system470

of equations [34, 39, 41]:471

K ′2(t, t′) = −κ2, (32a)

K2(t, t′) = 2E. (32b)

As shown in Ref. [119], in the limit Imωt′ ≪ 1 the solu-472

tion of the system of equations (32) reduces to the solu-473

tion of the system of equations (21). Thus, the present474

approach is a limiting case of the more general QOA.475

However, in contrast to the quantum orbits theory,476

the present approach associates partial HHG amplitudes477

with classical (real-valued) closed trajectories. These478

simplify the classical interpretation of HHG as well as the479

numerical issues associated with finding the contribut-480

ing trajectories: the solutions of Eq. (21) together with481

Eq. (C11) may be used as a starting guess for the solu-482

tions of the system (32). In the tunneling regime, they483

almost match the solution of Eq. (32) (for details, see484

Ref. [119]).485

2. Analytic expansion of the HHG amplitude in terms of486

extreme trajectories487

The analysis of real classical trajectories shows that488

near some energies E ≈ E
(k)
max two classical trajectories489

coalesce into one [120–122]. This coalescence results in490

a singularity in the harmonic spectral density that is491

known as a caustic. The occurrence of this caustic re-492

sults from the fact that high-order derivatives (in time493

t) of the action S(t, t′) approach zero near the energies494

E = E
(k)
max [120–122]. In the simplest case, the condi-495

tion for appearance of a caustic is that the second-order496

derivative (with respect to t) of the classical action S(t, t′)497

is zero, i.e., it coincides with the condition for an ex-498

tremum of the energy gained by the electron in the laser499

field.500

As shown in Refs. [80, 83, 123], the HHG amplitude can501

also be presented as a sum of partial amplitudes, each as-502

sociated with an extreme trajectory in which the electron503

returns to the origin with energy E
(k)
max. For a linearly504

polarized field, the electron propagates in the continuum505

with zero initial momentum and the extremum in the en-506

ergy gained is given by the zero of the derivative of the507

vector K(t, t′) with respect to time t:508

K ′(t, t′) = 0, (33a)

∂K(t, t′)

∂t
= 0. (33b)

Expanding solutions of Eq. (21) near the roots of Eq. (33)509

(which do not depend on the energy E), it can be510

shown (see details in Appendix D) that expansion of the511

HHG amplitude in terms of extreme trajectories coin-512

cides asymptotically (in an energy region not too close513

to caustics) with the results of the present approach.514

III. EXTENSION TO THE CASE OF NEUTRAL515

ATOMS HAVING AN ACTIVE s-ELECTRON516

The Coulomb field changes the laser-induced electron517

dynamics significantly. Even though the analytical de-518

scription of these effects is challenging, the low-frequency519

(adiabatic) regime allows for simplifications. Our result520

for D(Ω) [see Eqs. (20) and (22)] was obtained within521

an analytical model that supports two nonzero scatter-522

ing phases with l = 0 and l = 1. Equivalently, this523

means that the electron moves in a short-range poten-524

tial supporting two bound states. Within this model, we525

derived (for the case of a short driving laser pulse hav-526

ing an arbitrary waveform) the factorization of the HHG527
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yield in terms of an EWP and the exact recombination528

cross section for this two-bound-state system. This re-529

sult suggests an appropriate extension of the result for530

D(Ω) to the case of an atom whose active electron, in531

an initial s-state, experiences a long-range Coulomb po-532

tential. The extension consists, first, in simply replacing533

the model-dependent photorecombination cross section534

factor, σrec(E), in Eq. (30) with its atomic counterpart,535

which properly takes into account the atomic dynamics536

in a Coulomb field relevant to the recombination process.537

Second (and less simple), one must also introduce appro-538

priate Coulomb corrections to the EWP factor, W (E),539

in Eq. (30).540

In the low-frequency (adiabatic) limit, the influence of541

the Coulomb potential on the EWP factor can be taken542

into account by introducing quasiclassical Coulomb fac-543

tors [44, 51, 124–126]. The Coulomb correction for the544

EWP factor of the HHG amplitude was discussed briefly545

in Sec. V of Ref. [51]. It was argued there that, to a546

good approximation, this Coulomb correction can be in-547

troduced only in the ionization factor. (A more detailed548

analysis of the Coulomb phase corrections for the HHG549

amplitude in the quasiclassical approximation was dis-550

cussed recently in Ref. [52].) Therefore, we modify the551

ionization factor (23) by multiplying it by the Coulomb552

correction Qj [51]:553

Qj = Q
(j)
statR

(j), (34)

Q
(j)
stat =

(
2κ3

F ′
j

)Z/κ

, F ′
j =

√
F ′2

j ,

Rj =




2F ′
j

Fj




√

1 +
K ′

j
2

κ2
+

2√
3

√√√√1−
F ′
j
2

4F2
j







Z/κ

,

where Z is the charge of the residual atomic core (where554

Z = 0 and 1 for negative ions and neutral atoms, respec-555

tively).556

Thus, in the case of neutral atoms, the total and partial557

dipole moments become [109]:558

D(Ω) =
∑

j

Pjdj , dj = Qja
(tun)
j a

(prop)
j frec(E), (35)

where frec(E) is the exact photorecombination ampli-559

tude. For calculating Pj we use the expression for the560

decay rate in a DC field [127]. The form (35) of the par-561

tial dipole moment agrees with previous parametrizations562

of the HHG yield in terms of the EWP and the photore-563

combination cross section [53, 54, 82, 83, 87]. The accu-564

racy of this extension to the case of a laser pulse having565

an arbitrary waveform is discussed in Sec. IVB.566

IV. RESULTS FOR HHG IN BICIRCULAR567

FIELDS WITH OPPOSITE HELICITIES568

We present here the application of the general the-569

ory presented above to HHG in bicircular driving laser570

fields. In Sec. IVA we consider the case of long bicir-571

cular driving laser pulses. In Sec. IVB we compare our572

analytical results for the case of short bicircular driving573

laser pulses with results of numerical solutions of the 3D574

TDSE. In Sec. IVC we provide a trajectory analysis of575

our analytical results. Finally, in Sec. IVD we develop576

(and present the physical basis for) a two-dipole model577

of HHG emission that provides a clear explanation of our578

short, bicircular pulse HHG results and indicates a means579

for controlling the polarization of the harmonics.580

A. Bicircular field with monochromatic581

components582

We consider here the case in which both components of583

the bicircular field are long pulses. They have frequencies584

ω and 2ω and polarization vectors eω = (ex + iey)/
√
2585

and e2ω = (ex − iey)/
√
2. The electric field when the586

two components have equal amplitudes, F , is587

F (t) = F [Re(eωe
−iωt) + Re(e2ωe

−2iωt)]. (36)

For circularly polarized components with opposite helic-588

ities we have e2ω · eω = 1 and e2ω · e2ω = eω · eω =589

e∗2ω · eω = e2ω · e∗ω = 0. Angular momentum and par-590

ity conservation selection rules require that the gener-591

ated harmonics have energies (3n + 1)ω or (3n − 1)ω592

and that harmonics with the energy 3nω are forbid-593

den [94, 95, 106, 128]. These selection rules become par-594

ticularly transparent when one notes that the magnetic595

quantum number, ml, of the electron remains unchanged596

after absorbing a pair of circularly polarized photons with597

opposite helicities (with polarization vectors eω and e2ω),598

i.e., after absorbing the energy 3ω. Also, in order for the599

electron to recombine with the atom (in its initial s-state)600

by emitting a harmonic photon, one must have ml = ±1,601

i.e., the active electron must absorb either one more or602

one less photon of energy ω as compared to the number603

of photons absorbed with energy 2ω.604

These general results can also be obtained from the605

analytical expression (20) for the dipole D(Ω) (i.e., ne-606

glecting depletion effects). Indeed, owing to the tem-607

poral symmetry of the laser field, Eq. (21) is invariant608

with respect to the substitutions: t′ → t′ + nT/3 and609

t→ t+nT/3, where T = 2π/ω and n is an integer. Thus,610

all joint solutions of Eq. (21) can be reduced to the “fun-611

damental” solutions {t0,j, t′0,j}, so that t′j = t′0,j + νT/3,612

tj = t0,j + νT/3, where ν is an integer number. Funda-613

mental solutions can be defined by setting an additional614

condition for t′0,j or t0,j : e.g., t
′
0,j ∈ (0, T/3) with ν = 0.615

Obviously, under these substitutions all scalars, which616

define D(Ω) in Eq. (35), remain unchanged.617
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In order to establish the symmetry relation for the vec-618

tor k̂j = K(tj, t
′
j)/

√
2E, we present this vector as a sum619

of two vectors:620

k̂j = k̂
(ω)
j + k̂

(2ω)
j , (37)

where [cf. Eq. (5f)]621

k̂
(lω)
j =

1√
2E



Al(tj)−
∫ tj
t′j

Al(ξ)dξ

tj − t′j



 , (38)

and Al(t) is the vector potential corresponding to the622

field component with frequency lω (l = 1, 2). It can be623

explicitly confirmed that624

(
k̂
(ω)
j

)

±
= e±

2iπ
3 ν
(
k̂
(ω)
0,j

)

±
, (39a)

(
k̂
(2ω)
j

)

±
= e∓

4iπ
3 ν
(
k̂
(2ω)
0,j

)

±
, (39b)

where k̂
(lω)
0,j are vectors k̂

(lω)
j calculated with the sub-625

stitutions tj → t0,j, t
′
j → t′0,j . Taking into account the626

symmetry relations (39), we obtain for the ±-components627

of the vector k̂j a more complex symmetry relation:628

(
k̂j

)

±
= e±i 2π3 ν

(
k
(ω)
0,j

)

±
+ e∓i 4π3 ν

(
k
(2ω)
0,j

)

±
. (40)

Taking into account the invariance of the scalars and629

the symmetry relations (39), we can present the ±-630

components of the vector D(Ω) in the form:631

D±(Ω) =
∑

j

(
d0,j · k̂0,j

)[(
k̂
(ω)
0,j

)

±

∑

ν

ei
2πν
3 (Ω

ω±1)

+
(
k̂
(2ω)
0,j

)

±

∑

ν

ei
2πν
3 (Ω

ω∓2)

]
, (41)

where d̂0,j are vectors d̂j calculated with the substitu-632

tions tj → t0,j , t
′
j → t′0,j. Summation over ν in Eq. (41)633

can be performed analytically based on the relations:634

f(N ;x) =
N∑

ν=−N

ei
2πν
3 x =

sin
[
(2N + 1)πx3

]

sin
(
πx
3

) , (42a)

lim
N→∞

f(N ;x) = 3
∑

n

δ(x− 3n) (42b)

and the dipole (41) can be presented in the final form:635

D±(Ω) = 3ωδ[Ω− (3n∓ 1)ω]

×
∑

j

(
d0,j · k̂0,j

)(
k̂0,j

)

±
. (43)

Equation (43) explicitly shows the orders of allowed har-636

monics and also that each harmonic has only one nonzero637

cyclic component (plus or minus), which indicates that638

the emitted harmonic is circularly polarized and that the639

two nearest harmonics have opposite helicities.640
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Figure 1. Analytically calculated HHG spectrum (a) and the
degree of circular polarization (b) for the hydrogen atom inter-
acting with a long ω− 2ω bicircular field, with oppositely po-
larized components, the same peak intensity, I = 1014W/cm2,
λ = 2πc/ω = 1.6 µm, and a trapezoidal envelope with a to-
tal duration of 10 optical cycles of the fundamental and 1
optical cycle linear turn-on and turn-off. Thick solid (black)
lines: analytic results with depletion included; thin solid (red)
lines: analytic results without depletion. The inset figure in
(a) shows the shape of the HHG spectrum on a wide energy
scale.

Note that ionization of an atomic system in a long641

laser pulse may play a crucial role in forming HHG peaks.642

Indeed, when depletion is significant, the depletion fac-643

tor Pj affects the constructive or destructive interfer-644

ence in the coherent summation of partial dipoles gen-645

erated during successive ionization bursts, thereby wash-646

ing out the sharp peak structure at the allowed energies647

Ω = (3n± 1)ω in the HHG spectrum (see Fig. 1).648

To model the bicircular field with two monochro-649

matic components, we consider in our analytical calcu-650

lations two circularly polarized pulses with trapezoidal651

envelopes, with linear turn-on and turn-off in one optical652

period of the fundamental (Ton,off = 2π/ω), and a total653

duration of 10 fundamental cycles (Ttot = 10×2π/ω) with654

constant peak intensity. In Fig. 1 we present both HHG655

spectra and the degree of circular polarization [129, 130],656

ξ, of the harmonics calculated both with and without657

inclusion of depletion effects:658

ξ = −2
Im
[
Dx(Ω)D

∗
y(Ω)

]

|Dx(Ω)|2 + |Dy(Ω)|2
. (44)

Our analytical results in Fig. 1 without inclusion of de-659

pletion effects explicitly show sharp peaks at the energies660

Ω = (3n∓ 1)ω, for which the degree of circular polariza-661

tion is ±1. These results are in agreement with previous662

studies [94, 95] and with the above discussion. The ana-663

lytic results in Fig. 1 with inclusion of depletion clearly664

show the broadening and shifting of the HHG peaks as665
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Figure 2. Dependence of the scaled return energy, ε = E/up,
where up = F 2/(4ω2), on the jth trajectory’s ionization time,
t′j , and travel time, ∆tj . Panel (a): results for the no deple-
tion case; panel (b): results including depletion. The laser pa-
rameters are the same as in Fig. 1. The color scale shows the
relative contributions of the dipoles, ∝ |dj |. Panel (c): sketch
of the dominant closed classical trajectory for Ω = Ip + 4up

(red line beginning and ending at the origin with the elec-
tron moving counterclockwise) together with the correspond-
ing electric field trajectory (black line) drawn from ionization
(blue circle) to recombination (red square). The thin blue line
shows the electric field trajectory for the entire pulse.

well as the changed polarization properties of the emitted666

harmonics.667

In order to clarify the origin of these changes, we plot668

in Fig. 2 the dependence of the return energy on the ion-669

ization (t′j) and the travel (∆tj = tj − t′j) times both670

without (in panel a) and with (in panel b) depletion ef-671

fects. In each optical cycle there are three ionization672

bursts. The properties of the laser-induced electron tra-673

jectories generated during the flat-top part of the laser674

pulse are the same from burst to burst [see the shape of675

the trajectory in Fig. 2 (c)]. The constructive interfer-676

ence of their contributions results in the sharp peaks in677

the HHG spectra when depletion is ignored. Trajectories678

born during the turn-on and turn-off of the pulse have679

slightly different ionization and recombination times, for680

the same harmonic number, but their contributions are681

not significant.682

The main contribution to the HHG spectrum comes683

from the short trajectories with small travel times ∆tj <684

T/2, where T = 2π/ω. With inclusion of the depletion685

effects, the partial dipoles dj are unchanged, but their686

contributions are now governed by the factors Pj . These687

factors gradually suppress the contributions of the par-688

tial dipoles dj that correspond to larger ionization times689

[see Fig. 2 (b)]. Thus, only a few partial dipoles with690

unequal contributions determine the dipole D(Ω). The691

small number of unequally-weighted partial dipoles leads692

to the broad “peaks” in the HHG spectra and changes693

the polarization properties of the harmonics (including694

even polarization reversals) [see Fig. 1(b)].695

B. Comparison of adiabatic approximation and696

numerical TDSE results697

To check the accuracy of our extension of the TDER698

model to the case of neutral atoms, we have compared699

our analytical results [obtained using Eqs. (28), (20),700

and (35)] with the numerically calculated HHG spectra701

obtained by solving the 3D TDSE:702

i
∂ψ(r, t)

∂t
=

[
−∇2

2
+ U(r) + r · F (t)

]
ψ(r, t), (45)

where F (t) is the electric field of the laser pulse and U(r)703

is the atomic potential. To avoid the Coulomb singularity704

at the origin and to obtain faster convergence of the nu-705

merical simulations at rather long wavelengths, we have706

used a smoothed Coulomb potential:707

U(r) = −1

r

[
tanh(r/a) + (r/b)sech2(r/a)

]
, (46)

where a = 0.3 and b = 0.46. The values of a, b ensure708

that the energy of the ground state of the potential U(r)709

coincides with that of atomic hydrogen. Moreover, the710

potential (46) provides similar behavior of the photoion-711

ization (or photorecombination) cross section from an ini-712

tial s-state as for the bare Coulomb potential. The spec-713

tral density, ρ(Ω), is calculated as the Fourier-transform714

of the laser-induced dipole acceleration a(t):715

ρ(Ω) =
|a(Ω)|2
4c3

, a(Ω) =

∫ ∞

−∞
eiΩta(t)dt, (47)

where716

a(t) = −F (t)− 〈ψ|∇U(r)|ψ〉. (48)

The electric field was parameterized in terms of the inte-717

gral of the vector potential, R(t), as follows:718

F (t) = −∂A(t)

∂t
, A(t) =

∂R(t)

∂t
, (49a)

R(t) = R1(t) +R2(t− Td), (49b)

Ri(t) =
F

ω2
i

fi(t)(ex cosωit+ ηiey sinωit), (49c)

fi(t) = e−2 ln 2 t2/τ2
i (49d)

where each component i = 1, 2 of the field F (t) has inten-719

sity F , carrier frequency ωi (ω1 = ω2/2 ≡ ω), ellipticity720

ηi (η1 = −η2 = 1), duration τi = 2πNi/ω (full width at721
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Figure 3. Comparison of TDSE and adiabatic approxima-
tion (AA) results [see Eq. (35)] for the HHG spectral density,
ρ(Ω), of the H atom, on both large (a,b) and fine (c,d) en-
ergy scales, and for the degree of circular polarization, ξ, of
the harmonics (e,f) for two different bicircular driving laser
fields (49). For each field the peak intensity for both compo-
nents is I = cF 2/(8π) = 1014W/cm2, ω1 = ω2/2 = ω, and
the number of cycles is N1 = N2 = 3, with time delay Td = 0.
Results in panels (a,c,e) are for λ = 2πc/ω = 1.8 µm and
those in panels (b,d,f) are for λ = 2.2 µm. Solid (black) lines:
TDSE results; dashed (red) lines: AA results.

half maximum of the intensity), and number of cycles Ni.722

Also, in Eq. (49b) Td is the time delay between the two723

components, with a negative time delay indicating that724

the 2ω-pulse precedes the ω-pulse.725

To solve the TDSE numerically, we employ a split-726

step method based upon a fast Fourier-transform along727

the Cartesian coordinates x, y, and z [16, 17]. The use728

of Cartesian coordinates is because of the lack of spatial729

symmetry in the problem. For an atomic system in a730

strong MIR field, the numerical solution requires a large731

spatial grid owing to the large excursion amplitude of732

the electron motion, ∝ F/ω2. For an intensity I = 1014733

W/cm2, the simulations for λ = 1.6 µm and λ = 1.8 µm734

require for convergence Nx = Ny = 1024 (the number735

of grid points in x and y), and for λ = 2.2 µm and λ =736

2.4 µm they require Nx = Ny = 2048. For the z-axis, the737

number of grid points is Nz = 256. The temporal and738

spatial steps were chosen to ensure convergence of the739

numerical results: ∆t = 0.025 a.u., ∆x = ∆y = ∆z =740

0.325 a.u. The absorbing boundaries (using the method741

in Ref. [131]) have a width of 30 a.u. in the x and y742

directions and 15 a.u. in the z direction.743

In Figs. 3-5 we compare numerical TDSE and adia-744

batic approximation results. We find excellent agreement745

for the high-energy parts of the HHG spectra, for which746

the adiabatic approximation is justified. For harmonic747

energies close to the ionization potential, we observe dis-748

crepancies owing to the contributions of terms that were749
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Figure 4. Comparison of TDSE and adiabatic approximation
(AA) color-coded results for the H atom HHG spectral den-
sity, ρ(Ω), (a,b) and degree of circular polarization, ξ, (c,d)
for a bicircular field (49) with peak intensity I = 1014W/cm2

for each component, ω1 = ω2/2 = ω, N1 = N2 = 3 cycles,
and λ = 2πc/ω = 1.6 µm plotted as a function of the two-
color time delay Td (in units of T = 2π/ω) and the harmonic
energy Ω. Panels (a) and (c): TDSE results; panels (b) and
(d): AA results, which were plotted with the same resolution
as the numerical TDSE results.

omitted in the adiabatic approximation (see the discus-750

sion in Sec. II B).751

We list here some key observations from the TDSE752

and adiabatic approximation results presented in Figs. 1753

and 3-5:754

(i) In contrast to the case of linear polarization, HHG755

spectra for bicircular fields do not show well-pronounced756

plateau structures with abrupt cutoffs [see the inset fig-757

ure in Fig. 1(a) and Figs. 3(a) and 3(b)].758

(ii) Both the HHG yield and the degree of circular po-759

larization exhibit an oscillatory dependence on the time760

delay between the fundamental and the second harmonic,761

which can be exploited to control the polarization of the762

generated harmonic radiation (see Fig. 4).763

(iii) For a fixed time delay, the HHG spectrum does not764

exhibit sharp peaks at Ω = (3n ± 1)ω; the oscillatory765

structure can be tuned by the two-color time delay, lead-766

ing to the emergence of seemingly forbidden harmonics767

with Ω = 3nω (see Figs. 3 and 5).768

(iv) There is no symmetry in the HHG yield or in the po-769

larization properties with respect to positive versus neg-770

ative two-color time delays (see Figs. 4 and 5).771

C. Trajectory analysis772

As numerical solutions of the TDSE for MIR wave-773

lengths are prohibitively expensive and not very flexible774

for detailed analyses, we carry out a trajectory analy-775

sis using the adiabatic approximation instead. The key776

quantities are the ionization and recombination times777

satisfying Eq. (21).778

Our trajectory analysis starts with Eq. (21a), which we779

solve with respect to the ionization time, t′j , considering780
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Figure 5. Cuts of HHG spectral density, ρ(Ω), and degree of
circular polarization, ξ, from Fig. 4 for positive and negative
time delays. Panels (a,c): Td = −1.4T ; panels (b,d): Td =
1.4T . Solid (black) lines: TDSE results; Dashed (red) lines:
adiabatic approximation (AA) results.

the recombination time, tj , as a parameter. Depending781

on the time delay between the two components of the bi-782

circular field, there are several branches of solutions of the783

transcendental Eq. (21a). We plot in Fig. 6 the depen-784

dence of the ionization factor on the recombination time,785

with the separate curves in Fig. 6 for a given time delay786

corresponding to the different branches of the solution of787

Eq. (21a). Changing the time delay changes the magni-788

tude of the ionization factor dramatically [e.g., compare789

the results in Fig. 6(e) with those in the other panels].790

Thus the time delay between the two components of the791

driving pulse can “optimize” the classical trajectories,792

thus enhancing (or otherwise controlling) ionization.793

The constraint on the recombination time is given by794

Eq. (21b). Once Eq. (21a) is solved with respect to795

the ionization time t′j , Eq. (21b) is the transcendental796

equation that must be solved for tj . Real solutions of797

Eq. (21b) exist for some range of energies E. Thus the798

joint solution of Eqs. (21a) and (21b) gives the sets of799

times {t′j , tj} that determine the closed classical trajec-800

tories. The marked points in Fig. 6 are the values of the801

ionization factor corresponding to the desired solutions of802

the system (21) for a given harmonic energy. For some803

time delays and energies E, there are no real solutions,804

such as, e.g., for the long time delays, Td = ±4T , in805

Fig. 6, whose curves thus have no marked points for the806

three energies E = 2up, 3up, and 4up for which there are807

solutions for other time delays. For such long time de-808

lays, real solutions exist only for small energies, E < 2up809

[see, e.g., Fig. 8(a)].810

Trajectories with the shortest travel times are similar811

to the one shown in Fig. 2(c). Trajectories with long812

travel times have several turning points (cf. Fig 7). For813

large negative time delays, we find surprisingly long tra-814

jectories. These are initially driven by the 2ω-component815

of the pulse near the ionization time, and then brought816

back by the ω-component near the recombination time.817

We did not observe similarly long trajectories for large818

positive time delays (i.e., when the 2ω component of the819
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Figure 6. Dependence of the tunneling ionization factor (in-

cluding the depletion factor), |Pja
(tun)
j | [cf. Eqs (23), (26)],

on the recombination time, tj , for seven different time delays
between the two components of the bicircular pulse: (a) ref-
erence results for a single-color linearly polarized pulse with
I = 1014 W/cm2, λ = 1.6 µm, and N1 = 4; (b) Td = 0,
(c) Td = −T , (d) Td = T , (e) Td = −3T , (f) Td = 3T ,
(g) Td = −4T , (h) Td = 4T . Symbols mark the ioniza-
tion factors at the recombination times for E = 2up (blue
squares), E = 3up (red circles), and E = 4up (black trian-
gles). Results in panels (b)-(h) are for a bicircular field (49)
with λ = 1.6 µm, I = 1014W/cm2, N1 = 4, N2 = 2.

driving field arrives later).820

The physics underlying the presence of such long tra-821

jectories for negative time delays and their absence for822

positive delays is as follows: the momentum gained from823

the 2ω-field is less than half that gained in the ω-field.824

Thus, the ω-component of the field can overcome the825

electron’s outgoing spiral motion in the circularly polar-826

ized 2ω-field, even at lower field strengths. The converse827

is not the case. Specifically, in the 2ω-field the electron828

moves along an outgoing spiral arc (see the left panel in829

the first row in Fig. 7). When the contribution of the830

ω-field to the electron momentum becomes comparable831

with that of the 2ω-field (see the middle panel of the first832

row in Fig. 7), it turns the trajectory around and brings833

it back along an incoming spiral trajectory, returning the834

electron to the origin after some time (see the right panel835

in the first row in Fig. 7).836

The existence of closed classical trajectories with837

nonzero initial momentum in a circularly polarized field838

is not surprising and has been discussed in Ref. [132]. In839

a bicircular field, the 2ω-component gives the electron an840

initial “kick” (i.e., its initial momentum), following which841

the ω-component then returns the electron to the origin.842

The energy gained along such a long closed trajectory843

is of the order of 2up (or less). The plateau structures844

associated with these trajectories are shorter than those845
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Figure 7. Illustrations of three stages in the formation of
the long travel-time trajectories over three different time in-
tervals. Left column: the “2ω-kick” stage; middle column:
the“turn around” stage; right column: the “spiral-in” stage,
driven by the ω-field. Top row : the x, y coordinates of the
electron trajectories (solid black lines) and the Fx(t), Fy(t)
field trajectories (dashed red lines) over the time intervals
discussed below. Middle and Bottom rows: Fx(t) and Fy(t)
respectively for the 2ω (solid red lines) and ω (dashed black
lines) field pulses. The time intervals for the stages in the top
row are indicated by the thick parts of the field curves in the
middle and bottom rows. The thin lines show the entire time
evolution of the pulses. The calculations were done for the
same laser parameters as in Fig. 6 with Td = −4T .

observed for the short travel time trajectories produced846

by bicircular fields having small two-color delays.847

The spike-like behavior of the ionization factor ob-848

served for a time-delayed bicircular field [see Figs. 6(b)-849

(d)] contrasts with its rather flat behavior for the case of850

linear polarization [see Fig. 6(a)]. At some energies, the851

ionization factor may reach a maximum value, decreas-852

ing gradually with further increases in the return energy,853

thereby suppressing the contribution of the correspond-854

ing harmonic dipoles dj (see Fig. 8) and resulting in a855

gradual decrease in the HHG yield. In contrast, for lin-856

ear polarization, the ionization factor is almost flat for a857

wide range of return times, leading to a well-pronounced858

plateau. For large two-color time delays, the ionization859

factor behaves similarly to the case of linear polariza-860

tion [see Figs. 6(e)-(h)] and hence the plateau structure861

is more pronounced.862

D. The two-dipole model and time-delay control of863

HHG yields and polarizations864

The adiabatic approximation results in Figs. 6 and 8865

show that for moderate time delays between the bicir-866

cular pulses there are two contributing trajectories that867

determine the properties of the partial dipoles associ-868

ated with the most important two ionization bursts [see869

Eq. (22)]. The HHG spectrum can thus be described as870

the emission by a system of two dipoles oscillating at fre-871

quency Ω. More specifically, these are two non-collinear872

dipoles having a mutual angle α and a phase difference Φ,873

as sketched in Fig. 9. This contrasts to the case of a long874

bicircular pulse, whose field has a trefoil shape that allows875

it to be described as three phase-locked dipoles having a876

relative angle of 120◦ between one another. Varying the877

time delay between the two components in a short bi-878

circular pulse provides a means for controlling both the879

magnitudes of the two dipoles and the relative phase be-880

tween them and hence a means for controlling both the881

HHG yields and the harmonic polarizations, as we show882

below.883

According to Eq. (35), the magnitudes of the two884

dipoles are mainly determined by the ionization (includ-885

ing depletion effects), which is controlled by the time de-886

lay (see Fig. 6). The relative phase between two dipoles887

is given by the difference of the two classical actions for888

the electron moving along the two closed trajectories:889

Φ = ∆S +Ω(t1 − t2), (50)

∆S = S(t1, t
′
1)− S(t2, t

′
2),

where S(t, t′) is given by Eq. (C3). The angle α is slightly890

sensitive to the time delay, but varies around the value891

of 120◦.892

Calculating the HHG yield and the degree of circu-893

lar polarization for this two-dipole model D(Ω) = d1 +894

d2e
−iΦ [using Eqs. (28) and (44)] leads to the expressions:895

896

ρ(Ω) =
Ω4d1d2
2c3

[δ + cosα cosΦ] , (51a)

ξ = − sinα sinΦ

δ + cosα cosΦ
, (51b)

where δ = (d21 + d22)/(2d1d2) and α ≃ 120◦. If the897

relative phase between the two dipoles is Φ = 2πn898

or Φ = π + 2πn, then according to Eq. (51) lin-899

early polarized light is emitted with intensity ρ(Ω) =900

Ω4d1d2/(2c
3) [δ ± cosα] (where the “+” sign corresponds901

to the first phase and “−” to the second one). Al-902

ternatively, if Φ = π/2 + πn then elliptically polar-903

ized light is emitted with |ξ| = sinα/δ and intensity904

ρ(Ω) = Ω4(d21 + d22)/(4c
3). Calculation of the maximum905

and minimum values of the polarization ξ with varia-906

tion of the phase Φ gives |ξ| = sinα/(δ
√
1− δ−2 cos2 α)907

with intensity ρ(Ω) = Ω4(d21 + d22)/(4c
3)
[
1− δ−2 cos2 α

]
.908

Thus, by varying the phase Φ one can control the ellip-909

ticity over a wide range.910

According to Eq. (50) applicable to our two-dipole911

model, the phase Φ is determined by the sum of two912

terms. One term is a linear function of the harmonic913

frequency Ω with coefficient t1 − t2. The other term914

is the difference ∆S, which depends on the time delay915

and can be changed by varying Td. For fixed laser pa-916

rameters, the difference t1 − t2 is about one-third of the917

period T , so that the phase Φ ∝ 2π(Ω/3ω) induces a918
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Figure 8. Dependence of the scaled return energy ε = E/up [where up = F 2/(4ω2)] on the ionization time t′j of the jth

trajectory and the travel time ∆tj for the bicircular field (49) with λ = 1.6 µm, I = 1014W/cm2, N1 = 4, N2 = 2, and different
two-color time delays: (a) Td = −5T ; (b) Td = −2T ; (c) Td = 0; (d) Td = T ; (e) Td = 2T ; (f) the case of linear polarization
for I = 2× 1014 W/cm2. The color scale shows the relative contributions of the dipoles, ∝ |dj |.

regular oscillation pattern in the HHG spectrum with a919

period 3ω (see Figs. 3 and 10). The maxima of these920

oscillations can be tuned to the positions of the forbid-921

den harmonics by changing the time delay between the922

two incident pulses in the bicircular field [109]. Thus, for923

∆S = (2n+ 1)π (where n is an integer), Eq. (51a) gives924

maxima for Ω = 3Nω, and, according to Eq. (51b), at925

these maxima ξ = 0.926

We emphasize that our two-dipole analysis assumes a927

linear dependence of Φ on Ω and the equality t1 − t2 =928

T/3. This analysis is not applicable over the entire HHG929

spectrum. Hence, some deviations from the simple two-930

dipole model can be observed. However, by tuning the931

time delay between the two bicircular pulses, the loca-932

tions of the maxima of the HHG spectrum oscillations933

at Ω = 3Nω, as well as the linear polarization of these934

“harmonics,” can be produced over any finite range of935

values of the harmonics Ω.936

Our two-dipole model also cannot in general describe937

the entire HHG spectrum, as the shape of the HHG spec-938

trum in particular energy regions depends significantly939

on the number of contributing trajectories, which de-940

pends in turn on the two-color time delay. In Fig. 11941

we present HHG spectra for different time delays over a942

much larger energy region than in Fig. 10. If there is only943

one contributing trajectory, then the HHG spectrum ex-944

hibits a smooth dependence on the scaled energy (see945

Fig. 11 for Td = T and Td = −T over the energy ranges946

4 < E/up < 5 and 4.5 < E/up < 5, respectively). As dis-947

αd2 e
-iΩt

d1 e
-iΩt+iΦ

Figure 9. Sketch of the two-dipole model system.
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Figure 10. Illustration of the 3ω periodicity of both the HHG
spectral density, ρ(Ω), (a, b) and the degree of circular po-
larization, ξ, (c, d) as functions of the harmonic number Ω/ω
for five different time delays, Td, and for the bicircular field
parameters as in Fig. 6 (for which, ω = 0.0285 a.u.). (a)
and (c): Solid (red) lines (HHG yield is multiplied by four):
Td = 0; dashed (blue) lines (HHG yield is multiplied by three):
Td = T ; dash-dot (black) lines: Td = 2T . (b) and (d): Solid
(red) lines (HHG yield is multiplied by four): Td = 0; dashed
(blue) lines (HHG yield is multiplied by three): Td = −T ;
dash-dot (black) lines: Td = −2T .

cussed above, if there are two contributing trajectories,948

the HHG spectrum shows a regular large-scale oscillation.949

For small electron return energies, there are several con-950

tributing trajectories and their interference induces both951

large-scale and fine-scale oscillations.952

In general, few trajectories contribute at large har-953

monic energies and the few non-dominant trajectories954

only slightly perturb the smooth dependence associated955

with one dominant trajectory (see Fig. 11 for Td = 2T956

for 2.7 < E/up < 3.7) or the large-scale oscillations as-957

sociated with two dominant trajectories (see Fig. 11 for958

Td = 2T for 1.5 < E/up < 2.7). As also shown in Fig. 11,959
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Figure 11. HHG spectral density, ρ(Ω), as a function of the
electron’s scaled return energy, E/up for five different time
delays, Td. Laser parameters are the same as in Fig. 10 and
up = F 2/(4ω2) = 0.88 a.u. (a) Dashed (blue) line: Td =
T ; dash-dot (black) line; Td = 2T . (b) Dashed (blue) line:
Td = −T ; dash-dot (black) line: Td = −2T . In both panels,
the solid (red) lines (with the HHG spectral density, ρ(Ω),
multiplied by four): Td = 0.

increasing the time delay (from ±T to ±2T ), one ob-960

serves about an order of magnitude increase in the HHG961

yield in the high-energy part of the spectrum [109]. This962

enhancement originates from the favorable conditions for963

tunnel ionization at large time delays [see Fig. 6(e)]; how-964

ever, it comes at the cost of a significant reduction in965

the HHG cutoff energy. For some energies the analyti-966

cal HHG spectra show discontinuities or sharp peaks [see,967

e.g., the peaks in Fig. 11 (a) for Td = 2T near the energies968

E/up = 1.65, 2.7 and 3.7]. These unphysical peculiari-969

ties are related to limitations of the analytic approach,970

which cannot be used for energies at which the product971

Kj ·K̇j is close to zero [cf. Eqs. (24) and (35)]. These en-972

ergies correspond to the bifurcation points (caustics) at973

which two trajectories coalesce, which requires a special974

treatment [120–122]. The largest of these energies gives975

an upper limit of energies for which the present analytic976

approach is applicable.977

The most significant prediction of our two-dipole978

model analysis is that the time delay, Td, between the979

two-color components of a short bicircular field provides980

a sensitive means of controlling the polarization proper-981

ties as well as the yield of the generated harmonic light982

at a fixed harmonic energy, Ω. This HHG control is most983

effective if the time delay is of the order of a few periods,984

T , of the ω-field of the few-cycle bicircular driving pulses.985

These predictions are illustrated in Fig. 12, which shows986

the dependence of the harmonic yield and the degree of987

circular polarization on the time delay for four different988

harmonic energies. Fine-scale oscillations are observed in989

both the HHG yield and the degree of circular polariza-990

tion for large negative time delays owing to the contribu-991
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Figure 12. Dependence of the HHG spectral density, ρ(Ω),
(a) and the circular polarization degree, ξ, (b)-(f) on the two-
color time delay, Td, for four harmonic energies, Ω. Solid lines:
Ω = 2.26 a.u.; dashed lines: Ω = 2.7 a.u.; dot-dashed lines:
Ω = 3.14 a.u.; dotted lines: Ω = 3.57 a.u. Results are for the
same laser parameters as in Fig. 6.

tions of more than two dominant bursts in the harmonic992

dipoles (see Fig. 12 for Td < −2T ). For small negative993

time delays and for positive time delays, the oscillation994

pattern is regular and results from the contributions of995

the two dominant dipoles. Most importantly, the results996

in Fig. 12 clearly show that variation of the two-color997

time delay over a single period T allows one to change998

the polarization of a given harmonic from left to right cir-999

cular without changing the helicities of the two bicircular1000

field components of the driving laser pulse.1001

V. SUMMARY AND OUTLOOK1002

In this paper we have used TDER theory, for a sys-1003

tem with two bound states, to develop an analytic de-1004

scription of HHG driven by a laser field with an arbi-1005

trary waveform. The applicability of our approach re-1006

quires the smallness of the imaginary part of the cor-1007

responding saddle-point ionization time, which obtains1008

for the case of a laser field with a sufficiently low car-1009

rier frequency (or frequencies). In this description, the1010

laser-induced dipole moment is a coherent sum of par-1011

tial dipole moments, whose properties (direction, phase,1012

and magnitude) are determined by the classical (real)1013

times of ionization and recombination. These times de-1014

termine the closed classical trajectories along which the1015

ionized electron starts, with minimal kinetic energy, in1016

the laser field [see Eq. (21a)] and returns back with the1017

kinetic energy corresponding to harmonic emission with1018

frequency Ω [see Eq. (21b)]. The partial dipole moment1019
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for a system with an active s-electron can be written as1020

a product of three factors [see Eq. (22)]: the ionization1021

factor, the propagation factor, and the exact photorecom-1022

bination amplitude. This result theoretically justifies the1023

quasiclassical factorization of the HHG yield in terms of1024

an EWP and the exact TDER photorecombination cross1025

section (for the case of an active electron in an s-state)1026

for a laser field having an arbitrary waveform.1027

The results for our TDER model system were extended1028

to the case of a neutral atom, in which the Coulomb1029

field effects are crucial, by making two modifications: (i)1030

Using closed form analytical TDER expressions for the1031

laser-induced dipole moment in which we introduce the1032

Coulomb corrections in Eq. (34) for the ionization factor;1033

and (ii) Replacing the TDER photorecombination ampli-1034

tude by its atomic counterpart. Our precise numerical1035

solutions of the 3D TDSE for a low-frequency bicircu-1036

lar field were found to be in excellent agreement with the1037

analytical results for the H atom (see Figs. 3-5), thus con-1038

firming the accuracy of our analytical description. This1039

analytical model provides one with reliable tools to an-1040

alyze HHG in intense MIR driving fields composed of1041

multiple phase-locked colors with complex polarization1042

states.1043

Our analytic results for the yields and the polariza-1044

tions of the generated harmonics were obtained for the1045

cases of both long and short time delays, Td, between the1046

two components of the bicircular pulses. In both cases1047

we demonstrated the crucial role of ionization, which1048

changes drastically the shapes of HHG spectra and the1049

polarization properties of the emitted harmonics. In the1050

case of long time delays, the ionization factor reduces1051

the number of partial dipoles (trajectories) that con-1052

tribute to harmonic emission at a particular frequency,1053

thus smoothing the sharp peaks at Ω = (3N ± 1)ω dic-1054

tated by dipole selection rules. Moreover, ionization also1055

affects the polarization properties of the emitted har-1056

monics, leading to deviations from the simple predictions1057

based on the dipole selection rules.1058

In the case of short time delays, we demonstrated that1059

the time delay controls the ionization and recombination1060

times, thus allowing one to control HHG yields and, most1061

important, the polarizations of the emitted harmonics.1062

Enhancement of HHG yields can be effected by control-1063

ling the ionization factors in the contributions of differ-1064

ent partial dipoles associated with successive ionization1065

bursts. Varying the time delay may increase the HHG1066

intensity by creating favorable conditions for ionization1067

(conditioned on the return of the launched trajectory).1068

For the case of a few-cycle bicircular laser field, both1069

the shape of the HHG spectrum and the polarization1070

properties of the emitted harmonics can be modeled by1071

assuming the major contributions stem from two domi-1072

nant dipoles with different orientations and magnitudes.1073

This two-dipole model accurately predicts the oscillation1074

patterns in the HHG spectrum and the dependence of1075

the degree of circular polarization of the harmonics on1076

the harmonic energy. Efficient control of the HHG pro-1077

cess is achieved by varying the classical actions of the two1078

dominant trajectories, which is accomplished by chang-1079

ing the time delay between the two-color components of1080

a short bicircular pulse.1081

Finally, we have focused in this paper on the simplest1082

case in which the active electron is in an initial s-state.1083

The case of an initial p-state requires a separate analy-1084

sis owing to the facts that there are three contributing1085

magnetic sublevels and that the recombination amplitude1086

to these states or their linear combinations has a tensor1087

form [cf. Eq. (12) in Ref. [84]]. These features may lead1088

to a parametrization of the induced dipole moment that1089

prevents one from factorizing the HHG yield in terms1090

of an EWP and the photorecombination cross section1091

for the case of an arbitrary driving laser pulse waveform1092

(cf. Refs. [84, 85]). On the other hand, the study of HHG1093

from p-states for the case of a general driving laser pulse1094

waveform may suggest improvements of current schemes1095

for HHG-spectroscopy.
1096
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Appendix A: Justification of the boundary condition1106

in Eq. (1) for strong laser field processes1107

The boundary condition for the stationary state wave1108

function Ψǫ(r) of a weakly-bound electron in static mag-1109

netic and electric fields was formulated in Refs. [75, 76]:1110

∫
Ψǫ(r)Y

∗
l m(Ω)dΩ

= f
(l,m)
0

[(
r−l−1 + · · ·

)
+ Bl(ǫ)

(
rl + · · ·

)]
, (A1)

(2l − 1)!!(2l+ 1)!!Bl(ǫ) = k2l+1 cot δl(k), k =
√
2ǫ.

Equation (A1) is based on the well-known expansion of1111

a scattering wave function for a low-energy electron in a1112

short-range potential (see Sec. 132 in Ref. [43]). Its range1113

of applicability is given by the inequality ka≪ 1, where a1114

is the radius of the short-range potential. In calculating1115

the energy of a weakly-bound electron in two station-1116

ary potentials with predominantly different ranges (i.e.,1117

short- and long-range potentials) [75, 76], it is assumed1118

that the energy is located near the continuum threshold1119

and, to simplify the dependence of Bl(ǫ) on energy, a two-1120

term series expansion in energy is used for Bl(ǫ). These1121

two terms are parameterized in terms of the scattering1122

length and the effective range [43].1123
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At first sight, the boundary condition (A1) cannot be1124

employed for fast electrons. However, in scattering of1125

fast electrons the major contribution is given by small1126

distances (kr ≪ 1), i.e., the electron effectively “feels”1127

the potential at smaller distances than the actual radius1128

a of the short-range potential. Based on this physical as-1129

sumption, a model may be proposed for which an atomic1130

potential has an effective radius ã, for which the condi-1131

tion kã ≪ 1 is fulfilled. Thus the expansion (A1) can1132

be formally applied, although the scattering phase can-1133

not be expanded in a series in k2. This model is known1134

as the hard-sphere model formulated in terms of a pseu-1135

dopotential [133] (see also Ref. [134]).1136

The boundary condition (A1) should be modified for1137

the case of the long-range, periodic-in-time electron-laser1138

interaction [73, 74]. Indeed, in accord with the theory1139

of quasistationary quasienergy states [77, 116], the wave1140

function for a complex quasienergy ǫ has the form,1141

Ψ(r, t) = e−iǫtΦǫ(r, t), Φǫ(r, t+ T ) = Φǫ(r, t), (A2)

where T is the period of the electron-laser interaction,1142

and the periodic function Φǫ(r, t) is the solution of the1143

equation,1144

[
H0(r) + V (r, t)− i

∂

∂t

]
Φǫ(r, t) = ǫΦǫ(r, t). (A3)

In Eq. (A3), H0(r) = −∇2/2 + U(r) is the unperturbed1145

Hamiltonian, where U(r) is the atomic potential, and1146

V (r, t) = V (r, t+ T ) is the periodic-in-time potential of1147

the electron-laser interaction,1148

V (r, t) = r · F (t), (A4)

where we have used the length-gauge dipole approxima-1149

tion for V (r, t) in which F (t) is the electric component1150

of the laser field.1151

As we have discussed in Ref. [74], the two potentials,1152

U(r) and V (r, t), are significant in two very different ra-1153

dial ranges: the potential U(r) is important for r . ã,1154

whereas the potential V (r, t) is significant for r ≫ ã.1155

Thus, for r ∼ ã the electron can be considered to be es-1156

sentially free. In this region, Eq. (A3) can be analyzed by1157

omitting the potentials U(r) and V (r, t). Hence, for the1158

l-wave channel, the solution of Eq. (A3) can be sought1159

in a form similar to that in Eq. (A1). Owing to the time1160

derivative in Eq. (A3), the solution for energy ǫ can be1161

“replicated” by that for “energy” En = ǫ + nωτ by sub-1162

sequent multiplication by the exponential e−inωτ t, where1163

ωτ = 2π/T . The desired result for the periodic solution1164

for r ∼ ã thus has the form,1165

∫
Φǫ(r, t)Y

∗
l m(Ω)dΩ

=
∑

n

f (l,m)
n

[(
r−l−1 + · · ·

)

+Bl(En)
(
rl + · · ·

)]
e−inωτ t, En = ǫ+ nωτ , (A5)

where f
(l,m)
n are Fourier coefficients of a periodic function1166

f (l,m)(t) =
∑

n f
(l,m)
n e−inωτ t. Since the sum in Eq. (A5)1167

is over all n, it assumes that En may be large. How-1168

ever, the convergence of the Fourier series to the func-1169

tion f (l,m)(t) dictates an exponential decrease of the co-1170

efficients f
(l,m)
n for large |n| [74]. Hence, there is some1171

effective upper limit (Ee) for the energies En that con-1172

tribute, which allows one to estimate ã, i.e., ã ∼ 1/
√
2Ee,1173

thus ensuring the validity of the condition
√
2Enã . 1.1174

Consequently, in Eq. (A5) one may use the parametriza-1175

tion of Bl(En) in terms of the exact scattering phases1176

δl(k) (without expansion in k) [cf. Eq. (A1)] up to ener-1177

gies ∼ Ee.1178

Appendix B: Derivation of ∆ǫ in Eq. (8) and the1179

harmonic amplitude (11) in the TDER model1180

In the strong-field, low-frequency regime (in which the1181

carrier frequency of the laser pulse is much smaller than1182

the ionization potential Ip of the atom), ∆(t, t′) ≫ 11183

and integrals containing Gǫ(t, t
′) are exponentially small1184

[see Eqs. (5d), (5e), (6), and (7)]. In the adiabatic ap-1185

proach one retains terms that are of first order in these1186

exponentially small quantities and ignores those of higher1187

order [81, 90, 91]. Thus the equation for the complex1188

quasienergy, ǫ, of the initial s-state in the two-component1189

field can be obtained from Eq. (6a) for n = 0 by substitut-1190

ing f (0,0)(t) = f
(0,0)
0 and coefficients f

(1,m)
n from Eq. (7b)1191

for the function f (1,m)(t). We also neglect the contri-1192

bution of the laser field to the function Gǫ(t, t
′) in the1193

second term on the right-hand side of Eq. (6a) by mak-1194

ing the substitution Gǫ(t, t
′) → eiǫ(t−t′)/[

√
2πi(t− t′)3/2].1195

Thus, in the adiabatic approximation, the equation for1196

the complex quasienergy takes the form:1197

B0(ǫ)− iκ0

=
1

T

∫ T /2

−T /2

∫ t

−∞

[
ei∆̃(t,t′) − 1

]
eiǫ(t−t′)

√
2πi(t− t′)3/2

dt′dt (B1)

−
∑

m

i
√
3

T f (0,0)
0

T /2∫

−T /2

t∫

−∞

eiǫ(t−t′)f (1,m)(t′)√
2πi(t− t′)3/2

K̃ ′
mdt

′dt,

where ∆̃(t, t′) and K̃ ′
m are given by Eqs. (5e) and (3),1198

respectively, with the substitution A(t) → Ã(t).1199

Assuming that the harmonic field amplitude, FΩ, is1200

small (see Sec. II B), we write ǫ as the sum ǫ = ǫ0 +1201

∆ǫ, where ǫ0 is the complex quasienergy in the strong1202

periodic field alone and ∆ǫ gives a correction linear in1203

FΩ. Specifically, ǫ0 obeys Eq. (B1) for FΩ = 0, in which1204

the strong field is given by the vector potential Aτ (t),1205

and ∆ǫ ∝ FΩ.1206

In order to obtain an explicit expression for ∆ǫ, we1207

expand the left- and right-hand sides of Eq. (B1) in a1208
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series in FΩ up to first order. As a result, we obtain the1209 following expression for ∆ǫ:1210

∆ǫ = − 1

NT

√
i

2π

∫ T /2

−T /2

∫ t

−∞

ei∆τ (t,t
′)+iǫ0(t−t′)

(t− t′)3/2
[FΩ ·G(Ω) + F ∗

Ω ·G(−Ω)] dt′dt

−
√
3

Nf
(0,0)
0

∑

m

[
a(Ω)(FΩ)mf

(1,m)
−N + a(−Ω)(F ∗

Ω)mf
(1,m)
N

]
, (B2)

a(Ω) =
1

2Ω
√
2πi

∫ ∞

0

eiǫ0τ

τ3/2

(
1 +

e−iΩτ − 1

iΩτ

)
dτ =

i

2Ω

{√
2ǫ0 +

(2ǫ0 − 2Ω)3/2

3Ω
− (2ǫ0)

3/2

3Ω

}
, (B3)

N =
∂B(ǫ0)
∂ǫ0

− 1√−2ǫ0
−
√

i

2π

1

T

T /2∫

−T /2

∫ t

−∞

[
ei∆τ (t,t

′) − 1
]
eiǫ0(t−t′)dt′dt

(t− t′)1/2

−
∑

m

√
3

T

∫ T /2

−T /2

∫ t

−∞

eiǫ0(t−t′)f (1,m)(t′)√
2πi(t− t′)1/2

K ′
mdt

′dt, (B4)

G(Ω; t, t′) ≡ G(Ω) =
1

2iΩ

∫ t

t′
Aτ (ξ)e

−iΩξdξ − 1

t− t′

∫ t

t′
Aτ (ξ)dξ

e−iΩt − e−iΩt′

2Ω2
, (B5)

where ∆τ (t, t
′) = ∆̃(t, t′)|FΩ=0. Owing to the accuracy1211

of the adiabatic approximation for long wavelength laser1212

fields, one may replace the exact complex quasienergy1213

in the field Aτ (t) by its unperturbed value (ǫ0 → −Ip)1214

in the integrals (B2)-(B4) [70]. Moreover, without loss1215

of accuracy, Eq. (B4) can be evaluated for the field-free1216

case, for which the last two integrals equal zero:1217

N ≈ r0 − κ−1 = −2C−2
κ κ−1. (B6)

To obtain Eq. (B6), we have replaced B(ǫ0) in Eq. (B4) by1218

the effective range expansion B(ǫ0) ≈ a−1
0 +r0ǫ0, where a01219

is the scattering length and r0 is the effective range [43].1220

Note that Cκ in Eq. (B6) is the dimensionless asymptotic1221

coefficient that determines the behavior of the field-free1222

bound s-state at large distances:1223

ψ0(r) ≈
√
κCκ

e−κr

r
Y00(r̂), κ =

√
2Ip. (B7)

Substituting the explicit form of the coefficients f
(1,m)
N1224

from Eq. (7b) into Eq. (B2) and noting that (a · b) =1225

1∑
m=−1

(−1)mamb−m, we obtain ∆ǫ in the form:1226

∆ǫ = − 1

NT

√
i

2π

∫ T /2

−T /2

∫ t

−∞

ei∆τ (t,t
′)−iIp(t−t′)

(t− t′)3/2

×
[
FΩ ·G(Ω) + F ∗

Ω ·G(−Ω) +
e−iΩta(Ω)FΩ ·Kτ (t, t

′)

B1(−Ip − Ω)− iκ3
−N/3

+
eiΩta(−Ω)F ∗

Ω ·Kτ (t, t
′)

B1(−Ip +Ω)− iκ3
N/3

]
dt′dt, (B8)

where κ±N =
√
2(−Ip ± Ω), Ω = Nωτ , and Kτ (t, t

′) is1227

given by Eq. (5e) with the substitution A(t) → Aτ (t).1228

Doing the integrals in Eq. (B5) by parts, we trans-1229

form (B5) to the following more appropriate form for1230

further analysis:1231

G(Ω) =
e−iΩt

2Ω2
Kτ (t, t

′)− e−iΩt′

2Ω2
K ′

τ (t, t
′)

+
1

2Ω2

∫ t

t′
Fτ (ξ)e

−iΩξdξ, Fτ (t) = −∂Aτ (t)

∂t
, (B9)

where K ′
τ (t, t

′) is given by Eq. (3) with the substitution1232

A(t) → Aτ (t). Taking into account Eq. (B9), substi-1233

tuting (B8) into Eq. (8), and then taking the limit (9)1234

for fixed Ω, we obtain the dipole moment D(Ω) in the1235

form (11).
1236

Appendix C: Analytic evaluation of the dipole1237

moment (12) in the adiabatic limit1238

Before estimating the dipole moment (12), we estimate1239

the integral in Eq. (13) using the saddle point method.1240

The saddle points (t′ν) are given by the equation:1241

K ′2(t, t′ν) = −2Ip, (C1)
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where t′ν ≡ t′ν(t) is the ν-th complex root of Eq. (C1).1242

We consider only those roots, t′ν , that have positive imag-1243

inary parts, since the adiabatic transition to the contin-1244

uum state starts from a bound state with negative energy1245

−Ip [43]. After saddle-point integration over t′, D1(t)1246

takes the form:1247

D1(t) ≈ −iC
∑

ν

eiS(t,t′ν)K(t, t′ν)

(t− t′ν)
3/2
√
αν(t)

g(Ω), (C2)

where1248

S(t, t′) = −1

2

∫ t

t′

[
A(ξ)− 1

t− t′

∫ t

t′
A(ξ′)dξ′

]2
dξ

−Ip(t− t′), (C3)

αν(t) =
∂2S(t, t′)

∂t′2

∣∣∣∣
t′=t′ν(t)

= K ′(t, t′) · ∂K
′(t, t′)

∂t′

∣∣∣∣
t′=t′ν(t)

= −
[
F (t′ν) ·K ′(t, t′ν) +

2Ip
t− t′ν

]
. (C4)

Substituting Eq. (C2) into Eq. (12), we obtain:1249

D1(Ω) = −iC
∑

ν

∫ ∞

−∞

eiSν(t)K(t, t′ν)

(t− t′ν)
3/2
√
αν(t)

g(Ω)dt, (C5)

where1250

Sν(t) = S(t, t′ν) + Ωt. (C6)

Since the contributions of the roots t′ν(t) in the sum1251

over ν in Eq. (C5) are determined by their imaginary1252

parts, the roots with the smallest imaginary parts give1253

the major contributions. Thus, we represent t′ν as a sum1254

of its real and imaginary parts: t′ν = t′ν + i∆t′ν , where1255

t′ν and ∆t′ν are real and 0 < ω∆t′ν ≪ 1 (where ω is1256

the carrier frequency of the laser pulse). Substituting1257

this form for t′ν in the left hand side of Eq. (C1) and1258

expanding it in powers of i∆t′ν up to second order, we1259

obtain:1260

K ′2(t, t′ν) + i2∆t′νK
′(t, t′ν) · K̇ ′(t, t′ν)

−(∆t′ν)
2
[
K̇ ′2(t, t′ν) +K ′(t, t′ν) · K̈ ′(t, t′ν)

]

= −κ2, (C7)

where K̇ ′(t, t′ν) = ∂K ′(t, t′)/∂t′
∣∣
t′=t′ν

, and K̈ ′(t, t′ν) =1261

∂2K ′(t, t′)/∂t′
2∣∣

t′=t′ν
. Separating real and imaginary1262

parts in Eq. (C7), we obtain two equations:1263

K ′(t, t′ν) · K̇ ′(t, t′ν) =
∂2S(t, t′)

∂t′2

∣∣∣∣
t′=t′ν

= 0, (C8a)

(∆t′ν)
2F(t, t′ν)

2 = κ(t, t′ν)
2, (C8b)

where1264

F(t, t′ν) =

√
K̇ ′2(t, t′ν) +K ′(t, t′ν) · K̈ ′(t, t′ν),(C9)

κ(t, t′ν) =

√
κ2 +K ′2(t, t′ν). (C10)

Equation (C8a) shows explicitly that the electron leaves1265

the atom at the moment t′ν , which ensures minimal ki-1266

netic energy at this moment. [Note that Eq. (C8a) for1267

the case of linear polarization of the laser field reduces to1268

K ′(t, t′ν) = 0.] Equation (C8b) determines the “under-1269

barrier” part of the tunneling time:1270

∆t′ν =
κ(t, t′ν)

F(t, t′ν)
. (C11)

A simplification of F(t, t′ν) in Eq. (C9) is achieved using1271

Eq. (C8a) and the relations,1272

K̇ ′(t, t′ν) = −F (t′ν) +
K ′(t, t′ν)

t− t′ν
,

K̈ ′(t, t′ν) = −Ḟ (t′ν)−
F (t′ν)

t− t′ν
+

2K ′(t, t′ν)

[t− t′ν ]
2
,

which lead to the following expression for F(t, t′ν):1273

F(t, t′ν) =

√
F 2(t′ν)−K ′(t, t′ν) · Ḟ (t′ν), (C12)

Ḟ (t) =
∂F (t)

∂t
. (C13)

We emphasize that the expression under the square root1274

in Eq. (C12) is positive, because it is given by the sec-1275

ond derivative of K ′2(t, t′) in t′, which is positive at the1276

minimum of K ′2(t, t′):1277

1

2

∂2K ′2(t, t′)

∂t′2

∣∣∣∣∣
t′=t′ν

= K̇ ′2(t, t′ν)

+K ′(t, t′ν) · K̈ ′(t, t′ν) > 0.

[Note that K ′(t, t′ν) = 0 for the case of linear polariza-1278

tion and Eq. (C11) in this case reduces to the well-known1279

result ∆t′ν = κ/|F (t′ν)|.]1280

For small ∆t′ν (ω∆t′ν ≪ 1), we can calculate αν(t) (C4)1281

and the action S(t, t′) (C3) by expanding them in series1282

up to the first and third order respectively in ∆t′ν :1283

αν(t) ≈ i∆t′ν F2(t, t′ν), (C14)

S(t, t′ν) ≈ S(t, t′ν) +
i

3

κ
3(t, t′ν)

F(t, t′ν)
. (C15)

Taking into account Eqs. (C11), (C14), and (C15), we1284

obtain D1(t) in Eq. (C2) in the form:1285

D1(t) = −
√
iC
∑

ν

e
−κ

3(t,t′ν )

3F(t,t′ν )

√
κ(t, t′ν)F(t, t′ν)

×e
iS(t,t′ν)K(t, t′ν)

(t− t′ν)
3/2

g(Ω). (C16)

The dipole moment (C16) involves two rapidly varying1286

exponents: one (the “tunneling exponent”) is associated1287

with tunneling, while the second (the “propagation ex-1288

ponent”) is governed by the classical (real-valued) action1289
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for an electron moving in the laser field along a closed1290

classical trajectory from the moment t′ν until the time t.1291

In the tunneling regime (in which ωκ/F ≪ 1, where1292

F and ω are the laser field strength and frequency), the1293

“propagation exponent” changes much faster than the1294

“tunneling exponent” [by a factor (ωκ/F )−3]. Thus, to1295

estimate the Fourier-component of D1(t), we can treat1296

the tunneling exponent as a “smooth” function. As a1297

result, the position of the stationary phase of the inte-1298

gral (12), where D1(t) is given by Eq. (C16), can be1299

found from the equation:1300

K2(t, t′ν)

2
−
(
K ′2(t, t′ν)

2
+ Ip

)
dt′ν
dt

= E, (C17)

where E = Ω−Ip. Differentiating Eq. (C8a) with respect1301

to t, we obtain
dt′ν
dt

in the form:1302

dt′ν
dt

=
1

(t− t′ν)F(t, t′ν)
2

{
2
K(t, t′ν) ·K ′(t, t′ν)

t− t′ν

−F (t′ν) · [K(t, t′ν)−K ′(t, t′ν)]
}
. (C18)

Thus the equation for the stationary phase point is:1303

K(t, t′ν)
2

2
= E +∆Eν(t), (C19)

where1304

∆Eν(t) = −K ′(t, t′ν)
2 + κ2

2(t− t′ν)

dt′ν
dt

, (C20)

which we interpret as a quantum correction to the energy1305

gained by the electron in the laser field (cf. Ref. [34]).1306

In order to simplify the notations further, we introduce1307

here a single index, j, to enumerate the joint solutions of1308

Eqs. (C8a) and (C19), which we present as a pair of real1309

times {t′j , tj}. These pairs satisfy the system of equations1310

[cf. Eqs. (C8a) and (C19)]:1311

K ′
j · K̇ ′

j = 0, (C21a)

K2
j

2
= E −∆Ej , (C21b)

∆Ej = −
K ′2

j + κ2

2(tj − t′j)




2
Kj ·K ′

j

t− t′j
− F ′

j · (Kj −K ′
j)

F ′
j
2 −K ′

j · Ḟ ′
j


 ,

where K ′
j = K ′(tj , t

′
j), K̇ ′

j = ∂K ′(tj , t
′
j)/∂t

′
j, Kj =1312

K(tj , t
′
j), F ′

j = F (t′j), Ḟ ′
j = Ḟ (t′j). Evaluating the1313

integral (12) using the stationary phase method with1314

D1(t) from (C16) and recalling that D(t) ≈ D1(t) (see1315

Sec. II B), the dipole amplitude D(Ω) can be presented1316

in the final form (20).1317

Appendix D: Expansion of the laser-induced dipole1318

near the caustic points1319

In this Appendix, we seek to show that an expansion1320

of the HHG amplitude in terms of extreme trajectories1321

coincides asymptotically with the results of the present1322

approach. For simplicity, we confine our analysis to the1323

case of a linearly polarized field described by the vec-1324

tor potential A(t) = eA(t), where e is the real polar-1325

ization vector. For this vector potential, the system of1326

equations (33) can be rewritten in a “scalar” form [see1327

Eqs. (56) and (57) in Ref. [80]]:1328

A(t′)−
∫ t

t′ A(ξ)dξ

t− t′
= 0, (D1a)

F (t) +
A(t)−A(t′)

t− t′
= 0. (D1b)

where F (t) = −∂A(t)/∂t. Expanding the left hand sides1329

of the equations in the system (21) near the solutions,1330

t
(cl)
j and t′j

(cl), of Eq. (D1a), we obtain t′j and tj in the1331

form:1332

t′j
(±)

= t′j
(cl) ± F (tj

(cl))

F (t′j
(cl))

√
E

(j)
max − E

ζj
, (D2a)

t
(±)
j = tj

(cl) ±
√
E

(j)
max − E

ζj
, (D2b)

where the ± signs designate the branches of the square1333

root function and where we have used the notations,1334

E(j)
max =

1

2

[
A(tj

(cl))−A(t′j
(cl)

)
]2

− F (tj
(cl))

F (t′j
(cl))

Ip,

ζj = −
F 2(t′j

(cl)
)

2

[
1− F (tj

(cl))

F (t′j
(cl))

+
Ḟ (tj

(cl))

F (tj
(cl))

∆t
(cl)
j

]
,

∆t
(cl)
j = tj

(cl) − t′j
(cl)
.

Further expanding S and Kj ·K̇j near the extreme times1335

t′j
(cl)

and tj
(cl), we obtain1336

S(pj , t
′
j)− S(pj , tj) + Ωtj

≈ S(tj
(cl), t′j

(cl)
) + Ωtj

(cl) ± 2

3

(E
(j)
max − E)3/2√

ζj
,

Kj · K̇j ≈ ∓2

√
ζj(E

(j)
max − E).
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Substituting these expansions in Eqs. (23), (24), (34),1337

and (35), we obtain dj in the form:1338

dj ≈ −θ(E(j)
max − E)

√
i
Cκ

π

(
2κ3

F (t′j
(cl))

)Z/κ

×
exp

[
− κ3

3F (t′j
(cl))

]

√
F (t′j

(cl))

exp
[
iS(tj

(cl), t′j
(cl)

) + iΩtj
(cl)
]

[∆t
(cl)
j ]3/2[ζj(E

(j)
max − E)]1/4

× sin

[
2

3

(E
(j)
max − E)3/2√

ζj
+
π

4

]
frec(E) e. (D3)

The result (D3) can also be obtained by expanding the1339

Airy function in the HHG amplitude of Ref. [80] (see1340

also Ref. [123]) in an asymptotic series for negative ar-1341

guments. Note that although our analytical calculation1342

is valid for E < E
(j)
max, the result (D3) can be analyt-1343

ically continued to the region E > E
(j)
max; the result is1344

that sin[· · · ] in (D3) should be replaced by the exponent1345

exp[− 2
3
(E−E(j)

max)
3/2

√
ζj

]/2. Thus, the present theory overlaps1346

asymptotically with the results of Ref. [80]. The case of1347

elliptical polarization is more cumbersome to treat ana-1348

lytically and requires a separate analysis.1349
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B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-1361
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Milošević, A. Sanpera, and M. Lewenstein, Feynman’s1500

Path-Integral Approach for Intense-Laser-Atom Inter-1501

actions, Science 292, 902 (2001).1502
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[96] A. Ferré, C. Handschin, M. Dumergue, F. Burgy,1734

A. Comby, D. Descamps, B. Fabre, G. A. Garcia,1735
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[102] C. Hernández-Garćıa, C. G. Durfee, D. D. Hick-1768

stein, T. Popmintchev, A. Meier, M. M. Mur-1769

nane, H. C. Kapteyn, I. J. Sola, A. Jaron-Becker,1770

and A. Becker, Schemes for generation of iso-1771

lated attosecond pulses of pure circular polarization,1772

Phys. Rev. A 93, 043855 (2016).1773

[103] O. Kfir, P. Grychtol, E. Turgut, R. Knut, D. Zusin,1774

A. Fleischer, E. Bordo, T. Fan, D. Popmintchev,1775

T. Popmintchev, H. Kapteyn, M. Murnane, and1776

O. Cohen, Helicity-selective phase-matching and1777

quasi-phase matching of circularly polarized high-1778

order harmonics: towards chiral attosecond pulses,1779

J. Phys. B: At. Mol. Opt. Phys. 49, 123501 (2016).1780

[104] M. Ivanov and E. Pisanty, High-harmonic1781

generation: Taking control of polarization,1782

Nat. Photon. 8, 501 (2014).1783

[105] A. Fleischer, O. Kfir, T. Diskin, P. Sidorenko,1784

and O. Cohen, Spin angular momentum and1785

tunable polarization in high-harmonic generation,1786

Nat. Photon. 8, 543 (2014).1787

[106] E. Pisanty, S. Sukiasyan, and M. Ivanov, Spin conserva-1788

tion in high-order-harmonic generation using bicircular1789

fields, Phys. Rev. A 90, 043829 (2014).1790
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