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We extend the two-center wave-packet convergent close-coupling method to proton collisions with
helium. The target is treated as a three-body system, where correlations between the electrons are
taken into account. We apply a frozen-core approximation, where one of the electrons is described
by the He+ 1s orbital and obtain the helium singlet wave functions as well as the energy levels using
a numerical approach. The wave-packet approach is used to discretize the continuum of the target
and the hydrogen atom formed after electron capture by the projectile. Convergence of the results is
studied in terms of the included projectile- and target-centered states. We present electron-capture
and single- and double-ionization cross sections for protons incident on He in the ground state in
the energy range from 15 keV to 1 MeV. We also provide partial cross sections for electron capture
and direct excitation into the n = 2 shell states of hydrogen and helium, respectively. Our results
are in good agreement with available experimental data and other calculations, where available.

PACS numbers: 34.10.+x, 34.50.Gb, 25.43.+t

I. INTRODUCTION

The study of ion-atom collisions is one of the inten-
sive research areas in atomic physics. A thorough under-
standing of ionization and charge-exchange phenomena
in such collisions is essential for applications in a wide
range of sciences such as astrophysics [1] and plasma
physics [2]. Moreover, these processes are relevant to
hadron therapy [3]. Collisions of protons with helium
atoms have been investigated to a great extent both the-
oretically [4–32] and experimentally [33–49].

Various theoretical approaches were applied to inves-
tigate the four-body p-He system depending on the inci-
dent energy of the projectile. Zajfman and Maor [22]
and Schultz and Lynn [15] used the classical trajec-
tory Monte-Carlo (CTMC) method to calculate the to-
tal electron-capture and single-ionization cross sections.
Zajfman and Maor [22] achieved limited success in com-
parison with other works, while Schultz and Lynn [15]
obtained reasonable agreement with available experimen-
tal data for projectile incident energies from 25 keV to
500 keV.

The first Born approximation (FBA) has also been
used in high-energy ion-atom collisions, where coupling
between channels can be neglected. Several versions of
the FBA approach are known in the literature. In par-
ticular, for the proton-helium collision system, where the
exact wave functions describing the helium target are
not available, there exist the post-prior discrepancy of
FBA. Mapleton [14] investigated prior and post forms
of the Born approximation to calculate electron-capture
cross sections in the p-He collisions. Belkić [6] devel-
oped the FBA with corrected boundary conditions (B1B)
and used it at intermediate and high energies. The
B1B approach to the p-He problem was based on an

independent-particle model. The target was described
using Roothaan-Hartree-Fock and hydrogen-like wave
functions. Good agreement with the experiment was
obtained at energies from 50 keV to 50 MeV when the
Roothaan-Hartree-Fock wave functions were employed.

Another perturbative approach to the problem is based
on the distorted-wave formalism. A number of distorted-
wave theories were discussed by Toshima et al. [19].
Mancev et al. [13] and Jana et al. [11] used the four-body
distorted-wave Born approximation (DWBA) method,
while the three-body DWBA was employed in the recent
work of Rahmanian et al. [16]. However, due to their na-
ture, all of the available perturbative approaches become
unreliable whenever the projectile speed is smaller than
the classical speed of the orbiting electron of the target.

A number of sophisticated non-perturbative ap-
proaches attempted to address the latter energy regime.
Zapukhlyak et al. [23] developed a nonperturbative basis-
generator method. More recently, Baxter and Kirchner
[5] developed a time-dependent density-functional theory
(TDDFT) to calculate total cross sections for electron-
capture and ionization processes in the proton-helium
collisions. Correlation effects were taken into account
using two different models: the integral model of Wilken
and Bauer (WB) and an independent-electron model
(IEM). A better agreement with the measurements was
obtained using the WB model.

Another widely used high-order method for describing
ion-atom collisions is the semiclassical close-coupling ap-
proach. In the close-coupling approach the choice of ba-
sis functions and the completeness of the basis are very
important. A number of authors chose this method to
investigate the p-He system. Winter [20] used 50 Stur-
mian functions as a basis to calculate electron-capture
and ionization cross sections. However, he neglected elec-
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tron exchange in the final transfer channels. Somewhat
similar 51-state calculations but with different basis func-
tions were presented by Slim et al. [18], where electron
exchange in the H-He+ channel was taken into account.
Both calculations failed to achieve a sufficient level of
convergence.

There are several other approaches to the problem that
need to be mentioned. The symmetric eikonal (SE) ap-
proximation is applicable at intermediate and high en-
ergies and was employed by Deco et al. [8]. In addi-
tion, there are the convergent frozen-correlation approx-
imation (CFCA) by Dı́az et al. [9], a unified atomic-
orbital molecular-orbital matching method by Kimura
and Lin [12] suitable for low energies, and the four-
body boundary-corrected continuum-intermediate-state
approximation by Samanta and Purkait [17]. All these
calculations gave results that agree with the experiments
quite well. However, their validity is limited to a partic-
ular energy region and/or a particular process involved
in the collisions (e.g., electron capture).

A wave-packet convergent close-coupling (WP-CCC)
approach to the four-body problem of antiproton-helium
scattering was developed by Abdurakhmanov et al. [50].
The proton-helium system is more complicated than
antiproton-helium due to the existence of the electron
capture channel. It requires accounting for computation-
ally demanding rearrangement channels that lead to hy-
drogen formation. In most of the works described above,
the problem was reduced to a three-body one using some
approximations, as the four-body problem is computa-
tionally very hard to solve.

In the present work we develop a four-body semiclas-
sical close-coupling approach based on the wave-packet
discretization, which was successfully applied to a single-
center problem of antiproton-helium collisions [50]. To
this end the full four-body Schrödinger equation is solved
by expanding the total scattering wave function in a
two-center basis of atomic wave functions. This leads
to a set of coupled differential equations for the tran-
sition probability amplitudes, which are used to calcu-
late the cross sections for elastic scattering, target ex-
citation, electron capture by the projectile and ioniza-
tion. The wave functions representing atomic hydrogen
are the true eigenfunctions for the negative-energy states
and orthonormal stationary wave packets for positive-
energy states. The wave packets representing the tar-
get continuum are constructed using the helium con-
tinuum functions, which were obtained by solving the
Schrödinger equation describing the helium target nu-
merically. Convergence of the predicted cross sections
for various occurring processes is achieved by increasing
the number of included negative-energy eigenstates and
positive-energy pseudostates for the projectile-electron
and target-electron systems. We investigate electron cap-
ture, direct excitation, single and double ionization in the
energy range from 15 keV to 1 MeV. We perform conver-
gence studies in terms of the number of included basis
functions.

This paper is structured as follows. In Sect. II we give
a description of our two-center WP-CCC approach to the
problem of proton-helium scattering. The details and the
results of our calculations are presented in Sections III
and IV. Finally, in Sect. V we highlight the main findings
and draw conclusions. Unless specified otherwise, atomic
units are used throughout this manuscript.

II. THEORY

A. Coupled differential equations

Below we describe the extension of the single-center
semiclassical convergent close-coupling (CCC) method
[50] to the two-center problem of proton collisions with
helium to include the electron-capture channels. We
apply the frozen-core approximation, where one of the
electrons of the helium atom remains in the 1s state of
He+ throughout the collision. For simplicity, we refer
throughout this work to the channels of the active elec-
tron as helium channels, e.g., α channel of helium means
that the active electron of helium is in the α channel.
The total scattering wave function Ψ satisfies the exact
time-independent Schrödinger equation

(H − E)Ψ = 0, (1)

where H is the full 4-body Hamiltonian and E is the total
energy

E =E0 +
k2α
2µ1

+ εα

=E0 +
k21β
2µ2

+ ε1β

=E0 +
k22β
2µ2

+ ε2β , (2)

with E0 being the binding energy of the frozen target
electron. The index α denotes the full set of quantum
numbers representing a state in the direct p-He channel.
The index β denotes the same but in the rearrangement
channel H-He+, formed after the projectile captures the
active electron of the target. Furthermore, kα is the mo-
mentum of the projectile relative to the helium atom in
the α channel, µ1 is the reduced mass of this system, and
εα is the eigenenergy of the bound state α, k1β (and k2β)
is the momentum of the formed hydrogen atom relative
to the residual helium ion in the 1β (2β) channel, µ2 is
the reduced mass, and ε1β (ε2β) is the eigenenergy of hy-
drogen in the 1β (2β) channel. Channel 1β is the same
as channel 2β but with the electron of the residual target
and that of the hydrogen atom exchanged.

The total Hamiltonian H of the scattering system can
be represented as sums of the kinetic energy operators
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and Coulomb interaction potentials:

H =Kσ +HT1 +HT2 + VP + V12, (3)

H =Kρ1 +HP1
+HT2

+ V1 + V12, (4)

H =Kρ2 +HP2
+HT1

+ V2 + V12, (5)

where

Kσ = −∇
2
σ

2µ1
, Kρi = −

∇2
ρi

2µ2
, i = 1, 2 (6)

and

VP =
2

R
− 1

x1
− 1

x2
, (7)

V1 =
2

R
− 2

r2
− 1

x1
, (8)

V2 =
2

R
− 2

r1
− 1

x2
, (9)

V12 =
1

|r1 − r2|
. (10)

Here R, r1, and r2 are the position vectors of the inci-
dent proton and the two electrons relative to the helium
nucleus, x1 and x2 are the position vectors of the elec-
trons relative to the incident proton, σ is the position
vector of the proton relative to center of mass of the he-
lium atom, and ρ1 (ρ2) is the position of the proton and
the first (second) electron system relative to the helium
ion (see Fig. 1). The Hamiltonians of the hydrogen atom
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FIG. 1. The Jacobi coordinates for the proton-helium system.

and the He+ ion formed by each of the target electrons
are written as

HPi = −
∇2
xi

2
− 1

xi
, i = 1, 2, (11)

HTi = −
∇2
ri

2
− 2

ri
, i = 1, 2, (12)

respectively. With these definitions the Hamiltonian of
the helium atom is written as

HT = HT1
+HT2

+ V12. (13)

In our model the target nucleus is located at the origin,
and we assume that the projectile is moving along a clas-
sical trajectory R ≡ R(t) = b+vt, where b is the impact
parameter and v is the initial velocity of the projectile
relative to the target. The vector b is perpendicular to
the direction of the moving proton, i.e., b · v = 0.

We assume that the total electronic spin of helium is
conserved in the collision process. Then the total scat-
tering wave function is expanded in terms of N target-
centered and M projectile-centered pseudostates as

Ψ =

N∑
α=1

aα(t, b)ψHe
α (r1, r2)eikασ

+
1√
2

M∑
β=1

bβ(t, b)
[
ψH
β (x1)ψHe+

1s (r2)eik1βρ1

+ ψH
β (x2)ψHe+

1s (r1)eik2βρ2

]
, (14)

where ψHe
α and ψH

β are the wave functions for helium

and hydrogen, respectively, and ψHe+

1s is the ground-state
wave function for He+. Their detailed definitions will
be given below. The expansion coefficients aα(t, b) and
bα(t, b) at t → +∞ represent the transition amplitudes
into the various target and projectile states.

We substitute the expansion (14) into Eq. (1) and take
into account the relationships

∇σeikασ = ikαe
ikασ, ∇2

σe
ikασ = −k2αeikασ, (15)

∇ρ1
eik1βρ1 = ik1βe

ik1βρ1 , ∇2
ρ1
eik1βρ1 = −k2βeik1βρ1 ,

(16)

∇ρ2e
ik2βρ2 = ik2βe

ik2βρ2 , ∇2
ρ2
eik2βρ2 = −k2βeik2βρ2 ,

(17)

and

kα
µ1
∇σ =

∂

∂t
,
k1β
µ2
∇ρ1 =

∂

∂t
,
k2β
µ2
∇ρ2 =

∂

∂t
. (18)

Since the coefficients aα and bβ vary slowly with t, the
terms ∇2

σaα, ∇2
ρ1
bβ , and ∇2

ρ2
bβ are very small and

can be neglected. Then we successively multiply all
terms of the resulting equation by ψHe∗

α′ (r1, r2)e−ikα′σ

for α′ = 1, ..., N and ψH∗
β′ (x1)ψHe+

1s (r2)e−ik1β′ρ1 +

ψH∗
β′ (x2)ψHe+

1s (r1)e−ik2β′ρ2 for β′ = 1, ...,M . After in-
tegrating over all variables except for σ,ρ1 and ρ2, we
obtain a set of coupled first-order differential equations
for the time-dependent coefficients:

iȧα′ + i

M∑
β=1

ḃβK
T
α′β =

N∑
α=1

aαD
T
α′α +

M∑
β=1

bβQ
T
α′β ,

i

N∑
α=1

ȧαK
P
β′α + i

M∑
β=1

ḃβL
P
β′β =

N∑
α=1

aαQ
P
β′α +

M∑
β=1

bβD
P
β′β ,

α′ = 1, 2, ..., N, β′ = 1, 2, ...,M.

(19)



4

Here the direct matrix elements have the forms

LPβ′β =
1

2

∑
i,j=1,2

〈kiβ′ , ψH
β′ , ψ

He+

1s |ψH
β , ψ

He+

1s ,kjβ〉, (20)

DT
α′α =〈kα′ , ψHe

α′ |HT − EHe
α + VP |ψHe

α ,kα〉, (21)

DP
β′β =

1

2

∑
i,j=1,2

〈kiβ′ , ψH
β′ , ψ

He+

1s |HPi − εHβ |ψH
β , ψ

He+

1s ,kjβ〉

+
1

2

∑
i,j=1,2

〈kiβ′ , ψH
β′ , ψ

He+

1s |Vi|ψH
β , ψ

He+

1s ,kjβ〉. (22)

For the rearrangement matrix elements we have

KP
β′α =

1√
2

∑
i=1,2

〈kiβ′ , ψH
β′ , ψ

He+

1s |ψHe
α ,kα〉, (23)

KT
α′β =

1√
2

∑
i=1,2

〈kα′ , ψHe
α′ |ψH

β , ψ
He+

1s ,kiβ〉, (24)

QPβ′α =
1√
2

∑
i=1,2

〈kiβ′ , ψH
β′ , ψ

He+

1s |HT − EHe
α + VP |ψHe

α ,kα〉,

(25)

QTα′β =
1√
2

∑
i=1,2

〈kα′ , ψHe
α′ |HPi − εHβ + Vi|ψH

β , ψ
He+

1s ,kiβ〉.

(26)

We will return to the explicit calculations of the matrix
elements in Sect. II C after defining the wave functions
for the helium and hydrogen pseudostates.

The above system of equations is solved subject to the
initial boundary condition

aα(−∞, b) = δα,1s, α = 1, ..., N,

bβ(−∞, b) = 0, β = 1, ...,M,
(27)

which assume that the active target electron is initially
in the 1s orbital.

B. Structure of the hydrogen and helium atoms

1. Hydrogenic wave functions

As mentioned earlier, the projectile-centered states are
described as products of wave functions of hydrogen and
the ground state wave function of He+. The latter is
described analytically as

ψHe+

1s (r) =

√
2

π
re−2r. (28)

To investigate double ionization of helium, we also need
to define the entire set of wave functions for the helium
ion. Below we describe the wave functions of a hydrogen-
like atom of arbitrary charge Z.

Each state β is described by three quantum numbers
{n, l,m}, the principal, orbital and magnetic quantum

numbers, respectively. For negative-energy states, the
wave functions are separated into radial and angular
parts as

ψ
(Z)
β (r) = φ

(Z)
nl (r)Ylm(r̂) (29)

and for positive-energy states as

ψ
(Z)
β (r) =

√
2

π

∑
lm

il exp(−iηl)R(Z)
κl (r)Y ∗lm(κ̂)Ylm(r̂),

(30)

where Ylm are spherical harmonics, κ =
√

2ε is the mo-
mentum of the continuum state, with ε being the energy
of the state and ηl is the Coulomb phase shift.

The corresponding orthonormal radial wave functions
are written analytically as

φ
(Z)
nl (r) =

√
Z

(n− l − 1)!

(n+ l)!
e−Zr/n

(2Zr)l+1

n2+l
L2l+1
n−l−1

(
2Zr

n

)
,

(31)

where L2l+1
n−l−1 denotes an associated Laguerre polyno-

mial. For positive energies the corresponding continuum
radial wave functions are given as

R
(Z)
κl (r) =

1√
2π

(2κr)l+1 exp

(
Zπ

2κ

)
|Γ (l + 1− iZ/κ)|

(2l + 1)!

× e−iκr 1F1

(
iZ

κ
+ l + 1, 2l + 2, 2irk

)
, (32)

where 1F1 is a confluent hypergeometric function. These
functions are not square-integrable, and therefore not
suitable for the close-coupling approach. To overcome
this problem we use a wave-packet method [51]. In our
work the wave packets are constructed as

φ
(Z)
il (r) =

1
√
wi

∫ κi

κi−1

dκR
(Z)
κl (r), (33)

where

wi = κi − κi−1, (34)

with κi =
√

2Ei. Non-overlapping intervals [Ei−1, Ei]Nc
i=1

divide the interval [0, Emax] into Nc subintervals, where
Emax is the maximum allowed energy of the ejected elec-
tron. The intervals [Ei−1, Ei]Nc

i=1 are called discretization
bins, with Nc as the number of bins.

The wave packets constructed in this way are orthonor-
mal and, together with the eigenstates, they form a basis
to describe the hydrogen-like atom of charge Z. For the
wave functions of hydrogen (i.e., when Z = 1) we use the
notation ψH instead of ψ(1).

2. Helium wave functions

The target description is more complicated in this case,
since we have a two-electron system and electron-electron
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correlation as well as electron exchange effects must be
incorporated. The Schrödinger equation for this system
cannot be solved analytically. Therefore, a numerical
approach needs to be developed to find the solutions.
Various existing theoretical works revealed that a care-
ful choice of the helium wave functions is important in
dealing with collisions of ions with the helium atom. Es-
pecially in the close-coupling approach they should be
defined very accurately to obtain good convergence. In
the present work we use the wave-packet-based descrip-
tion of the helium atom in the frozen-core approximation
developed in [50]. Assuming that the total electronic spin
of He, S = 0, is conserved during the collision, we write
the wave function in the symmetric form

ψHe
α (r1, r2) = ψα(r1)ψ

(Z)
1s (r2) + ψα(r2)ψ

(Z)
1s (r1), (35)

where ψ
(Z)
1s is the 1s orbital of the hydrogen-like atom of

nuclear charge Z given in (31). This is a generalization
of the wave function used by Abdurakhmanov et al. [50],
where we set Z = 2 to correspond to the ground-state
wave functions of He+.

To obtain the functions ψα for each state α, we numer-
ically solve the Schrödinger equation for helium

HTψ
He
α (r1, r2) = Eαψ

He
α (r1, r2), (36)

where Eα is the total energy of the state α. Solu-
tions of this equation depend on the parameter Z. We
choose Z in a way that the total ground-state energy of
the helium atom is equal to the experimental value of
−2.904 a.u. [52]. Substituting the expansion (35) of the
helium wave functions into Eq. (36), then projecting the

result onto ψ
(Z)
1s , and taking into account 〈ψ(Z)

1s |ψ
(Z)
1s 〉 =

1, we obtain the following integro-differential equation
for ψα:[

∇2
r1 − 2V1(r1) + 2εα + 2(2− z)V2

]
ψα(r1)

+

(
2εα +

2(2− z)
r1

)〈
ψ
(Z)
1s

∣∣ψα〉ψ(Z)
1s (r1)

+

〈
ψ
(Z)
1s

∣∣∣∣∇2
r2 +

4

r2

∣∣∣∣ψα〉
r1

ψ
(Z)
1s (r1)

− 2

〈
ψ
(Z)
1s

∣∣∣∣ 1

|r1 − r2|

∣∣∣∣ψα〉
r1

ψ
(Z)
1s (r1) = 0,

(37)

where

V1(r1) = −2/r1 +
〈
ψ
(Z)
1s

∣∣ 1

|r1 − r2|
∣∣ψ(Z)

1s

〉
r1

(38)

is the Hartree potential for an electron in a hydrogen-like
ion of charge Z, and

V2 =
〈
ψ
(Z)
1s

∣∣ 1

r2

∣∣ψ(Z)
1s

〉
=

∫ ∞
0

ψ
(Z)
1s (r2)

1

r2
ψ
(Z)
1s (r2)dr2 .

(39)

Separating the radial and angular parts of the wave
functions for both negative- and positive-energy states,

TABLE I. Total binding energy (in a.u.) of the helium atom
in a specific state. Only the active orbital in the (1snl) singlet
states is listed in the first column.

state present Ref. [50] Ref. [18] Expt. [52]
1s -2.9040 -2.8725 -2.8655 -2.9036
2s -2.1432 -2.1434 -2.1430 -2.1459
3s -2.0605 -2.0606 -2.0604 -2.0613
4s -2.0332 -2.0333 -2.0309 -2.0336
2p -2.1223 -2.1224 -2.1224 -2.1239
3p -2.0546 -2.0547 -2.0547 -2.0552
4p -2.0308 -2.0309 -2.0307 -2.0311
3d -2.0555 -2.0556 -2.0555 -2.0556

we obtain from Eq. (37) the following equation for the
radial function Rα(r):

d2Rα(r)

dr2
−
[
l(l + 1)

r2
− 4

r
+ 2W0[ψ

(Z)
1s , ψ

(Z)
1s ]

− 2εα − 2(2− z)V2
]
Rα(r)

=

[
2

2l + 1
Wl[ψ

(Z)
1s , Rα]

− 2

∫ ∞
0

ψ
(Z)
1s (t)W0[ψ

(Z)
1s , ψ

(Z)
1s ]Rα(t)dt

−
(

2εα +
2(2− z)

r

)∫ ∞
0

ψ
(Z)
1s (t)Rα(t)dt

]
ψ
(Z)
1s (r),

(40)

where

Wl[f, g] =
1

rl+1

∫ r

0

f(t)g(t)tldt+ rl
∫ ∞
r

f(t)g(t)

tl+1
dt.

(41)

We use an iterative approach to solve Eq. (40), where
the Numerov method is applied in each iteration to find
solutions of the linear inhomogeneous second-order differ-

ential equation for R
(i)
α (r). R

(0)
α (r) is found by replacing

the right-hand side of Eq. (40) with zero. To ensure suf-
ficient accuracy of the solution, the number of iterations
Nit was set to be large enough so that for all values of r

there is at least four digit agreement between R
(Nit+1)
α (r)

and R
(Nit)
α (r).

Equation (40) was solved several times by slowly vary-
ing the parameter Z until the corresponding ground-state
total energy of helium is equal to the experimental value.
The specific value of Z was found to be 1.99. Table I
presents the total energies of the helium atom, where one
electron is frozen in the 1s orbital while the other one is
active. The calculated total energies of various states of
helium are compared with the theoretical results of Ab-
durakhmanov et al. [50] and Slim et al. [18], and also with
the measured values of Bashkin and Stoner [52]. Except
for the ground state, all energies agree up to three digits
in all of the aforementioned works.

For negative energies this system has a discrete set
of solutions. For positive energies the equation has a
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continuous solution with a non-normalizable radial wave
function. Therefore, as in the case of hydrogen, we con-
struct wave packets using the helium continuum-state
wave functions. We define

φil(r) = νil

∫ κi

κi−1

dκRκl(r), (42)

where νil is the normalization coefficient. Discretization
points κi, i = 1, .., Nc and Emax are defined in a similar
way as for hydrogen. Then the wave packets based on
the two-electron helium wave functions are written as

ψHe
α (r1, r2) =ψ

(Z)
1s (r2)φnαlα(r1)Ylαmα(r̂1)

+ ψ
(Z)
1s (r1)φnαlα(r2)Ylαmα(r̂2),

(43)

where the normalization coefficients are given as

νnαlα =
[
2
(
〈φnαlα |φnαlα〉+ δlα0δmα0〈φnαlα |φ

(Z)
1s 〉

)]−1/2
(44)

and φ
(Z)
1s is the radial part of the function ψ

(Z)
1s .

Both the hydrogen and helium wave packets are re-
ferred to as bin states. Together with the eigenstates,
they form the bases for the hydrogen and helium atoms.
We note that the basis parameters Emax and Nc must be
sufficiently large to obtain accurate cross sections. Their
choice will be discussed later.

C. Matrix elements

In this section we reduce the matrix elements used in
Eq. (19) into forms that are suitable for numerical eval-
uation by taking into account the definitions of the wave
functions. When the direct matrix elements (20)–(22) are
written in the integral form, we have exponential factors
which can be reduced as follows:

(kα − kα′)σ = q⊥b+ (εα′ − εα)t, (45)

(k1β − k1β′)ρ1 = q⊥b+ (εβ′ − εβ)t, (46)

(k2β − k2β′)ρ1 = q⊥b+ (εβ′ − εβ)t, (47)

k1βρ1 − k2β′ρ2 = q⊥b+ (εβ′ − εβ)t, (48)

k2βρ1 − k1β′ρ2 = q⊥b+ (εβ′ − εβ)t. (49)

The exponential terms in the rearrangement matrix ele-
ments (23)–(26) can be written as

kασ − k1β′ρ1 = kασ − k2β′ρ2 = q⊥b+ q
(1)
‖ vt− vr1,

(50)

k1βρ1 − kα′σ = k2βρ1 − kα′σ = q⊥b+ q
(2)
‖ vt+ vr1,

(51)

where q⊥ is the perpendicular component of the momen-
tum transfer, which is the same in all transitions. The
parallel components q

(1)
‖ and q

(2)
‖ depend on the transi-

tion states and are given as

q
(1)
‖ =

v

2
+
εβ′ − εα

v
, q

(2)
‖ = −v

2
+
εα′ − εβ

v
. (52)

As eq⊥b is the same in all matrix elements, it can be
factored out and cancels when the matrix elements are
inserted into Eq. (19). Therefore, we omit them but keep
the original notations. Using these results and summing
similar terms, the matrix elements (20)–(26) can be writ-
ten in the forms

KP
β′α =

√
2ei(εβ′−εα)teiv

2t/2K̃B
β′α, (53)

KT
α′β =

√
2ei(εα′−εβ)te−iv

2t/2K̃A
α′β , (54)

LPβ′β = δβ′,β + ei(εβ′−εβ)tL̃Pβ′β , (55)

DT
α′α = 2ei(εα′−εα)tD̃T

α′α, (56)

QPβ′α =
√

2ei(εβ′−εα)teiv
2t/2Q̃Pβ′α, (57)

QTα′β =
√

2ei(εα′−εβ)te−iv
2t/2Q̃Tα′β , (58)

DP
β′β = ei(εβ′−εβ)tD̃P

β′β , (59)

with
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K̃P
β′α =

∫
dr1dr2ψ

H∗
β′ (r1 −R)ψHe+

1s (r2)e−ivr1ψHe
α (r1, r2), (60)

K̃T
α′β =

∫
dr1dr2ψ

He∗
α′ (r1, r2)eivr1ψH

β (r1 −R)ψHe+

1s (r2), (61)

L̃Pβ′β =

∫
dr1dr2ψ

H∗
β′ (r2 −R)ψHe+

1s (r1)e−ivr2ψH
β (r1 −R)ψHe+

1s (r2)eivr1 , (62)

D̃T
α′α =

∫
dr1dr2ψ

He∗
α′ (r1, r2)VPψ

He
α (r1, r2), (63)

Q̃Pβ′α =

∫
dr1dr2ψ

H∗
β′ (r1 −R)ψHe+

1s (r2)e−ivr1 [HT − EHe
α + VP ]ψHe

α (r1, r2), (64)

Q̃Tα′β =

∫
dr1dr2ψ

He∗
α′ (r1, r2)e−ivr1 [HP1

− εHβ + V1]ψH
β (r1 −R)ψHe+

1s (r2), (65)

D̃P
β′β =

∫
dr1dr2ψ

H∗
β′ (r1 −R)ψHe+

1s (r2)V1ψ
H
β (r1 −R)ψHe+

1s (r2)

+

∫
dr1dr2ψ

H∗
β′ (r2 −R)ψHe+

1s (r1)e−ivr2 [HP1
− εHβ + V1]eivr1ψH

β (r1 −R)ψHe+

1s (r2),

(66)

where the vectors x1 and x2 were replaced with equiva-
lent forms of (r1 −R) and (r2 −R), respectively.

In the direct matrix element D̃T and the first term of
D̃P the terms with (HT − EHe

α ) and (HP − εHβ ) vanish,
since for both eigenstates and bin states we have

〈ψHe
α′ |HT − EHe

α |ψHe
α 〉 = 0, α′, α = 1, .., N, (67)

〈ψH
β′ |HP − εHβ |ψH

β 〉 = 0, β′, β = 1, ..,M. (68)

However, in the rearrangement matrix elements Q̃P , Q̃T

and in the second term of D̃P , the terms containing
[HT − EHe

α ]ψHe
α and [HP − εHβ ]ψH

β remain, because the
wave packets representing the continuum are not eigen-
states. For a function

f(r) =
1√
w

∫ κ2

κ1

dκgκ(r), (69)

where gκ is an eigenfunction of an operator h, i.e.,

hgκ(r) = εκgκ(r) =
κ2

2
gκ(r), (70)

we have

[h− ε]f(r) =
1√
w

∫ κi

κi−1

dκ

(
κ2

2
− ε
)
gκ(r). (71)

Applying this to the positive-energy states of hydrogen
and helium, we introduce

χH
β (r) =

[
HP − εHβ

]
ψH
β (r) = χH

β (r)Ylβmβ (r̂), (72)

with

χH
β (r) =

1
√
wnβ

∫ κnβ

κnβ−1

dκ

(
κ2

2
− εHβ

)
φHκlβ (r), (73)

where εHβ is the energy of the β state of hydrogen. Simi-
larly, we introduce

χHe
α (r) = χHe

α (r)Ylαmα(r̂), (74)

with

χHe
α (r) =

1
√
wnα

∫ κnα

κnα−1

dκ

(
κ2

2
− εHe

α

)
φHe
κlα(r), (75)

where εHe
α is the energy of the active helium electron in

channel α. Consequently, we have[
HT − EHe

α

]
ψHe
α (r1, r2)

=
[
HT − EHe

α

]
(ψα(r1)ψ

(Z)
1s (r2) + ψα(r2)ψ

(Z)
1s (r1)))

= χHe
α (r1)ψz(r2) + χHe

α (r2)ψz(r1). (76)

For eigenfunctions ψH
β and ψHe

α , we have χH
β = 0 and

χHe
α = 0.
Using the expansion of the helium wave function,

the matrix elements can be written in forms that are
convenient for the calculations. The matrix elements
K̃P
β′α, K̃

T
α′β and L̃Pβ′β [Eqs. (60), (61) and (62), respec-

tively] can be written as

K̃P
β′α = 〈ψHe+

1s |ψ
(Z)
1s 〉A[ψH

β′ , ψα] + 〈ψHe+

1s |ψα〉A[ψH
β′ , ψ

(Z)
1s ],

(77)

K̃T
α′β = (K̃P

β,α′)
∗, (78)

L̃Pβ′β = δβ,β′ +A[ψH
β′ , ψ

He+

1s ](A[ψH
β , ψ

He+

1s ])∗, (79)

where

A[f, g] =

∫
drf∗(r −R)e−ivrg(r). (80)
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The rearrangement matrix elements (63)–(66) have
more complex forms. These are written as

Q̃Pβ′α =
K̃P
β′α

R

− 〈ψHe+

1s |ψ
(Z)
1s 〉A[ψ̃H

β′ , ψα]− 〈ψHe+

1s |ψα〉A[ψ̃H
β′ , ψ

(Z)
1s ]

−D[ψHe+

1s , ψ
(Z)
1s ]A[ψH

β′ , ψα]−D[ψHe+

1s , ψα]A[ψH
β′ , ψ

(Z)
1s ]

+ 〈ψHe+

1s |ψ
(Z)
1s 〉A[ψH

β′ , χ
He
α ] + 〈ψHe+

1s |χHe
α 〉A[ψH

β′ , ψ
(Z)
1s ],

(81)

Q̃Tα′β =
K̃T
α′β

R

−
(
〈ψHe+

1s |ψ
(Z)
1s 〉A[ψH

β , ψ̃α′ ] + 〈ψHe+

1s |ψα′〉A[ψH
β , ψ̃

(Z)]

+D[ψHe+

1s , ψ
(Z)
1s ]A[ψH

β , ψα′ ] +D[ψHe+

1s , ψα′ ]A[ψH
β , ψ

(Z)
1s ]

−A[ψH
β , ψα′D[ψHe+

1s , ψ
(Z)
1s ]]−A[ψH

β , ψ
(Z)
1s D[ψHe+

1s , ψα′ ]]

− 〈ψHe+

1s |ψ
(Z)
1s 〉A[χH

β , ψα′ ]− 〈ψHe+

1s |ψα′〉A[χH
β , ψ

(Z)
1s ]
)∗
,

(82)

where

D[f, g] =

∫
drf∗(r)

(
1

R
− 1

|R− r|

)
g(r) (83)

and ψ̃(r) = ψ(r)/r.
For the direct matrix elements we have

D̃T
α′α =D[ψα′ , ψα] + 〈ψ(Z)

1s |ψα〉D[ψα′ , ψ
(Z)
1s ]

+ 〈ψα′ |ψ(Z)
1s 〉D[ψ

(Z)
1s , ψα]

+ 〈ψα|ψα′〉D[ψ
(Z)
1s , ψ

(Z)
1s ],

(84)

D̃P
β′β =δβ,β′D[ψHe+

1s , ψHe+

1s ] + (−1)lβ+lβ′D[ψβ′ , ψβ ]

+B[ψH∗
β′ ψ

H
β , D[ψHe+

1s , ψHe+

1s ]]

+
2

R
A[ψH

β′ , ψ
He+

1s ](A[ψH
β , ψ

He+

1s ])∗

−A[ψ̃H
β′ , ψ

He+

1s ](A[ψH
β , ψ

He+

1s ])∗

−A[ψH
β′ , ψ

He+

1s ](A[ψH
β , ψ̃

He+

1s ])∗ + Cβ′,β

+A[χH
β′ , ψ

He+

1s ](A[ψH
β , ψ

He+

1s ])∗,

(85)

where

B(f, g) =

∫
drf(r−R)g(r), (86)

Cβ′,β =

∫
dr1dr2ψ

H∗
β′ (r1 −R)e−ivr1ψHe+

1s (r1)

× ψH
β (r2 −R)eivr2ψHe+

1s (r2)
1

|r1 − r2|
. (87)

In our calculations of the matrix elements, the integral
D was evaluated in spherical coordinates and all other
integrals in spheroidal coordinates. Below we describe
in some detail how to further simplify the most compu-
tationally demanding term, Cβ′,β . This term is a part

of the matrix element that corresponds to the electron
exchange process between the two possible final transfer
channels β′ and β containing the hydrogen atom and the
He+ ion. The term |r1 − r2|−1 is expanded as

1

|r1 − r2|
= 4π

∑
λµ

1

2λ+ 1
Uλ(r1, r2)Yλµ(r̂1)Y ∗λµ(r̂2),

(88)

where

Uλ(r1, r2) =

{
rλ1 /r

λ+1
2 for r2 ≥ r1,

rλ2 /r
λ+1
1 for r2 < r1.

(89)

Then we have

Cβ′,β =
∑
λµ

4π

2λ+ 1

[∫
dr1dr2ψ

H∗
β′ (r1 −R)e−ivr1ψHe+

1s (r1)

× ψH
β (r2 −R)eivr2ψHe+

1s (r2)Uλ(r1, r2)Y ∗λµ(r̂1)Yλµ(r̂2)
]

=
∑
λµ

1

2λ+ 1

[∫
dr1ψ

H∗
β′ (r1 −R)e−ivr1φ0(r1)Yλµ(r̂1)

×
∫
dr2ψ

H
β (r2 −R)eivr2φ0(r2)Y ∗λµ(r̂2)Uλ(r1, r2)

]
,

(90)

where φ0 is the radial part of ψHe+

1s . In our calculations
we use spheroidal coordinates, where the integral is re-
duced to a 4-dimensional entity. Generally, this integral
can be evaluated for all channels, but the calculations are
extremely time consuming. Also, including them in the
calculations do not change the results considerably pro-
vided the collision energy is not too small. Therefore, we
include only the C1s,1s term and neglect all others. This
approximation imposes a lower limit to the incident en-
ergy below which the results may deteriorate. No further
approximations were used in the numerical evaluations of
all other direct and rearrangement matrix elements.

III. DETAILS OF THE CALCULATIONS

A. Cross sections

Once the matrix elements have been calculated, the
system of differential equations (19) can be solved to ob-
tain the transition amplitudes aα(+∞, b) and bβ(+∞, b)
for the required range of impact parameters b. The prob-
ability to find the system in the direct-scattering channel
α and the rearrangement channel β after the collision is
found as

Pα(b) = |aα(+∞, b)|2, Pβ(b) = |bβ(+∞, b)|2. (91)
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The partial cross sections for the transition to states α
and β are calculated as

σα = 2π

∫ bmax

0

db bPα(b), σβ = 2π

∫ bmax

0

db bPβ(b),

(92)

where bmax, the upper limit for the impact parameter, is
chosen to be sufficiently high, as will be detailed below.
The total electron-capture cross section is the sum of
the cross sections for transitions into the negative-energy
eigenstates of hydrogen:

σcapt
tot =

∑
β,εβ<0

σβ . (93)

The total single-ionization cross section is the sum of the
partial cross sections for excitation of the positive-energy
pseudostates of the target and electron transfer into the
continuum of hydrogen:

σion
tot =

∑
α,εα>0

σα +
∑

β,εβ>0

σβ . (94)

In order to estimate double ionization of helium we use
an independent-event model. In the IEM, the process is
modeled as a combination of two independent processes,
single ionization of helium and subsequent ionization of
the helium ion. Accordingly, the double-ionization prob-
ability is the product of the two individual ionization
probabilities. The total probabilities for single ionization
of helium and ionization of the helium ion are found as

PHe
ion(b) =

∑
α,εα>0

Pα(b) +
∑

β,εβ>0

Pβ(b), (95)

PHe+

ion (b) =
∑

γ,εγ>0

Pγ(b) +
∑
ξ,εξ>0

Pξ(b), (96)

where Pγ and Pξ are the probabilities for direct ionization
of the helium ion and electron capture into the continuum
of hydrogen, respectively, in p+He+ collisions. Finally,
the double-ionization cross section is calculated as

σα = 2π

∫ bmax

0

db bPHe
ion(b)PHe+

ion (b). (97)

We present the total electron capture as well as the
single- and double-ionization cross sections for energies
within the range from 15 keV to 1 MeV. In order to
test our computer code, we first calculated the electron-
capture cross section using the first Born approximation.
We obtained good agreement with the results of Belkić
[6]. The agreement was within 5% for all energies con-
sidered here.

B. Convergence studies

Our predictions depend on several factors, such as the
accuracy of the helium wave functions and correspond-
ing energy levels, as well as the accuracy of the matrix

elements. We investigate the dependence of the result-
ing cross sections on the number of bins Nc, the maxi-
mum energy of the ejected electron Emax, and the maxi-
mum angular-momentum quantum number lmax of the
states included. A number of calculations were per-
formed to test the convergence of the predicted cross
sections in terms of the number of both target-centered
and projectile-centered states. For simplicity we used the
same number of basis functions for the target and pro-
jectile. We systematically increased the number of states
to obtain convergent results while thoroughly checking
the accuracy of the employed wave functions for the
projectile- and target-centered states.

For given Nc and lmax, the total number of states is
found as

N =

lmax∑
l=0

(nmax +Nc − l)(2l + 1), (98)

where nmax is the maximum principal quantum number
of eigenstates. Our calculations show that nmax = 5 is
sufficient. As mentioned above, the resulting cross sec-
tions also depend on the choice of bmax, the upper limit
for the impact parameter. In our calculations we set
bmax = 10. Increasing this parameter further had no sig-
nificant effect on the final results.

The convergence of the cross sections in terms of the
number of bin states is shown in Fig. 2, where the num-
ber of bins were increased up to Nc = 20, at energies
50 keV, 100 keV, 500 keV and 1 MeV, respectively. Cal-
culations were performed with fixed values nmax = 5
and lmax = 3. Both the electron-capture (upper panel)
and ionization (lower panel) results appear sufficiently
converged. Both for electron capture and ionization,
the difference between the cross sections calculated with
Nc = 16 and Nc = 20 is less than 0.5% for all ener-
gies. Including positive-energy pseudostates is not only
important to obtain an accurate ionization cross section
but also improves electron-capture cross section. This
can be seen in the upper panel of Fig. 2. Similar con-
clusions were drawn by Slim et al. [18]. The ionization
cross sections are particularly sensitive to the number of
positive-energy pseudostates and the density of the con-
tinuum discretization. To get accurate results and better
convergence in terms of positive-energy pseudostates, the
maximum energy of the included bin states, Emax, needs
to be large enough. In our calculations depending on the
projectile energy, kmax(=

√
2Emax) ranged from 3.5 for

the lower energies to 7.5 for the higher energies. The
parameter was checked for each energy individually.

Next, we investigate the convergence of the electron-
capture and ionization cross sections in terms of the
maximum allowed orbital quantum number lmax. The
results are presented in Fig. 3 for lmax ranging from
0 to 4 at energies of 50 keV, 100 keV, 500 keV and
1 MeV. Both electron-capture (upper panel) and ion-
ization (lower panel) cross sections appear converged in
terms of lmax too. In general, convergence was achieved
with lmax = 3 for all energies considered.
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FIG. 2. (color online) Convergence of the present results with
respect to the number of bin states Nc for the predicted total
cross sections for electron capture (upper panel) and single
ionization (lower panel) in p-He collisions. The four lines
(connecting the points to guide the eye) represent the cross
sections at the incident proton energies of 50 keV, 100 keV,
500 keV and 1 MeV, respectively. Note that Nc = 0 yields
no ionization cross section due to the lack of positive-energy
states.

IV. RESULTS

As discussed above, setting nmax = 5, lmax = 3 and
Nc = 20 was required to obtain sufficiently accurate re-
sults. The basis with these parameters consists of the
366 target- and projectile-centered functions. Below we
present our main results for the integrated cross sections.

1. Electron capture and excitation

Our results for the total electron-capture cross section
as a function of incident energy are presented in Fig. 4 in
comparison with the experimental data and the results
of other theoretical works. As mentioned before, the to-
tal electron-capture cross section is the sum of the cross
sections for the transitions into all negative-energy states
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FIG. 3. (color online) Convergence of the present results as
a function of lmax for the predicted total cross sections for
electron capture (upper panel) and single ionization (lower
panel) in p-He collisions. The four lines (connecting the points
to guide the eye) represent the cross sections at the incident
proton energies of 50 keV, 100 keV, 500 keV and 1 MeV,
respectively. The number of bins was set to Nc = 20.

of hydrogen. Capture into the 1s state provides the dom-
inant contribution. The total electron-capture cross sec-
tion reaches its peak around 25 keV. As seen from the fig-
ure, we obtained good agreement with the experimental
data of Shah and Gilbody [36] and Shah et al. [37], except
for the energy range of 30-100 keV, where our calculated
cross sections exceed their data by about 15%. In this
energy range only the results of Baxter and Kirchner [5]
agree with the measurements of Shah et al. [37], while the
results of all other calculations are slightly higher, most
likely due to the frozen-core approximation used to treat
the target structure. It is also interesting to compare our
results with the close-coupling calculations of Winter [20]
and Slim et al. [18]. Winter neglected electron exchange
in the final transfer channel and the calculations included
only 50 Sturmian basis functions. The result of Winter
[20] exceeds ours by 30% at 50 keV but agrees at 200 keV.
Slim et al. [18] succeeded to include electron exchange in
the transfer channel, even though they used only 51 ba-
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FIG. 4. (color online) Total cross section for electron cap-
ture in p+He(1s2) collisions as a function of the incident pro-
ton energy (top and bottom panels linear and log scales re-
spectively). The present CCC results are represented by the
black solid line. The experimental data are due to Shah and
Gilbody [36], Shah et al. [37], Rudd et al. [38], Allison [33],
Stier and Barnett [39]. The other theoretical results are from
Baxter and Kirchner [5], Kimura and Lin [12], Slim et al. [18],
Winter [20], Samanta and Purkait [17], Belkić [6].

sis functions. Their electron-capture results exceed the
CCC predictions by about 15% at 25 keV and 30 keV,
but agree for the higher energies. Measurements by Stier
and Barnett [39], Allison [33] and Rudd et al. [38] are
also shown, however these include the transfer ionization
cross section in addition to electron capture with the sec-
ond electron staying bound.

In the lower panel of Fig. 4, the same results are given
on a logarithmic y-scale to highlight the higher energy re-
gion. In the energy range from 100 keV to 1 MeV, our cal-
culations agree well with the experimental results of Shah
and Gilbody [36]. The theoretical results of Baxter and
Kirchner [5] are also in good agreement with the exper-
imental data up to 400 keV, whereas they deviate from
the data and other calculations at the higher energies. In
this energy range the B1B calculations of Belkić [6], us-
ing the Roothaan-Hartree-Fock wave functions, also yield
excellent agreement with the experimental data.

Electron capture into the 1s state of hydrogen domi-
nates the charge-transfer process, but captures into other
channels are also worth investigating. In Fig. 5 we
present the partial cross sections for electron capture into
the n = 2 shell of hydrogen. At the lower and higher en-
ergies the CCC results for electron capture into the 2s
state agree with the experimental data. However, a clear
discrepancy between the experimental and theoretical re-
sults is seen in the intermediate energy range, where the
CCC results are in good agreement with the calculations
of Slim et al. [24] and Jain et al. [25], but exceed the ex-
perimental data. For electron capture into the 2p state
we observe fairly good agreement with the cross sections
obtained experimentally, except for the results of Hippler
and Schartner [45], which exceed other results at the in-
termediate energy range.

In Fig. 6 we provide the cross sections for direct ex-
citation of helium into the 2p state and the sum of the
cross sections for excitation into the 2s and 2p states of
helium. We obtained agreement with the experimental
data of Park and Schowengerdt [48] for both of these cal-
culations in the lower and intermediate energy regions.
The CCC results for excitation of helium into the 2p state
lie slightly below the experimental data and other the-
oretical results above 150 keV, the difference with ex-
periment being within 10%. The sum of the calculated
cross sections for excitation into the 2s and 2p states is
in good agreement with the results of Begum et al. [27]
in the intermediate energy range. At the higher energies
our results are below all the other theories, including the
calculations by van den Bos [30] and Joachain and Van-
derpoorten [29].

2. Ionization

In Fig. 7 the total single-ionization cross section is com-
pared with the experimental data [36, 37] and other cal-
culations [5, 9, 18, 20]. It can be seen that the ionization
cross section reaches a maximum around 100 keV and
decreases almost linearly with increasing energy of the
projectile. On the other hand, as we have observed in
the previous section, the electron-capture cross section
falls off exponentially after reaching its maximum near
25 keV. The CCC results for single ionization exceed the
experimental data of Shah and Gilbody [36] and Shah
et al. [37] by about 10% below 200 keV. The calculations
of Baxter and Kirchner [5] based on the time-dependent
density-functional theory, where the Wilken and Bauer
model is applied, agree with the experiments except for
the lower energies. Below 60 keV their results lie slightly
below the data. Experimental data of Rudd et al. [38]
that include double ionization in addition to single ion-
ization are also shown. As we will see later, the double
ionization cross section is very small and cannot explain
the difference between the data of Shah and Gilbody
[36], Shah et al. [37] and Rudd et al. [38].

Our results are in fair agreement with the close-
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FIG. 5. (color online) Cross sections for electron capture into
the 2s (upper panel) and 2p (lower panel) states of hydrogen
in p+He(1s2) collisions. The CCC results are represented
by the black solid line. The experimental data are due to
Andreev et al. [43], Hughes et al. [44], Hippler et al. [46],
Ryding et al. [47]. The other theoretical results are from
Kimura and Lin [12], Slim et al. [24], Jain et al. [25].

coupling calculations by Winter [20]. The results of Slim
et al. [18], which take into account electron exchange in
the final states, exceed the experimental data as well as
the CCC calculations at 100 keV. Above 200 keV all the-
oretical predictions, including ours, and the experimental
data agree very well with each other, with the exception
of the results of Dı́az et al. [9], which are moderately
higher. Note that employing a more accurate multicore
description of the helium target will likely result in a re-
duction of the theoretical cross sections [21].

In Fig. 8 we present our results for double ionization,
as obtained with the IEM model. Below 40 keV we ob-
serve good agreement with experiment, but for the higher
energies our cross sections significantly exceed the mea-
sured data. Significantly larger double-ionization cross
sections were also obtained in IEM calculations by Bax-
ter and Kirchner [5], Kumar and Roy [32], and Ford and
Reading [31]. The present results and those of all dis-
played IEM calculations are overall in reasonable agree-
ment with each other. The observed large discrepancy
with experiment suggests that there exist a strong corre-

0.00

0.05

0.10

0.15

0.20

Experiment
 Park 69

0.00

0.05

0.10

0.15

0.20

C
ro

ss
 s

ec
ti

o
n
 (

1
0

-1
6
 c

m
2
)

Theory
 Van den Bos
 Joachain
 Begum
 CCC

0.00

0.05

0.10

0.15

0.20

10
1

10
2

10
3

C
ro

ss
 s

ec
ti

o
n
 (

1
0

-1
6
 c

m
2
)

Proton energy (keV)

Experiment
 Hippler 74
 Park 69

0.00

0.05

0.10

0.15

0.20

10
1

10
2

10
3

Theory
 Van den Bos
 Rodriguez
 Bell
 CCC

FIG. 6. (color online) Sum of cross sections for target excita-
tion into the 2s and 2p states (upper panel) and cross section
for excitation into the 2p state (lower panel) of helium in
p+He(1s2) collisions. The CCC results are represented as a
black solid line. The experimental data are due to Hippler
and Schartner [45], Park and Schowengerdt [48]. The other
theoretical results are from Begum et al. [27], Joachain and
Vanderpoorten [29], van den Bos [30].

lation between one- and two-electron processes as far as
double ionization of helium is concerned. In other words,
the representation of double ionization using the IEM
does not seem appropriate.

V. SUMMARY AND CONCLUSIONS

To summarize, we investigated the four-body problem
of proton collisions with helium using the semi-classical
convergent close-coupling method. The wave-packet ap-
proach was applied to discretize the continuum both for
the target and the projectile. The target was treated as
a three-body system, where the electron-correlation ef-
fects were fully taken into account. We assumed that
one of the helium electrons is frozen in the 1s orbital
of He+ throughout the collision. The target states were
described by parameter-dependent wave functions, with
the parameter fixed in such a way that the calculated
ground-state energy of the active electron matches the
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FIG. 7. (color online) Cross section for single ionization in
p+He(1s2) collisions as a function of incident energy. The
CCC results represented by the black solid line. The exper-
imental data are due to Shah and Gilbody [36], Shah et al.
[37], Rudd et al. [38]. The other theoretical results are from
Baxter and Kirchner [5], Dı́az et al. [9], Slim et al. [18], Winter
[20].
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FIG. 8. (color online) Cross section for double ionization of
helium in p+He(1s2) collisions as a function of incident en-
ergy. The CCC results are represented by the black solid
line. The experimental data are due to Shah and Gilbody
[36], Shah et al. [37], Puckett and Martin [49]. The other the-
oretical results are from Baxter and Kirchner [5], Ford and
Reading [31], Kumar and Roy [32].

measured value. With this modification, all calculated
energy levels of the active electron of helium are in ex-
cellent agreement with the corresponding experimental
values. The predicted cross sections were found to be
sensitive to the target description, and using more ac-
curate energy levels considerably improved the results of
our calculations.

We studied the convergence of the results in terms
of the number of basis functions and the maximum al-
lowed orbital angular momentum of the included states

at several energies of the projectile. Having obtained
very satisfactory convergence, the total electron-capture
and single-ionization cross sections were calculated in the
energy range from 15 keV to 1 MeV.

There are many experiments and theoretical results
available for these processes for comparison. We note
that some discrepancies exist among them below 150 keV.
In this energy range the agreement between our calcula-
tions and the experimental data of Shah and Gilbody [36]
and Shah et al. [37] is within 15% for both electron cap-
ture and single ionization. Above 150 keV our results and
all experiments agree very well. It is worth mentioning
that among the close-coupling calculations for electron
capture, the CCC results are in better agreement with
experiment. This is likely due to the more accurate tar-
get description and the size of the basis applied.

Apart from the total cross sections, we investigated
transfer cross sections into the 2s and 2p states of hy-
drogen, and excitation into the 2s and 2p states of he-
lium. Fair agreement with other works was obtained in
these particular cases as well. Furthermore, we used the
independent-event model to study double ionization of
the target, where double ionization is formulated as a
combination of two independent processes, single ioniza-
tion of helium and sequential ionization of the result-
ing helium ion by proton impact. Except for the lower
energies, however, we failed to get agreement with the
experimental data. The same idea can be used to de-
scribe other two-electron processes such as double cap-
ture, simultaneous transfer and ionization and double ex-
citation. However, the validity of the independent-event
model is not always guaranteed. On the other hand the
WP-CCC method can be used to develop a more sophis-
ticated approach to the two-electron processes, however
this is beyond the scope of the present paper.

In this work we discretised the continuum using the
wave packet method. An advantage of this method is
that it allows us to study electrons ejected with arbitrary
energies easily. This is done by changing the number of
bins and the maximum allowed energy of the ejected elec-
trons. Therefore this approach can be applied to study
differential ionization. Specifically, the partial cross sec-
tions for transfer into all positive-energy channels that
we calculated can be used to obtain differential cross sec-
tions for ionization of helium. Calculations of the fully
and doubly differential cross sections for single ionization
of the helium atom by proton and C6+ impact are cur-
rently underway. The previous study of C6+ impact sin-
gle ionization of He using the one-center fully quantum-
mechanical CCC approach [53] revealed a significant dis-
agreement with the measurements of Schulz et al. [54]
for the fully differential cross section in the perpendicu-
lar plane. We are now in a position to revisit this problem
using a more accurate two-center approach.
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