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Differential equations are ubiquitous in models of physical phenomena. Applications like steady-
state analysis of heat flow and deflection in elastic bars often admit to a second order differential
equation. In this paper, we discuss the use of a quantum annealer to solve such differential equations
by recasting a finite element model in the form of an Ising hamiltonian. The discrete variables in-
volved in the Ising model introduce complications when defining differential quantities, for instance,
gradients involved in scientific computations of solid and fluid mechanics. To address this issue, a
graph coloring based methodology is proposed which searches iteratively for solutions in a subspace
of weak solutions defined over a graph, hereafter called as the ‘box algorithm.’ The box algorithm
is demonstrated by solving a truss mechanics problem on the D-Wave quantum computer.

I. INTRODUCTION

Computational methods are rapidly emerging as an es-
sential tool to understand and solve complex engineering
problems complementing the traditional means of exper-
imentation and theory. Richard Feynman’s statement [1]
“with a suitable class of quantum machines you could im-
itate any quantum system, including the physical world”
has driven our vision towards a machine that can solve
computational problems inaccessible to classical comput-
ers. Early versions of such quantum computers have al-
ready appeared. Mirroring gate-based classical comput-
ers, gate–based quantum computers with a small num-
ber of qubits have been demonstrated and promise an
eventual path towards universal quantum computation.
However, noise limits the number of gate operations that
can be enforced before the quantum states decohere. In
parallel, quantum annealers have been developed that
provide a significant number of qubits for solving a class
of combinatorial optimization problems. In these ma-
chines, an Ising hamiltonian is engineered such that the
solution to the computational problem is encoded in its
ground state. The system evolves adiabatically to the
ground state as governed by the Schrodinger equation
for the time-dependent hamiltonian.

The D-wave system is a quantum annealer that cur-
rently provides more than 2000 qubits modeling a trans-
verse Ising hamiltonian whose ground state is NP-
complete. The hamiltonian with qi describing the state
of the ith qubit is given by:

E(q) =
∑

i∈sites
Hiqi +

∑
(i,j)∈links

Jijqiqj (1)

The hamiltonian includes self-interaction (Hi is the on-
site energy of qubit qi) and site-site interaction terms (Jij
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are the interaction energies of two connected qubits qi
and qj), with the qubits connected in a Chimera graph.
The system is first initialized in the ground state of a
hamiltonian which is known and easy to prepare. Then,
the Hamiltonian is changed such that the system equili-
brates to the ground state of the Ising Hamiltonian E(q)
according to the adiabatic theorem. NP-hard combina-
torial optimization problems can be encoded through the
field and site interaction strengths. The system particu-
larly holds promise for solving graph coloring problems
with large sizes (N) where classical polynomial time al-
gorithms cannot be devised. Many engineering problems
in airline scheduling, image segmentation, and pattern
recognition have been encoded as graph coloring prob-
lems solvable on quantum annealers.

While differential equations are ubiquitous in models
of physical phenomena, the use of quantum annealers for
scientific computing in solid and fluid mechanics has not
yet been explored. Scientific computing mostly involves
solving a linear system of equations Ax = b defined on a
continuum domain discretized with finite elements. The
matrix A, generally being sparse, structured and posi-
tive definite matrix obtained by assembling element-level
stiffness matrices. In the past, gate–based quantum com-
puting algorithms have been devised to solve the system
of linear equations using QLSA algorithms (HHL algo-
rithm [2]) and its variants [3–6]. This algorithm, unlike
a classical solver, does not give a direct solution x but
rather allows sampling from the solution vector. Nev-
ertheless, this has spawned several works in differential
equation modeling on quantum computers ([7–15]). The
sampling task by itself requires solving Ax = b. In the
classical setting, the complexity scales with the size of the
problem and goes asO(Nsk log(1/ε)) for conjugate gradi-
ent method where N is the number of unknowns, k is the
condition number, s is the sparsity of A and ε is the preci-
sion of the solution. On the other hand, the QLSA [2] has
a favorable running time of O(log(N)k2s2/ε) which scales
logarithmically with the size of the problem. Quantum
annealers are especially attractive for scientific comput-
ing with the ability to scale up the simulations to a more
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significant number of qubits. However, algorithms for the
solution of differential equations have not been devised
yet on these systems[16]. The merit of the paper is the
algorithm to solve a differential equation on an annealer.

Here, we note that the solution to Ax = b can
be encoded in an equivalent minimization problem
min

(
1
2x

TAx− xT b
)

which contains field and interaction
terms similar to an Ising model. Thus, in this paper,
we explore mapping of this energy to Ising hamiltonian
on the D-wave machine recognizing that the graph
in the D-wave chip by itself models a finite element
mesh-like topology. The element level stiffness and force
vectors are then encoded in the Ising hamiltonian as
interaction weights and field variables. Dirichlet bound-
ary conditions are enforced by modifying field terms
to favor one qubit state over another. An illustration
of this procedure is presented in Fig 1. A discretized
version of the differential equation is solved using energy
minimization on a graph. Direct minimization of energy
may hold advantages over the conventional finite element
approach in systems which lead to a matrix with large
condition numbers, zero or negative eigenvalues leading
to bifurcation events such as buckling in shells and phase
transitions [17].

In the solution to a differential equation, the qubits
must encode a rational number. However, the qubit en-
coding the Ising lattice point carries two discrete levels
(up/down spin) in the ground state. In classical comput-
ers, with similar binary (0/1) encoding, anywhere from
32 bits (float) to 80 bits (long double) of memory can be
used to encode more than 12 million high precision vari-
ables in 1 GB memory. In contrast, currently available
quantum annealers have a limited number of physical
qubits. This restriction makes the representation of so-
lutions of double precision similar to a classical computer
extremely expensive. In ([18, 19]), the problem of min-
imizing ||Ax − b|| in the least squares sense was posed
by encoding physical qubits to represent rational num-
bers using a radix 2 representation. This format requires
a significant number of physical qubits and connections
to represent positive rational numbers and an additional
qubit to represent the sign of the number ([18]). In com-
parison, the box algorithm searches within a small dis-
crete set of up/down qubit values with each element of
the set mapped to a double precision value, thereby elim-
inating the need for additional qubits to achieve higher
precision.

In this paper, we consider a self-adjoint form of sec-
ond order differential equation as the model problem.
The problem statement and the relevant mathematical
details are presented in Section II. The Graph represen-
tation of the problem is formulated in Section III. The
iterative procedure, referred as ’Box algorithm’, is pre-
sented in Section IV. All procedures are accompanied
with numerical examples for elucidation. This algorithm
is demonstrated by solving a truss mechanics problem on
the D-Wave quantum computer in Section V

II. MATHEMATICAL PRELIMINARIES

A self-adjoint form of a second order differential equa-
tion on an interval (xl, xr) is defined as,

−(p(x)u′(x))′ + q(x)u(x) = f(x) xl < x < xr (2)

Dirichlet boundary conditions are considered at both
ends i.e. u(xl) = ul and u(xr) = ur. Well-posedness
of this problem requires p(x) ≥ pmin > 0 and q(x) ≥
qmin ≥ 0 Furthermore, for convenience, it is assumed
that p, q ∈ C([xl, xr]) and f ∈ L2([xl, xr]). These con-
ditions are sufficient to show the existence of a unique
solution to the weak form ([20]).

A. Functional minimization

Motivated by the intractability of direct integration
of the differential equation (2), it is often convenient to
employ functional minimization techniques. Calculus of
variations can be used to observe that the minimization
of the functional (3) leads to the strong form described
in Eq (2).

Π [u] =

∫ xr

xl

(
1

2
pu′2 +

1

2
qu2 − fu

)
dx (3)

Square integrability of u and its first derivative are re-
quired in this definition of Π [u]. The implication is
that the minimizing solution, u lies in the Sobolov space
H1([xl, xr]). A discrete problem is obtained by using a
finite basis for the solution defined in Eq (4) which sat-
isfies the Dirichlet boundary conditions. The admissible
choices of a = (a0, a1, ..., aN ) satisfy uN (xd) = ud where
xd is a Dirichlet boundary and ud is the prescribed value
at that point. This approximation reduces the infinite di-
mensional functional minimization problem to finite di-
mensions. The approximated functional ΠN is entirely
determined by the representation of u in the finite ba-
sis as shown in Eq (5). It is worth observing that the
choice of φi(x) is such that φi ∈ H1([xl, xr]) i.e. for any
uN ∈ VN = span{φ1, φ2, ..., φN} ⊆ H1([xl, xr]). Ad-
ditionally the proper inclusion, Vi ⊆ Vi+1, guarantees
convergence of the solution with increasing N .

uN (x) =

N∑
i=0

aiφi(x) (4)

ΠN [a0, ..., ar, .., aN ] =

∫ xr

xl

p

2

(
N∑
i=0

aiφ
′
i

)2

+
q

2

(
N∑
i=0

aiφi

)2

− f

(
N∑
i=0

aiφi

)
dx (5)

As the solution is completely determined by the vari-
able a, the functional minimization of Eq (5) is reformal-
ized as Eq (6) where ab.a. refers to the coefficients of best
approximation of solution, uN , in the subspace VN
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FIG. 1. Illustration of procedure for solving differential equation

ab.a. = arg min
a

ΠN (a) (6)

B. Finite Element approximation

Finite element basis provides a popular choice of com-
pactly supported shape functions. For the purpose of
simplicity, ‘tent/hat functions’ (defined in Eq (7)) are
used in this work. The domain is split into N elements
with N + 1 nodes. The generalization to higher order
families of piecewise-continuous basis functions is imme-
diate but is omitted for brevity.

φi(x) =


0, x < xi−1,
(x− xi−1)/(xi − xi−1), xi−1 ≤ x < xi,
1− (x− xi)/(xi+1 − xi), xi ≤ x < xi+1,
0, x ≥ xi+1 .

(7)
The usage of compact basis further reduces the com-

plexity by reducing the integration over the whole domain
to a summation of integration over smaller elements. It
is shown in section III that this choice of shape functions
lead to a relatively sparse graph. It simplifies the com-
putation by reducing the size of the graph optimization
problem. The simplified form of Π specialized for the
hat-functions is presented in Eq (8).

ΠN (a) =

N∑
i=1

a2i−1

(∫ xi

xi−1

p

2
φ′2i−1 +

q

2
φ2i−1dx

)

+a2i

(∫ xi

xi−1

p

2
φ′2i +

q

2
φ2i dx

)

+ai−1ai

(∫ xi

xi−1

pφ′i−1φ
′
i + qφi−1φidx

)

−ai−1

(∫ xi

xi−1

fφi−1dx

)
− ai

(∫ xi

xi−1

fφidx

)
(8)

This form of Π promotes modularity in computation
and allows expressing the functional as

ΠN =

N∑
i=1

Ai.Si (9)

where vectors Ai ≡ Ai(ai−1, ai) and Si ≡ Si(p, q, f) are
defined for each element in (10). The vector Si is inde-
pendent of state a and is therefore only computed once
in the whole procedure.

Ai =
[
a2i−1 , a2i , ai−1ai , ai−1 , ai

]T
Si =

[∫ xi

xi−1

p

2
φ′2i−1 +

q

2
φ2i−1dx ,

∫ xi

xi−1

p

2
φ′2i +

q

2
φ2i dx ,∫ xi

xi−1

pφ′i−1φ
′
i + qφi−1φidx , −

∫ xi

xi−1

fφi−1dx ,

−
∫ xi

xi−1

fφidx

]T
(10)

Example

Consider the differential equation with boundary condi-
tions u(0) = 0 and u(1) = 1.

d2u

dx2
= 0 0 < x < 1

Functional:

Π[u] =
1

2

∫ 1

0

u′2dx

For simplicity, consider a grid with a uniform mesh of 2
elements and 3 nodes:
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Using linear interpolants for the elements,

u(x) =

 a0(1− 2x) + a1(2x) 0 < x ≤ 0.5

a1(2− 2x) + a2(2x− 1) 0.5 < x ≤ 1

The functional with the FE discretization:

ΠN (a) = (a0 − a1)2 + (a1 − a2)2

Modular representation of functional (ΠN = A1.S1 +
A2.S2):

A1 =
[
a20 , a21 , a0a1 , a0 , a1

]T
A2 =

[
a21 , a22 , a1a2 , a1 , a2

]T
S1 = S2 =

[
1 , 1 , −2 , 0 , 0

]T

III. GRAPH COLORING PROBLEM

Quantum annealing methods are tailored to find the
lowest energy states in an Ising system defined in Eq (1).
The Ising hamiltonian defines a binary graph coloring
problem with each vertex of graph or qubit labeled as
+1 or −1. The value of the qubits determine the free
variable, in this case, a. The parameters Hi and Jij are
defined such that the Ising hamiltonian, for a labeling
representing the state, a, corresponds to the functional
ΠN (a). These problems, namely, the representation of
state and estimation of parameters are addressed in this
section.

A. Representation of State

Representation of a functional in terms of continuous
variables is not feasible on quantum architectures. Due
to this limitation, the values of each ai (ith component
of a) are chosen from a finite set of values based on the
labeling of qubits. The representation presented here
permits 3 possible values of ai at each node. In par-
ticular, for each node (indexed ‘i’), the state (ai) is ex-
actly determined by the labeling of qubits qi1, qi2 and qi3
with the ith node taking values in the set {vi1 , vi2 , vi3}.
Eq (11) defines a mapping (qi1, q

i
2, q

i
3) → ai as tabulated

in Table I. It is observed that the mapping results in
ai ∈ {vi1 , vi2 , vi3} when two qubits are labeled −1 and
one qubit is labeled +1. Next it shown that the Ising
parameters can be manipulated to make these labelings
energetically favourable, thereby eliminating the occur-
rence of undesirable labels.

ai =

3∑
j=1

vij
qij + 1

2
(11)

(qi1, q
i
2, q

i
3) ai

(1, 1, 1) vi1 + vi2 + vi3
(1, 1,−1) vi1 + vi2
(1,−1, 1) vi1 + vi3

(1,−1,−1) vi1
(−1, 1, 1) vi2 + vi3

(−1, 1,−1) vi2
(−1,−1, 1) vi3

(−1,−1,−1) 0

TABLE I. The mapping from qubits to state ai at node

Example (Continued)

In general, the set {vi1 , vi2 , vi3} is different for each node.
However, for simplicity, consider the same set of admis-
sible states for all three nodes given by {vi1 , vi2 , vi3} ≡
{0, 0.5, 1}. Each node is defined by three qubits as fol-
lows:

We know that the three qubits each defining the so-
lution at the first and last nodes should take up choices
1 and 3, respectively, due to boundary conditions. The
choice for the second node is to be solved.

B. Parameter Estimation

To promote modularity, the graph representation is de-
composed into two component subgraphs, namely, nodal
graph and element graph. Each node and element of the
FE discretization is endowed with a node graph and ele-
ment graph, respectively. This allows to refine the mesh
by extending the graph.

1. Nodal Graph

The nodal graph is given by a fully connected graph
with three vertices representing the three qubits of the
FE node. The nodal graph ensures that the energy
minimizing states of the Ising hamiltonian corresponds
to state a with favorable choice of ai ∈ {vi1 , vi2 , vi3}
with equal probability. As mentioned earlier, the
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FIG. 2. Connectivity of (a) nodal graph (b) element graph.

set of favorable labeling of qubits at a node is given
by {Q1, Q2, Q3} ≡ {(1,−1,−1), (−1, 1,−1), (−1,−1, 1)}.
Since each of the three labelling is equally likely in the ab-
sence of any functional minimization, it is expected that
the same value of the coupling strength (Ĵ) for each con-
nection and the field strength (H) for each node is used.

A choice of Ĵ and H that fulfill these conditions is pre-
sented in Fig 3. Here, all the field and interaction terms
for the nodal graph are given a value of one. The appli-
cation of the Dirichlet boundary condition is also done
by augmenting the field strength of the nodal graph. For
example, by switching the field term H corresponding to
the second qubit q2 of a boundary node ‘b’ to -1 forces a
lower value of the functional for the boundary node state
of (−1,+1,−1), which corresponds to the solution vb2 .
This allows us to encode the value at the boundary to be
vb2 .

2. Element Graph

The element graph is used to make the energy of min-
imizing states of graph correspond to the value of func-
tional ΠN of the continuous problem. Each element
graph encodes the contribution of the respective element
to the functional. Since the contribution of each element
is dependent on the values at the nodes of the element,
the element graph is constructed by connecting the ver-
tices of neighbouring nodes. In particular, the site-site
interaction in the nth element graph can be estimated as

a matrix, J̃n, where (J̃n)kl represents the coupling en-

ergy between qubits qik (kth qubit of ith node) and qjl
(lth qubit of jth node) with i, j being the nodes of nth

element. As shown in the previous section, the contri-
bution of the nth element towards the functional, based
on the choice of a compact basis function, is evaluated as
An.Sn. The elements of the vector, An ≡ An(ai, aj) can
therefore, take nine (3× 3) possible values based on the
values of (ai, aj). For a particular choice of labeling of
qubit the Ising energy of element graph is estimated as

E =
∑3

k=1

∑3
l=1(J̃n)klq

i
kq

j
l . When the labeling is chosen

appropriately (each node has two ‘-1’ and one ‘+1’ la-
bel), this energy equals to the value of functional for cor-
responding state, a, as shown in Eq (12). This relation

can be used to estimate J̃n by solving a set of nine inde-

pendent linear equations presented. It is important ob-
servation that the independence of these set of equations
relies on the fact that for any node, vik 6= vil for k 6= l.
Additionally, the energy of the element graph breaks the
symmetry between the states that minimize the energy

of nodal graph, however, the values of J̃n should be ju-
diciously scaled (uniformly along all elements) such that
energy of unfavourable states remain high.

3∑
k=1

3∑
l=1

(J̃n)klq
i
kq

j
l = An(ai, aj).Sn (12)

Example (Continued)

A single element with two nodes admits to the following
connectivity:

The estimated parameters reflect the contribution of
element to the functional for a given choice of labeling:

Sample 1:

In the above Figure, both nodes take up choice 1
(ai = aj = 0). The interaction energy for qubits:

E = J̃11− J̃12− J̃13− J̃21 + J̃22 + J̃23− J̃31 + J̃32 + J̃33 =
(ai − aj)2 = 0
Sample 2:
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FIG. 3. Self interaction and site-site interaction parameters for nodal subgraph.

In the above Figure, node i takes up choice
1 (ai = 0), while node j takes up choice 2
(aj = 0.5). The interaction energy for qubits:

E = −J̃11 + J̃12 + J̃13 + J̃21− J̃22− J̃23− J̃31 + J̃32 + J̃33 =
(ai − aj)2 = 0.25

Collectively solving the equation for all 9 such possi-
bilities (as shown in Eq (12)).

+1 −1 −1 −1 +1 +1 −1 +1 +1
−1 +1 +1 +1 −1 −1 −1 +1 +1
−1 +1 +1 −1 +1 +1 +1 −1 −1
−1 +1 −1 +1 −1 +1 +1 −1 +1
+1 −1 +1 −1 +1 −1 +1 −1 +1
+1 −1 +1 +1 −1 +1 −1 +1 −1
−1 −1 +1 +1 +1 −1 +1 +1 −1
+1 +1 −1 −1 −1 +1 +1 +1 −1
+1 +1 −1 +1 +1 −1 −1 −1 +1





J̃n
11

J̃n
12

J̃n
13

J̃n
21

J̃n
22

J̃n
23

J̃n
31

J̃n
32

J̃n
33



=



(vi1 − vj1)2

(vi2 − vj1)2

(vi3 − vj1)2

(vi1 − vj2)2

(vi2 − vj2)2

(vi3 − vj2)2

(vi1 − vj3)2

(vi2 − vj3)2

(vi3 − vj3)2



J̃1 = J̃2 =

0.1250 0.3750 0.3750
0.3750 0.5000 0.3750
0.3750 0.3750 0.1250


The above parameters will exactly reproduce the func-

tional in the interaction term. The boundary conditions
are enforced, by setting self interaction term for qubits
q01 , q23 to H = −1. This locks the state at the 1st bound-
ary node as a0 = v01 = 0 and at the 2nd boundary node
as a2 = v23 = 1. Energy minimization of the resulting
Ising hamiltonian gives a1 = v12 = 0.5, which is the exact
solution for the discretized problem.

The process of the graphical representation of the dis-
cretized functional using the nodal and element graphs is
referred to as “Assembly”. Each node and element is en-
dowed with a nodal and element graph, respectively. The
effective site-site interaction energy is estimated by sum-
ming the nodal coupling strength, Ĵ , over all nodes, and

element coupling strength, J̃ , over all elements. Due to
the nature of discretization, N element graphs and N+1
nodal graphs are required for representing an N -element
discretization of the domain. The assembled graph, from
here on, is referred to as the logical graph. Connectivity
of logical graphs for one-element and four-element dis-
cretization is presented in Fig 4.

Two fundamental issues in this approach are addressed
next using the box algorithm. Firstly, the choices at a
node {vi1 , vi2 , vi3} were set in stone during initialization.
The box algorithm makes this choice flexible. Secondly,
as the number of nodes increase, three choices are insuf-
ficient. The number of qubits needed at a node must
increase to make more choices available. Box algorithm,
however, only requires three qubits per node for any level
of discretization.

IV. BOX ALGORITHM

In this section, an iterative procedure is developed to
minimize the functional, ΠN , using the graph coloring
representation discussed in the previous section. For a
particular choice of {vi1 , vi2 , vi3}, defined as Eq (13), the
possible values of the state ai at the ith node are special-
ized to the set {uci − r, uci , uci + r}, i.e.,

vij = uci + r(j − 2) (13)

The quantities, uc = (uc0, u
c
2, ..., u

c
N ) and r are here-

after referred to as box center and the slack variable,
respectively. The intention is to approximate functions
using the box center while the slack variable provides
a bound on this approximation. The precise meaning
of this bound is presented later in this section. A
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FIG. 4. Assembled graph for a domain discretized with (a) 1 element (b) 4 elements.

linear approximation of f(x) =
√
x using ten nodes is

presented in Fig 5 for different box centers and the slack
variable (which can be interpreted as the box size). The
function, f(x), is approximated as uc at the nodes with
linear interpolation in between the nodes. The blue
region describes the possible value of the interpolation if
the value at any node is perturbed within the range of
±r. In Fig 5(a), an exact approximation of the function
at the nodes is presented with a slack variable of 0.2.
In (b) the same approximation with a slack variable of
0.02 is presented. The same approximation is given in
the two cases, but the bound on nodal values of (b) is
tighter than (a). In part (c), the approximation is not
exact, however, it lies within the bounds. In part (d),
the approximation is neither exact nor within the bound.
In the context of the vectorial representation of the
coefficients, a, these bounds are represented as 3N − 1
points on the surface of a box, defined as, ||a−uc||∞ = r.
An illustration for the vectorial representation of a two
nodes element is presented in Fig 6. The solution is
sampled from a 3× 3 grid in the a1 − a2 vector space.

In the discrete setting, the solution to the differential
equation can be equivalently reduced to minimization of
a function of the form: aTMa where M is some positive
definite matrix. The vector a takes value in one of the 3N

possibilities. The minimizer (not necessarily unique) is
given by Eq (14). The solution, amin, need not coincide
with the best approximation solution, ab.a. of the contin-
uous problem. In the illustration presented in Fig 6, the
center is depicted as the solution (amin = uc), the min-
imum is then contained within the elliptic region of the
contour with amin on the edge. Geometrically, this gives
||amin − ab.a|| ≤ d ≤

√
2r(1 + λmax/λmin) where λmax

and λmin are the maximum and the minimum non–zero
eigenvalues of M , respectively. This suggests that as the
box size decreases, the corresponding uc approaches to
the best approximation solution of u. This argument is
extended to n dimensions with the bound given in Eq
(15).

amin = arg min
ai∈{uc

i−r,u
c
i ,u

c
i+r}

aTMa (14)

||amin − ab.a|| ≤ 2

(
1 + (n− 1)

λmax

λmin

)
r√
n

(15)

A. Iterative Procedure

In this section we present the details of the iterative
procedure which locates the solution of the discretized
problem, amin, and updates the box center and slack
variable such that uC approaches the solution of the con-
tinuous problem (in the sense of best approximation).

The necessary information required for defining the
functional is stored in the vector Si. It is computed once
at the beginning of the procedure as the problem defi-
nition stage. The procedure is initiated with a guessed
solution of the vector, a, provided as a box centered
at uc. The boundary nodes with Dirichlet boundary
conditions are assigned the boundary value as the initial
guess. The slack variable is initialized with an arbitrary
scalar value. A better initial guess for r is the one which
bounds the solution in the box defined by uc. Such
initial guesses require fewer iterations in comparison to
arbitrary ones; however, starting with a good guess is not
a necessary condition for convergence. The Ising parame-

ters, H, Ĵ and J̃ are estimated as discussed in section III.

In this work, D-Wave’s 2000Q processor is used. This
processor has a Chimera-type structure with 2048 qubits
and 6016 couplers [21]. A direct solution of the optimiza-
tion problem by re-numeration of qubits is not possible
as the assembled graph cannot be found in any subgraph
of the physical graph, i.e., the processor. Therefore, it
is required that the logical graph is mapped onto the
physical graph via the process of embedding. This prob-
lem in itself is NP-hard and is not discussed here for
brevity. The reader is referred to [22] for a discussion
on this topic. The topology of the logical graph remains
unchanged over the iterations. The search for embedding
of a map is only conducted once, and in subsequent it-
erations, the self-interaction and the site-site interaction
parameters are updated for the same embedding.

The use of three qubits per node in this paper allows
the D-wave system to search for a minimum over a space
of 3N solution vectors in a single run. In each itera-
tion, the box center is translated to the energy minimizer,
amin. This move is referred to as the translation step.
In the case where the minimizing state is found at the
center, the box size is reduced, and the search is contin-
ued with a smaller bound on error. This move is referred
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FIG. 5. Approximation of
√
x function using boxed domain: (a) Exact fit with a slack of 0.2 (Loose fit) (b) Exact fit with a

slack of 0.02 (tight fit) (c) inexact fit but bounded in a box size of 0.2 (d) inexact fit and unbounded by a slack of 0.2.

FIG. 6. An illustration of a two-node approximation in a1−a2

vector space with contours plot of the functional, Π2(a1, a2)
and a representative box with center at uc and a box size of
r.

to as the contraction step. The complete procedure is
presented in Algorithm 1.

Algorithm 1 Box Algorithm

1: Problem definition: Calculate Si

2: Initialize {uc
i}, r

3: Estimate H, Ĵ and J̃

4: Find embedding: Logical graph
embed−−−−→ Physical graph

5: while r > rmin do
6: Update J̃ for current (uc

i , r)
7: Anneal for {qij}
8: Map to amin, (ΠN )min

9: if (ΠN )min < ΠN [uc] then
10: uc

i = amin (Translation step)
11: else
12: r = r

2
(Contraction step)

13: end

Example (Continued)

In the box algorithm, the set {vi1 , vi2 , vi3} is constructed
using the box center and the slack variable.
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With the application of the boundary condition, the
favourable labeling of qubits give following three choices
in the solution (I, II, III).

The values of uc1 and r are initialized arbitrarily. One
of the solutions among I, II or III is selected by the
annealer. If the minimizer is found to be solution II
then the algorithm proceeds with the contraction step by
halving the value of r. If solutions I or III are selected,
then the algorithm proceeds with the translation step by
setting the new box center to uc1+r or uc1−r, respectively.

V. RESULTS

The deformation of a bar under axial loading is mod-
elled using an equation of form (2). In particular, the
deflection (u) of a bar is related to the elastic stiffness,
(E), cross-sectional area (A), and the applied body force,
(f) using Eq (16). The functional (Eq 3) is referred to
as the potential energy of the system. The correspond-
ing discretized form of the potential energy for piece-wise
linear E,A and f is calculated using Eq (17) where Ei,Ai

and fi represents the elastic stiffness, area and applied
body force, respectively, at the center of the ith element.

(EAu′)′ + f = 0 (16)

ΠN [u] =

N∑
i=1

N

2
EiAi(ai−ai−1)2− 1

2N
fi(ai+ai−1) (17)

Two test cases are presented in Fig 7. In test case
(a), a bar with a discontinuity in EA is simulated. The
body force is not applied in this case. A four-element
discretization is used. The initial guesses are taken as
uc = {0, 0.25, 0.5, 0.75, 1} and r = 0.2. The numerical
solution is observed to approach the exact solution in this
case. The convergence in the functional is also evident.

In the test case (b), a bar with continuously varying
EA is simulated. A linearly varying body-force is sup-
plied. A six-element discretization of the bar is used with
uc = {0, 16 ,

2
6 ,

3
6 ,

4
6 ,

5
6 , 1} and r = 0.2. Based on the the-

ory of finite element methods, the exact minimization of
the energy in discretized space leads to a stiffer solution
in comparison to the exact solution. It is observed that
the numerical solution approaches the exact solution at
nodes which is characteristic of finite element methods.
Energy is also observed to be converging towards the fi-
nite element solution ufem in this case. The mismatch
of u within the element is expected to decrease with re-
finement in discretization.

Some implementation details on the D-wave architec-
ture are relevant here. Although the mapping only re-
quires three qubits per node, embedding of this graph
into the Chimera graph produced an overhead of 9 qubits
per node - constant over a range of discretizations. It is
understandable since a complete graph of three qubits
used to represent a node is not directly represented on
the Chimera graph. In the future, the use of two qubits
to represent a node can also be explored. While this
ensures we still sample a large enough (2N vectors) so-
lution space in a single run, we lose out information on
the box center energy that is important for reducing the
range of the slack variable. However, it is possible to
compute the solution at the box center classically. The
overhead of performing classical solutions can be offset by
the fact that a two-qubit representation has smaller com-
plete sub-graphs and is easier to embed in the physical
graph. Another important task in quantum computing
is error suppression. Quantum processors, unlike classi-
cal computers, do not have parity correction algorithms
due to the no-cloning theorem. A compilation of popu-
lar methods for quantum error correction is presented in
[23]. Energy re-scaling is one of the simpler approaches
and is employed in this work. Here, in the estimation

of J̃n, the energy was rescaled to ensure that the energy
gap between feasible and unfeasible states is increased
while maintaining a similar energy landscape. This step
is a heuristic remedy for minimizing noise in quantum
computation, and has no bearing in the theoretical con-
vergence of the algorithm.

VI. CONCLUSIONS AND FUTURE WORK

Recent rapid developments in quantum annealers war-
rant further investigation into re-formulation of scientific
computation problems as graph coloring problems. The
use of quantum computing for solving differential equa-
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FIG. 7. Axial deformation of a bar with (a) a discontinuous cross-section with a tip displacement (b) a continuously varying
cross section with a body force and a tip displacement.

tions has, to date, focused on the use of a gate–computing
based QLSA algorithm. This algorithm attempts to sam-
ple from the solution space of the linear system of equa-
tions Ax = b. In the quantum annealer based algorithm
described here, we do not solve the system of equations.
We instead map the discretized version of the energy
function of the differential equation to an Ising hamilto-
nian. The solution vector, x, is directly obtained as the
ground state of the qubits. The algorithm has low mem-
ory requirements since the global matrix is not stored and
the local matrices are encoded in the interaction weights

of the Ising model. Further, the box algorithm allows
mapping of up/down spin states of qubits in the ground
state to rational numbers involved in the solution vec-
tor. Since we primarily solve the Ising model, the cost of
computation is tied to the performance of the quantum
annealer ([24]). Within each iteration however, equation
Eq (12) is solved for each element, leading to at least
O(n) operations.

We have shown that the box algorithm indeed guar-
antees convergence to the best approximation of the so-
lution in the discretized space as the box size goes to
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zero. However, some improvements could be made to re-
duce the number of minimization runs. We could use the
statistics of solutions that D-wave system returns from
a single minimization run to drive the iteration process
in an arbitrary direction. This data can also be used to
heuristically develop ‘local’ potential energy maps that
can be used to identify larger step sizes for faster conver-
gence. With future scaling up of quantum annealers up
to millions of qubits, it will be possible to solve challeng-
ing engineering solid and fluid mechanics problems using

quantum annealers.
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