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Finding optimal correction of errors in generic stabilizer codes is a computationally hard problem,
even for simple noise models. While this task can be simplified for codes with some structure, such
as topological stabilizer codes, developing good and efficient decoders still remains a challenge. In
our work, we systematically study a very versatile class of decoders based on feedforward neural
networks. To demonstrate adaptability, we apply neural decoders to the triangular color and toric
codes under various noise models with realistic features, such as spatially-correlated errors. We
report that neural decoders provide a significant improvement over leading efficient decoders in
terms of the error-correction threshold. In particular, the neural decoder threshold for the two-
dimensional color code is very close to the toric code threshold. Using neural networks simplifies
the design of decoders and does not require prior knowledge of the underlying noise.

I. INTRODUCTION

Recent small-scale experiments [1–4] have shown an
increasing level of control over quantum systems, consti-
tuting an important step towards the demonstration of
quantum error correction and fault-tolerance [5, 6]. In
order to scale up quantum devices and maintain their
computational power, one needs to protect logical infor-
mation from unavoidable errors by encoding it into quan-
tum error-correcting codes [7]. One of the most successful
class of quantum codes, stabilizer codes [8], allows one to
detect errors by measuring stabilizer operators without
altering the encoded information. Subsequently, errors
can be corrected by implementing a recovery operation.
A classical algorithm, which allows one to find an appro-
priate correction from the available classical data, i.e.,
the ±1 measurement outcomes of stabilizers for the given
code, is called a decoder.

Optimal decoding of generic stabilizer codes is a com-
putationally hard problem, even for simple noise models
[9, 10]. If codes have some structure, then the task of
decoding becomes more tractable and efficient decoders
with good performance may be available. For example, in
the case of topological stabilizer codes [11–15], whose sta-
bilizer generators are geometrically local, any unsatisfied
stabilizer returning −1 measurement outcome indicates
the presence of errors on some qubits in its neighborhood.
By exploiting this pattern, many decoding schemes have
been developed, some of which are based on cellular au-
tomata [16–23], the Minimum-Weight Perfect Matching
algorithm [24–26], tensor networks [27, 28], renormaliza-
tion group [29–33] or other approaches [34–38].

Efficient decoders with good performance are often
tailor-made for specific codes and are not easily adapt-
able to other settings. For instance, despite a local uni-
tary equivalence of two families of topological codes [39],
the color and toric codes, one cannot straightforwardly
use toric code decoders in the color code setting; rather,

some careful modifications are needed [22, 25]. Moreover,
decoding strategies are typically designed and analyzed
for simplistic noise models, which may not truly reflect
errors present in the experimental setup. Importantly,
the best approach to scalable quantum devices is still un-
der debate and dominant sources of noise are yet to be
thoroughly explored. Thus, it would be very desirable to
develop decoding methods without full characterization
of quantum hardware, which are adaptable to various
quantum codes and realistic noise models.

threshold of the triangular color code

noise
decoder

neural projection optimal

bit-/phase-flip ∼ 19.0% ∼ 16.2% 20.6(4)% [40]
depolarizing ∼ 17.4% ∼ 12.6% 18.9(3)% [41]
NN-depolarizing ∼ 15.0% ∼ 13.5% ?

threshold of the triangular toric code with a twist

noise
decoder

neural MWPM optimal

bit-/phase-flip ∼ 19.6% ∼ 19.2% 20.68(4)% [24]
depolarizing ∼ 18.0% ∼ 15.3% 18.9(3)% [41]
NN-depolarizing ∼ 16.7% ∼ 14.2% ?

TABLE I. The error-correction threshold for neural decoders
compared with standard decoding methods based on the
Minimum-Weight Perfect Matching algorithm and the pro-
jection decoder. Neural decoders were applied to the 2D toric
and color codes of distance up to d = 11. Numerical sim-
ulations were performed for various noise models, including
the nearest-neighbor spatially-correlated depolarizing noise,
assuming perfect syndrome measurements. To fairly compare
different noise models, threshold error rates are expressed in
terms of the effective error rate peff , see Section II D. The
quoted optimal threshold values were found for models with-
out boundaries.

The main goal of our work is to systematically explore
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recently proposed decoding strategies based on artificial
neural networks [42–46]. We consider a two-step decod-
ing strategy. In step 1, for any given configuration of un-
satisfied stabilizers we deterministically find a Pauli op-
erator, which returns corrupted encoded information into
the code space. After this step, all stabilizers are satisfied
but a non-trivial logical operator may have been imple-
mented by the attempted Pauli correction combined with
the initial error. In step 2, we use a feedforward neural
network to determine what (if any) non-trivial logical op-
erator is likely to be introduced in step 1, so that we can
account for it in the recovery. We emphasize that step
2 is a classification problem, particularly well-suited for
machine learning.

In our work, we convincingly demonstrate the versatil-
ity of neural decoders by applying them to two families
of codes, the two-dimensional (2D) triangular color and
toric codes, under different noise models with realistic
features, such as spatially-correlated errors. We observe
that, irrespective of the noise model, neural-network de-
coding outperforms standard strategies, including the
Minimum-Weight Perfect Matching algorithm [24] and
the projection decoder [25]; see Table I. In particular, the
neural decoder threshold for the 2D color code is higher
than the threshold of any other efficient decoder known
up to date which, in turn, implies that the performance of
the color code can be close to the toric code. It is worth
emphasizing that only the training datasets, but not the
explicit knowledge of the noise or the geometric struc-
ture of the codes, were needed to train neural decoders.
We also analyze how computational costs of training and
neural network parameters scale with the growing code
distance. Our work indicates that, due to its adaptability,
neural-network decoding is a promising error-correction
method which can be used in a wide range of future small-
scale quantum devices, especially if the dominant sources
of errors are not well characterized.

Our work differs from previous machine learning based
decoders [42–46] as it emphasizes first and foremost
adaptability. The distinguishing aspects of our work are
as follows: (i) We specifically pick two code families with
the same 2D qubit layout that differ in their choice of lo-
cal stabilizer generators; (ii) We systematically study dif-
ferent noise models, including spatially correlated noise;
(iii) We consider code distances larger than previously
studied, which allows us to reliably determine the per-
formance and error correction thresholds of neural de-
coders. It should be noted that we optimize the size of
the networks for decoder performance rather than com-
putational efficiency. However, we believe that by using
more sophisticated neural network models, such as convo-
lutional neural networks, efficient neural decoders could
be achieved for larger codes [47].

The organization of the article is as follows. We start
by discussing quantum error correction from the perspec-
tive of topological codes, the triangular color code and
the toric code with a twist. In particular, in Section II C
we explain how to construct the excitation graph, which

leads to a simple algorithm for step 1 of the neural de-
coder. In Section II D we introduce a new notion of the
effective error rate, which allows us to easily compare
threshold error rates for different noise models. Then,
we describe neural decoding and its performance under
different noise models, including the spatially-correlated
depolarizing noise. In Section III B we explain how the
training of deep neural networks is accomplished by suc-
cessively increasing the error rate used to generate the
training dataset. This training method likely has signifi-
cant impact, since it may lead to faster convergence and
better final performance of neural networks for quantum
error-correction applications. We conclude the article
with the discussion of our results and their implications
for future neural decoders used in practice.

II. ERROR CORRECTION WITH
TOPOLOGICAL CODES

A. Topological stabilizer codes

Stabilizer codes [8] are an important class of quan-
tum error-correcting codes [7] specified by a stabilizer
group S. The stabilizer group S is an Abelian subgroup
of the Pauli group generated by n-qubit Pauli operators
P1 ⊗ . . .⊗ Pn, where Pi ∈ {I,X, Y, Z} and −I 6∈ S. The
logical information is encoded into the codespace, which
is the (+1)-eigenspace of all the elements of S. Logical
Pauli operators L ∈ L are identified with elements of the
normalizer S of the stabilizer group S in the Pauli group.
An operator L which implements a non-trivial logical
Pauli operator L 6= I can be chosen to be a product of
Pauli operators, which commute with all the elements in
the stabilizer group but do not belong to S. The weight
of the minimal-support non-trivial logical Pauli operator
is the distance of the code.

Physical qubits of the stabilizer code can be affected
by noise, which can take encoded logical information out-
side of the codespace. No information about the original
encoded state is revealed by measuring stabilizer gener-
ators. Rather, one effectively projects errors present in
the system onto some Pauli operators and subsequently
gains some knowledge about them. The set of unsatisfied
stabilizers returning a −1 measurement outcome is called
a syndrome. The syndrome serves as a classical input to
a decoding algorithm, which allows one to find a recov-
ery Pauli operator bringing the corrupted encoded state
back to the codespace. For a special class of stabilizer
codes, the CSS codes [48], whose stabilizer generators
are products of either X- or Z-type Pauli operators, one
can independently correct Z- and X-type errors using
the appropriate X- and Z-type syndrome.

Topological stabilizer codes [11–15] are a family of
stabilizer codes exhibiting particularly good resilience
to noise. The distinctive feature of topological stabi-
lizer codes is the geometric locality of their generators.
Namely, physical qubits can be arranged to form a lattice
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FIG. 1. (a) 2D triangular color code on a patch of the
hexagonal lattice with 3-valent vertices and 3-colorable faces.
Every face supports both X- and Z-stabilizers. The string of
Pauli Z operators (yellow ⊕) implements a logical Z operator,
while the string of Pauli X operators (orange ⊗) implements
a logical X. Both operators connect all three boundaries.
(b) 2D triangular toric code with a twist. Dark and white
faces support X- and Z-stabilizers, respectively. Depending
on the coloring of mixed dark/white faces along a 1D defect
line (dashed line), stabilizers are mixed products of Pauli X
and Z. Red and blue strings depict two equivalent represen-
tatives of a logical Z operator. Upon crossing the defect line,
the string changes from X-type (blue ⊗) to Z-type (blue ⊕).

in such a way that every stabilizer generator is supported
on a constant number of qubits within some geometri-
cally local region1. At the same time, no logical Pauli op-
erator can be implemented via a unitary acting on phys-
ical qubits in any local region. By enlarging the system
size, one increases the distance and error-correction capa-
bilities of the topological code without changing the re-
quired complexity of local stabilizer measurements. This
is in stark contrast with other quantum codes, such as
concatenated codes [49], whose stabilizer weight neces-

1 The topological codes studied here are also within a more general
class of stabilizer codes, low-density parity check (LDPC) codes.
These codes have stabilizers whose support is bounded on a con-
stant number of qubits, and each qubit is only in the support
of few stabilizers. However, for general LDPC codes, there are
no further constraints on the support of the stabilizers, such as
geometric locality, rendering their decoding more difficult.

sarily increases with the distance and thus makes those
constructions experimentally more challenging.

Two well-known examples of topological stabilizer
codes are the toric and color codes. The triangular
color code is defined on a two-dimensional lattice with a
boundary, whose vertices are 3-valent 2 and faces f ∈ F
are 3-colorable; see Fig. 1(a). Qubits are identified with
vertices. The color code is a CSS code and its stabilizer
group is defined as follows

SCC = 〈Xf , Zf |f ∈ F 〉, (1)

where Xf and Zf are Pauli X and Z operators supported
on all qubits belonging to a face f ∈ F . Accordingly, X-
and Z-type errors can be independently corrected using
the Z- and X-type syndrome.

The triangular toric code with a twist [50] can be de-
fined for the same arrangement of physical qubits as the
triangular color code. Its lattice can be obtained from
the color code lattice by keeping all the vertices, adding
extra edges and modifying some faces; see Fig. 1(b). The
resulting lattice is 4-valent 3 and the faces are 2-colorable,
except for the “mixed” faces along a 1D defect line. The
color of the face indicates the type of the stabilizer gen-
erator identified with that face. Namely, dark f ∈ FD
and white g ∈ FW faces support X-type Xf and Z-type
Zg stabilizers. Depending on the coloring of mixed faces
h ∈ FM , stabilizers Sh are defined to be mixed products
of both Pauli X and Z operators. We emphasize that the
choice of mixed stabilizer generators along the defect line
is needed for the stabilizers Sh to commute with Xf and
Zg for all f ∈ FD, g ∈ FW , h ∈ FM . The full stabilizer
group is thus given by

STC = 〈Xf , Zg, Sh|f ∈ FD, g ∈ FW , h ∈ FM 〉. (2)

We remark that due to mixed stabilizer generators, the
toric code with a twist is not a CSS code and thus one
should not decode X and Z errors independently. As we
will explain in Sec. II C, the excitation graph of the toric
code with a twist does not split into two disconnected
components for X and Z errors; see Fig. 3.

Logical Pauli operators of the 2D topological stabilizer
codes can be thought of as deformable non-contractible
1D string-like operators. In the case of the triangular
color and toric codes, logical operators connect certain
boundaries as depicted in Fig. 1.

B. Quasiparticle excitations

It is illustrative to establish a connection between
quantum error-correcting codes and quantum many-body

2 All the vertices are 3-valent except for three corner vertices on
the boundary.

3 All the vertices are 4-valent except for three corner vertices on
the boundary and one vertex in the bulk, which corresponds to
a twist, i.e., the end of the defect line.
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systems described by commuting Hamiltonians. For a
topological stabilizer code with the stabilizer group S we
can define a commuting stabilizer Hamiltonian H(S) to
be a sum of stabilizer generators of S with a negative
sign. In particular, for the color code and the toric code
with a twist we choose their stabilizer Hamiltonians to
be

HCC = −
∑
f∈F

Xf −
∑
f∈F

Zf , (3)

HTC = −
∑
f∈FD

Xf −
∑
g∈FW

Zg −
∑
h∈FM

Sh. (4)

Note that all the terms in the stabilizer Hamiltonian
H(S) are mutually commuting, thus any eigenstate of
H(S) has to be an eigenstate of every single term. Since
eigenstates of stabilizer generators can only have ±1
eigenvalues, we conclude that the code space defined as
the (+1)-eigenspace of all the elements of S coincides
with the ground space of H(S). We will highlight some
of the important properties of the Hamiltonian formula-
tion of stabilizer codes in this subsection, see Ref. [51] for
an extended description.

We can think of errors affecting information encoded
in the topological stabilizer code as operators creating
localized quasiparticle excitations in the related quan-
tum many-body system. Namely, consider any Pauli er-
ror which anticommutes with some stabilizer generators.
The error moves the encoded logical state outside the
code space or, equivalently, the ground state outside the
ground space. The resulting state is excited in the sense
that its energy is larger than the ground space energy by
the amount proportional to the number of violated stabi-
lizer Hamiltonian terms. The unsatisfied stabilizer terms
can be identified with quasiparticle excitations [11, 52–
54]. Depending on whether the unsatisfied stabilizer is
of X- or Z-type, we will call the excitation electric eK
or magnetic mK . 4 The subscript K indicates the color
of the face supporting the excitation. In particular, for
the toric code we can only have eD and mW , whereas the
color code excitations can be supported on faces of any
color, i.e., eK and mK for any K ∈ {R,G,B}.

In order to understand excitation configurations aris-
ing from any Pauli errors, it suffices to know what excita-
tions geometrically local Pauli operators can create and
how to combine them. We now discuss these constraints,
also known as fusion rules for topological stabilizer codes.
In case of the toric code, a single-qubit Pauli X or Z er-
ror on the qubit in the bulk of the system violates two
Z- or X-type stabilizers on neighboring faces and thus
necessarily creates two excitations of the same type, ei-
ther magnetic or electric; see Fig. 2(b). If two errors with

4 For the mixed stabilizers along the defect line, there is ambiguity
in associating the type of the excitation since the electric and
magnetic excitations are exchanged upon crossing the defect line.
Thus, we would refer to those excitations without specifying their
type.

non-overlapping support independently create the same
excitation on a face f ∈ F , then the product of both er-
rors will not create any excitation at that location. For
an illustration, let us consider two single-qubit errors Xi

and Xj on qubits i and j belonging to the edge {i, j}.
Each error independently creates a magnetic excitation
on the face f containing the edge {i, j}; however, the
combined error XiXj results in no excitation on f . The
above discussion can be summarized by the toric code
fusion rules

eD × eD = mW ×mW = 1, (5)

which express the fact that in the bulk excitations of the
same type can only be created (by geometrically local
operators) or annihilated in pairs. Note that 1 denotes
no excitation.

The fusion rules for the color code are slightly more
complicated than for the toric code. Namely, we have

eK × eK = mK ×mK = 1, (6)

eR × eG × eB = mR ×mG ×mB = 1, (7)

where K ∈ {R,G,B}. Similarly as for the toric code,
combining two excitations of the same type and color
results in no excitation. However, in the bulk of the color
code it is also possible to create (by a local operator) or
annihilate a triple of excitations. We can see that by
considering a single-qubit Pauli X or Z error. It violates
three Z- or X-type stabilizers on neighboring red, green
and blue faces and thus creates a triple of magnetic or
electric excitations; see Fig. 2(a).

The topological stabilizer codes we consider are defined
on lattices with boundaries. By acting with a local Pauli
operator on the qubits near the boundary of the system
it is possible to create or annihilate a single magnetic or
electric excitation. We emphasize that the type of the
boundary determines the type of the allowed excitation
[55]. For the triangular toric code, there are two types
of boundaries, rough or smooth [12], and a single elec-
tric (respectively magnetic) excitation can only be cre-
ated on the rough (smooth) boundary; see Fig. 2(b). In
case of the triangular color code, there are three types
of boundaries, red, green or blue [13], and single electric
and magnetic excitations of given color can be created
on the boundary of the matching color; see Fig. 2(a).

Once a quasiparticle excitation is created, it can always
be moved in the bulk of the 2D topological stabilizer code
by applying an appropriate 1D string-like Pauli operator
[56, 57]. Given fusion rules, the excitation movement
can be understood as a process of creating pairs of exci-
tations along some path and fusing them together with
the initial one, which results in the excitation changing
its position. When the quasiparticle excitation moves its
type does not change, unless it passes through a defect
line. A defect line, also known as a transparent domain
wall5 [58–60], is a 1D object, along which the stabilizer

5 A transparent domain wall can be thought of as an automor-
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FIG. 2. Quasiparticle excitations in the 2D triangular color
and toric codes. (a) A single X-error (white ⊗1) in the bulk of
the color code leads to three unsatisfied Z-stabilizers on neigh-
boring faces, thus creates a triple of magnetic excitations (red,
green and blue �1). A string of X-errors (white ⊗2) creates
a pair of magnetic excitations (red �2). A string of Z-errors
(white ⊕3) terminating at the blue boundary creates a single
electric excitation (blue �3). (b) A single Z-error (white ⊕1)
in the bulk of the toric code with a twist leads to two unsat-
isfied X-stabilizers on neighboring dark faces, thus creates a
pair of electric excitations (gray �1). A single X-error (white
⊗2) on the rough boundary creates a single magnetic excita-
tion (white �2). A pair of electric (gray �3) and magnetic
(white �3) excitations can be created by a string of errors
(white ⊗3 and ⊗3) across the defect line (dashed line).

generators are appropriately modified. In case of the tri-
angular toric code with a twist, one chooses stabilizers
on faces intersected by the defect line to be mixed prod-
ucts of Pauli X and Z operators; see Fig. 1(b). When an
electric excitation eD crosses the defect line, it becomes a
magnetic excitation mW , and vice versa, eD ↔ mW . We
emphasize that logical Pauli operators for the triangular
color and toric codes can be implemented by creating a
single excitation on one of the boundaries and transport-
ing it to the other boundary, where it can annihilate; see

phism of the excitation labels which preserves the braiding and
fusion rules of the quasiparticle excitations.

Fig. 1 for examples of logical operators.
We remark that there are only two possible types of

defect lines in the toric code, one of which is trivial. How-
ever, in case of the color code, there are 72 different defect
lines [61]. We encourage readers to explore [62] for an il-
luminating discussion of all the possible boundaries and
defect lines in the 2D color code.

C. Decoding of topological codes as a classification
problem

As we already discussed, generic errors affect the en-
coded information by moving it outside the code space,
which results in some stabilizers being unsatisfied. A
classical algorithm which takes the syndrome as an input
and finds an appropriate recovery restoring all stabiliz-
ers to yield +1 measurement outcome is called a decoder.
For stabilizer codes the recovery operator is a Pauli oper-
ator. We say that decoding is successful if no non-trivial
logical operator has been implemented by the recovery
combined with the error.

We can view decoding as a process of removing quasi-
particle excitations from the system and returning the
state to the ground space of the stabilizer Hamiltonian.
To facilitate the discussion, we introduce an excitation
graph G = (V,E), which captures how the excitations
can be moved (and eventually removed) within the lat-
tice of the topological stabilizer code, see for example
Refs. [34, 63]. The vertices V of the excitation graph
G correspond to the (possible locations of) quasiparticle
excitations. Note that there is one vertex for every sin-
gle electric, as well as for magnetic excitation. We also
include in V one special vertex w, called the boundary
vertex. Two different vertices v1, v2 ∈ V \ {w} are con-
nected by an edge {v1, v2} ∈ E if there is a Pauli operator
Pv1,v2 with geometrically local support which can move
an excitation from v1 to v2 without creating any other
excitations. We say that v ∈ V \ {w} and the boundary
vertex w are connected by an edge {v, w} if one can lo-
cally create a single excitation at v. In case of the toric
and color codes, we restrict our attention to local opera-
tors, which are supported on respectively one or at most
two neighboring qubits. We identify the edges {v1, v2} in
E with the local operators Pv1,v2 . We illustrate how to
construct the excitation graph in Fig. 3.

We consider a very simple deterministic procedure, the
excitation removal algorithm, which efficiently eliminates
quasiparticle excitations from the toric and color codes.
The excitation removal algorithm builds on the idea of
error decomposition [30, 64] and resembles the simple de-
coder in Ref. [45]. Let Q be some Pauli error operator,
which results in the excitation configuration U ⊂ V \{w}
in the system. The input of the algorithm is U , but not
Q. For every excitation u ∈ U we find the shortest path
(v1, v2, . . . , vn) in the excitation graph G between u = v1

and the boundary vertex w = vn, where vi ∈ V and
{vi, vi+1} ∈ E. We define an operator Pu to be a prod-
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(a)

(b)

FIG. 3. Construction of the excitation graph G = (V,E) for
(a) the color code and (b) the toric code with a twist. For
every face f of the topological code lattice we add a vertex vf
to the set of vertices V of G. We also include the boundary
vertex w (enclosing circle) in V . (a) It is not possible to
move a single excitation in the bulk (without creating more
excitations) by applying a single-qubit operator. However,
since a two-qubit operator XX or ZZ can move an excitation
between two nearby faces f and g of the same color, we add
an edge {vf , vg} to E. (b) A single-qubit Pauli X or Z error
can move an excitation between two neighboring faces f and
g of the same color, thus we add an edge {vf , vg} between vf
and vg to the set of edges E of G. We connect a vertex vf with
the boundary vertex w if one can create a single excitation
on f by (a) a single- or two-qubit operators and (b) a single-
qubit operator. Note that in (a) we depict only a part of
the excitation graph corresponding to electric excitations and
Z-type errors, since the part for magnetic excitations and X-
type errors is identical.

uct of local Pauli operators Pvi,vi+1 identified with the
edges {vi, vi+1} along the path (v1, v2, . . . , vn), namely

Pu =
∏n−1
i=1 Pvi,vi+1

. The operator Pu moves an exci-
tation from u to the boundary where it is annihilated.
As the output of the algorithm we choose an operator
RU =

∏
u∈U Pu. We remark that the operator RU re-

turns the state to the ground space since it removes all

the excitations, and thus RUQ ∈ L. At the same time,
the output RU combined with the initial error Q likely
implements some non-trivial logical operator. Thus, the
excitation removal algorithm viewed as a decoder would
perform rather poorly.

Algorithm 1: excitation removal

Require: the excitation graph G = (V,E)

Input: positions U ⊂ V \ {w} of excitations

Output: Pauli operator RU removing all excitations

initialize RU ← I

for every u ∈ U :

1. find the shortest path (v1, . . . , vn) in G between
u = v1 and the boundary vertex w = vn

2. find an operator Pu = Pv1,v2 · . . . · Pvn−1,vn

corresponding to the path (v1, . . . , vn)

3. RU ← RUPu

return RU

Now we explain how to reduce the decoding problem to
a classification problem by using the excitation removal
algorithm. The task of classification is to assign labels,
typically from some small set, to the elements of some
high-dimensional dataset. In the decoding problem, we
know positions U ⊂ V \ {w} of the excitations and want
to find a recovery operator removing all the excitations
and implementing the trivial logical operator. We do not
know, however, the Pauli operator Q resulting in the ex-
citation configuration U . Using the excitation removal
algorithm we easily find the operator RU . Clearly, we
would be able to successfully decode if we chose RUL as
a recovery operator, where L is any operator implement-
ing the same logical operator L ∈ L as RUQ. Unfortu-
nately, there are many different error operators creating
the same configuration of excitations U . We can split
all those error operators Q into equivalence classes iden-
tified with different logical operators L implemented by
RUQ. Then, for any given excitation configuration U
we can find the most probable equivalence class of errors
creating U . What we would like to achieve is to label
U by a logical operator L, which is implemented by the
output RU of the excitation removal algorithm and any
operator Q from the most probable class of errors. Such a
problem is well-suited for machine learning techniques, in
particular for artificial neural networks. We defer further
discussion of the classification problem to Section III A,
where we explain it in the context of neural-network de-
coding.

D. Noise models and thresholds

In order to test versatility of neural decoders, we nu-
merically simulate their performance for various noise
models. In particular, we consider the following three
Pauli error models specified by just one parameter, the
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error rate p.

• Bit-/phase-flip noise: every qubit is independently
affected by an X error with probability p, and by
a Z error with the same probability p.

• Depolarizing noise: every qubit is independently
affected with probability p by an error, which is
uniformly chosen from three errors X, Y and Z.

• NN-depolarizing noise: the spatially-correlated de-
polarizing noise on nearest-neighbor qubits, i.e.,
every pair of qubits i and j sharing an edge in
the lattice is independently affected with proba-
bility p by a non-trivial error, which is uniformly
chosen from 15 errors of the form PiPj , where
Pi, Pj ∈ {I,X, Y, Z} and PiPj 6= II.

We emphasize that one should not necessarily think of
the aforementioned noise models as accurately describing
errors in the experimental setup. Rather, we choose those
models since they are easy to specify and simulate but, at
the same time, they also capture realistic noise features,
such as spatial correlations of errors, which any good de-
coder should be able to handle [26]. In addition, in the
current proposed circuit-based models for syndrome mea-
surement [65] correlated errors across neighboring qubits
would naturally arise.

We would like to easily compare the bit-/phase-flip,
depolarizing and NN-depolarizing noise models. How-
ever, the error rate p has a different meaning depending
on the considered model. This motivates us to intro-
duce a new figure of merit for Pauli error models, the
effective error rate peff . For any physical qubit we de-
fine the effective error rate peff to be the probability of
any non-trivial error affecting that qubit. Note that in
the scenarios we consider the effective error rate is the
same for all the qubits (except for the ones identified with
the corner vertices and the twist for the NN-depolarizing
noise). Thus, we can unambiguously talk about the ef-
fective error rate without specifying which qubit we are
referring to. For the depolarizing noise we simply have
peff = p, whereas for the the bit-/phase-flip noise we find
peff = 1 − (1 − p)(1 − p) = 2p − p2. In case of the NN-
depolarizing noise, the effective error rate depends on the
local structure of the lattice. Namely, if n denotes the
number of nearest neighbors for some qubit, then the ef-

fective error rate p
(n)
eff for that qubit can be recursively

calculated as

p
(n)
eff = p

(n−1)
eff

(
1− 4

15
p

)
+
(

1− p(n−1)
eff

) 12

15
p (8)

=
4

5
np+O(p2), (9)

where we use p
(0)
eff = 0 and denote by o(p2) the second-

order corrections in p. In particular, for the analyzed

color and toric code lattices we respectively have p
(3)
eff

and p
(4)
eff .

In order to assess the performance of a decoder for
the given family of codes with growing code distance d
and specified noise model, we use the quantity called the
error-correction threshold. The error-correction thresh-
old is defined as the largest pth, such that for all ef-
fective error rates peff < pth the probability of unsuc-
cessful decoding pfail(peff , d) for the code with distance
d goes to zero in the limit of infinite code distance,
limd→∞ pfail(peff , d) = 0. Note that in the definition of
the threshold we assume perfect stabilizer measurements.
We remark that one typically estimates the threshold pth

by plotting the decoder failure probability pfail(peff , d)
as a function of the effective error rate peff for different
code distances d and identifying their crossing point; see
Figs. 6 and 7.

III. PERFORMANCE OF NEURAL-NETWORK
DECODING

A. Neural decoders

We have already seen in Section II C that the task of
successful decoding can be deterministically reduced to
the following problem: for any configuration of excita-
tions U ⊂ V \ {w} created by some unknown Pauli oper-
ator Q assign a label L from the set of logical operators
L, such that L is the logical operator implemented by
RUQ, where RU is the output of the excitation removal
algorithm with U as the input. We approach this clas-
sification problem by using one of the leading machine
learning techniques, feedforward neural networks [66, 67].
The input layer encodes the configuration of excitations
U . Then, there are Hd hidden layers, each containing Nd
nodes. Nodes from layer l + 1 are fully connected with
nodes from the preceding layer l. For each code of dis-
tance d, we therefore train a neural network consisting of
Hd+2 layers; see Fig. 4. Every node ν in layer l+1 eval-
uates an activation function σ(wν ·ol+ bν) on the output
ol of nodes from layer l, where wν and bν are the weights
and biases associated with the node ν. We choose the
rectified linear unit activation function σ(x) = max(0, x).
The output layer uses the softmax classifier, which con-
verts an output vector to a discrete probability distribu-
tion describing the likelihood of different logical operators
L ∈ L being implemented by RUQ.

We are now ready to describe neural-network decod-
ing for topological stabilizer codes. The neural decoder
is an algorithm which returns a recovery operator R for
any configuration of excitations U ⊂ V \ {w} created by
some unknown operator Q. We emphasize that error op-
erators Q are chosen according to some a priori unknown
noise model. The neural decoders we consider consist of
the following two steps. In step 1, we use a simple de-
terministic procedure, the excitation removal algorithm,
to find a Pauli operator RU , which removes quasiparti-
cle excitations by moving them to the boundaries of the
system, where they disappear. In step 2, we use a neural
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FIG. 4. A feedforward neural network with Hd = 3 hidden
layers can be viewed as an acyclic directed graph. Each hid-
den layer has the same number of nodes Nd. Nodes from layer
l + 1 are fully connected with nodes from the preceding layer
l. The input layer encodes all the initial excitation configura-
tion U ⊂ V \ {w}. The output layer encodes the likelihood of
each logical operator L ∈ {I,X, Y , Z} assigned to the input
configuration U .

network to guess what are the most likely errors Q re-
sulting in U and which logical operator L is subsequently
implemented by RUQ, as was done in Ref. [45]. As the
output, the operator RUL is returned, where L is any
operator implementing the logical operator L. We em-
phasize that the neural decoder always returns a valid
recovery operator but decoding succeeds if and only if
the neural network correctly identifies the logical opera-
tor L implemented by RUQ. The output of the trained
neural network is found by multiplying matrices of size
determined by the number of nodes in each layer, and
thus the decoding complexity will scale polynomially 6

with the number of nodes. We see that in step 1 we im-
plicitly make use of the excitation graph, which contains
information about the topological code lattice and the
fusion rules. However, no information about the topolog-
ical code is required to train the neural network, which
is used in step 2.

6 One may increase the computation speed by sparsifying the ma-
trices of the final trained network. Another possibility of reduc-
ing the complexity of decoding is to consider convolutional neural
networks, which may have much fewer nodes and links than the
networks we consider.

Algorithm 2: neural decoder

Require: excitation removal algorithm, trained neural
network

Input: locations of excitations U ⊂ V \ {w} created
by some unknown operator Q

Output: recovery operator R

using the excitation removal algorithm with U as the
input, find an operator RU

using the neural network with U as the input, find the
logical operator L implemented by RUQ

R← RUL, where L is any operator implementing L

return R

We emphasize that the details of step 1 in the neural
decoder do not matter as long as the returned operator
RU is found in an efficient deterministic way. We choose
the excitation removal algorithm because it is simple and
has an intuitive explanation — it removes all the excita-
tions by moving them to the boundaries of the system.
We point out that we could use a similar version of the
neural decoder for other topological codes (or even codes
without geometric structure), as long as we knew how
to efficiently find the operator RU . For instance, if we
considered the toric or color codes on a torus, with or
without boundaries, then we could always find a simple
removal procedure which deterministically moves all ex-
citations of the same color to the same location in the
bulk or on the boundary, where they are guaranteed to
disappear. Such a procedure can then be used to create
the training dataset for the neural network. We remark
that step 1 becomes more challenging for codes without
string-like operators, such as the cubic code [15].

B. Training deep neural networks

Before a neural network can be used for decoding, it
needs to be trained. We do this via supervised learning,
where the network is trained on a dataset of preclassified
samples. Sample Pauli errors are generated using Monte
Carlo sampling according to the appropriate probability
distribution determined by the noise model. For each
generated error configuration Q, we determine the cor-
responding syndrome, i.e., the excitation configuration
U ⊂ V \ {w}, which is the input to the neural network.
Then, using the excitation removal algorithm, we find the
Pauli operator RU , and check what logical operator L is
implemented by RUQ. This allows us to label each input
excitation configuration U with the corresponding clas-
sification label L we want the neural network to output.
We remark that the testing samples used to numerically
estimate thresholds are created in the same way as the
training samples.

Training the neural network can now be framed as a
minimization problem. The network parameters, i.e., the
weights and biases, are optimized to minimize classifica-
tion error on the training dataset. We use the categor-
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ical cross entropy cost function C to quantify the error,
namely

C =
∑
i

~yi · log
(
~f(~xi)

)
+(~1− ~yi) · log

(
~1− ~f(~xi)

)
, (10)

where ~yi is the classification bit-string for the input ~xi,
~f(~xi) is the likelihood vector returned by the neural net-

work, and ~1 = (1, . . . , 1). Importantly, this cost function
is differentiable, which allows us to use backpropagation
to efficiently compute the gradient of the cost function
with respect to network parameters in a single backwards
pass of the network. The minimization is performed us-
ing Adam optimization [68], a highly effective variant
of gradient descent, whose learning parameters do not
need to be fine-tuned for good performance. In practice,
we find that Adam optimization converges significantly
faster than standard gradient descent, with the effects
becoming more pronounced for larger networks.

Instead of computing the cost function on the entire
training set, which becomes computationally expensive
for very large datasets, we use mini-batch optimization.
This is a standard technique, which estimates the cost
function on individual batches, i.e., small subsets of the
training datasets; see e.g. [69]. We define a training step
as one round of backpropagation and a subsequent net-
work parameter update, using the cost function C in
Eq. (10) estimated on a single batch. The batch size
controls the accuracy of this estimate and needs to be
manually adjusted.

Until recently, training deep neural networks had been
next to impossible. However, innovations by the machine
learning community have made it easy to train extremely
deep networks. We too were unable to successfully train
networks with more than three hidden layers, until we im-
plemented two of these improvements: He initialization
and batch normalization. He initialization [70] ensures
that learning is efficient for the rectified linear unit acti-
vation function, whereas batch normalization [71] stabi-
lizes the input distribution for each layer. Batch normal-
ization makes it possible to train deeper networks and
improves performance on shallower three-layer networks.

One disadvantage of larger networks is the potential
for overfitting. This occurs when free parameters of a
model learn features in the training dataset which do
not generalize to other samples from the target distribu-
tion, causing performance to suffer as shown in Fig 5(a).
Overfitting can be countered by reducing the size of the
network or by increasing the size of the training dataset.
In our application, training data can be generated with
little computational overhead. As such, we avoid the
problem of overfitting by generating training samples in
parallel with training. Each training step uses a new
batch of data, ensuring the model generalizes perfectly
to other samples from the same distribution as evidence
from Fig. 5(b).

The training set is generated according to the noise
model and some chosen error rates. Once the neural net-
work is trained, it should be able to successfully label
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FIG. 5. Performance of the network as a function of training
steps. (a) Finite training set of 5× 107 samples is repeatedly
iterated over. The network begins overfitting as performance
on a validation dataset begins decreasing. (b) Training sam-
ples are generated in parallel and no overfitting occurs even
after many training steps.

syndromes for error configurations generated at various
error rates below the threshold. In particular, any fine-
tuning of the network for specific error rates is not de-
sired. Since the error syndromes for higher error rates are
in general more challenging to classify, it would be desir-
able to train the neural network mainly on configurations
corresponding to error rates close to the threshold. How-
ever, during training of the networks for higher-distance
codes and correlated noise models the optimization al-
gorithm is very likely to get stuck in local minima if
we start training on the high error-rate dataset directly.
This problem is manifested in the network not effectively
learning the noise features and the resulting performance
showing only small improvements over random guessing.
A solution we propose is to first pre-train the network on
a lower error-rate dataset, and only then use the training
data corresponding to the near-threshold error rate. We
find that as the code size increases, then one benefits from
increasing the size of the dataset from the low error-rate
regime (as well as the number of considered different low
error rates) used in the pre-training stage; further study
of the optimal pre-training would be valuable. We believe
that this is an important observation for any future im-
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plementations of neural networks for decoding quantum
error-correcting codes. We also speculate that a simi-
lar strategy might help to speed up training of neural
networks for experimental systems. Namely, we imagine
pretraining the neural network for some simple theoret-
ical error models at low error rates, and then using the
experimental data for further training.

training cost for the triangular color code

noise
parameters

d Hd Nd Bd Td

bit-/phase-flip 5 3 100 103 3× 104

7 5 200 5× 103 5× 104

9 7 400 104 1.1× 105

11 9 800 104 2.1× 105

depolarizing 5 3 200 104 1.1× 105

7 5 600 104 3× 105

9 7 1400 104 4.1× 105

NN-depolarizing 5 3 200 5× 103 6× 104

7 5 400 104 1.1× 105

9 7 800 104 2.1× 105

11 9 1600 104 4.1× 105

training cost for the triangular toric code with a twist

noise
parameters

d Hd Nd Bd Td

bit-/phase-flip 5 3 100 103 3× 104

7 5 200 104 6× 104

9 7 400 104 1.6× 105

11 9 800 104 2.6× 105

depolarizing 5 3 200 5× 103 3× 104

7 5 600 104 1.1× 105

9 7 1200 104 2.1× 105

NN-depolarizing 5 3 200 5× 103 6× 104

7 5 400 104 1.1× 105

9 7 800 104 2.1× 105

11 9 1600 104 4.1× 105

TABLE II. Optimal neural-network hyperparameters of the
neural decoder for the triangular color code (top) and the
triangular toric code with a twist (bottom) with distance d
under different noise models. Hyperparameters varied are:
the number of hidden layers Hd, the number of nodes in the
hidden layer Nd, the batch size Bd and the number of training
steps Td. The total number of training samples seen during
training is BdTd.

C. Selecting neural-network hyperparameters

In addition to network parameters, there are also hy-
perparameters which cannot be trained via backpropa-
gation. These include the number of hidden layers Hd,
the number of nodes per hidden layer Nd, the size of
each batch Bd, and the total number of training steps
Td. We optimize these parameters using a grid search
based approach; see Table II for the optimal values we
find. A heuristic rule for determining the size of a well-

performing neural network for the code with distance d
is to use Hd = d− 2 hidden layers and Nd ∝ 2d/2 nodes
per layer. Whether or not this exponential trend con-
tinues for larger code sizes is an open question. Note
that the runtime of the decoder, once the trained net-
work is found, scales polynomially with the number of
nodes and layers, and as such exponential scaling would
be limiting. However, we considered fully-connected neu-
ral networks here when more sparsely connected graphs
along the lines of the RG decoding, such as convolutional
neural networks [72, 73], may allow to push to higher dis-
tances more easily.

We notice that very large training sets are needed for
optimal performance. In order to save on computational
memory, we choose to generate training samples in paral-
lel to training, since it can be done efficiently. Note that
with this strategy the number of different samples seen
during training is BdTd. We observe that the training
time appears to scale exponentially with code distance,
approximately doubling as the distance increases by two.

We find evidence that there is some minimal batch size
below which the gradient estimates are too noisy for the
network to converge to a solution that outperforms ran-
dom guessing. However, increasing the batch size beyond
that minimal value does not improve the final network
performance. Rather, it reduces the number of training
steps needed for convergence, but with diminishing re-
turns. The batch size we choose is primarily optimized
to minimize the training time.

D. Thresholds of neural decoders

In order to assess the versatility of neural-network de-
coding, we qualitatively study its performance for the
toric and color codes under three different noise models:
bit-/phase-flip, depolarizing and NN-depolarizing. First,
we train a neural network for every code with the code
distance up to d = 11. The optimized hyperparameters
of considered neural networks are presented in Table II.
Then, we numerically find the decoder failure probabil-
ity pfail(peff , d) of the neural decoder as a function of the
effective error rate peff . By plotting the decoder failure
probability pfail(peff , d) for different code distances d and
finding their intersection we numerically establish the ex-
istence of non-zero threshold for the neural decoder and
estimate its value; see Figs. 6 and 7.

We benchmark the performance of the neural decoder
against the leading efficient decoders of the toric and
color code. In particular, we analyze the standard de-
coders based on the Minimum-Weight Perfect Matching
algorithm and the projection decoder. In our implemen-
tation, we use the Blossom V algorithm provided by Kol-
mogorov [74].

We report that the neural decoder for the color code
significantly outperforms the projection decoder for all
considered noise models, even for the simplest bit-/phase-
flip noise model. The neural decoder threshold values we
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FIG. 6. The failure probability pfail(peff , d) of (a)-(c) the neural decoder and (d)-(f) the projection decoder for the 2D triangular
color code of distance d as a function of the effective error rate peff . We consider three noise models: (a),(d) bit-/phase-flip,
(b),(e) depolarizing and (c),(f) NN-depolarizing. We report that the neural decoder outperforms the projection decoder for all
types of noise, exhibiting threshold near the optimal one. Threshold values are given by light grey lines.
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FIG. 7. The failure probability pfail(peff , d) of the (a)-(c) the neural decoder and (d)-(f) the Minimum-Weight Perfect
Matching (MWPM) decoder for the 2D triangular toric code with a twist of distance d as a function of the effective error rate
peff . We consider three noise models: (a),(d) bit-/phase-flip, (b),(e) depolarizing and (c),(f) NN-depolarizing. We report that
the neural decoder significantly outperforms the Minimum-Weight Perfect Matching decoder for noise models with correlated
errors and exhibits threshold near the optimal one. Threshold values are given by light grey lines.

find approach the upper bounds from the maximum like-
lihood decoder. The neural decoder for the toric code
shows comparable performance as the Minimum-Weight

Perfect Matching decoder for the bit-/phase-flip noise,
however offers noticeable improvements for correlated
noise models. We remark that optimal decoding thresh-
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olds for topological codes can be found via statistical-
mechanical mapping; see [24, 40, 41, 75]. The threshold
values we find are expressed in terms of the effective er-
ror rate peff and are listed in Table I. It should be noted
that for the correlated noise model we considered, the
optimal threshold has yet to be established. However
a recent extension of the ideas of statistical-mechanical
mappings could be used to study the nearest-neighbor
noise model [76].

As with all learning models, it is important to address
the possibility of overfitting. We know that the test
samples are different (with high probability) from the
training samples, since they are randomly chosen from a
set that scales exponentially with the number of physical
qubits. We remark that the required training set seems
to scale exponentially with the code distance, however it
constitutes a vanishing fraction of all possible syndrome
configurations. Moreover, the classification accuracy on
the test samples is the same as the final training accuracy.
Thus, we can conclude that the neural network learns to
correctly label syndromes typical for the studied noise
models, resulting in well-performing neural decoders.

IV. DISCUSSIONS

We have conclusively demonstrated that neural-
network decoding for topological stabilizer codes is very
versatile and clearly outperforms leading efficient de-
coders. We focused on the triangular color code and the
toric code a twist, whose physical qubits are arranged
in the same way but their stabilizer groups are differ-
ent. We studied the performance of neural-network de-
coding for different noise models, including the spatially-
correlated depolarizing noise. In particular, we numeri-
cally established the existence of non-zero threshold and
found significant improvements of the color code thresh-
old over the previously reported values; see Table I and
Figs. 6 and 7. This result indicates that the relatively
low threshold of the color code, which was considered to
be one of its main drawbacks, can be easily increased,
making quantum computation with the color code more
appealing than initially perceived [77–79].

We emphasize that the neural network does not ex-
plicitly use any information about the topological code
or the noise model. The neural network is trained on
very simple data usually available from the experiment,
which includes the information about the measured syn-
drome and whether the simple deterministic decoding,
i.e., the excitation removal algorithm, succeeds. Impor-
tantly, this raw data can not only be used to train the
neural network, but also to characterize the quantum de-
vice [80]. Without assuming any simplistic noise mod-
els the neural network efficiently detects the actual error
patterns in the system and subsequently “learns” about
the correlations between observed errors. This provides
a heuristic explanation why neural decoding is currently
the best strategy to decode the color code, since the cor-

relations between errors in the color code are difficult to
account for in standard approaches [81]. Using neural
networks simplifies and speeds up the process of design-
ing good decoders, which is rather challenging due to its
heavy dependency on the choice of the quantum error-
correcting code as well as the noise model.

Our results show that neural-network decoding can be
successfully used for quantum error-correction protocols,
especially in the systems affected by a priori unknown
noise with correlated errors. Moreover, the neural de-
coder yields a higher threshold for decoding the trian-
gular color code than any previously known method. In
particular, it shows similar threshold behavior for the
2D color and toric codes, suggesting that the color code
may be more competitive than previously thought with
the surface-code architecture. However, in order to solid-
ify such a claim, neural decoders addressing circuit-level
noise should be considered. We note that the networks
studied in this work were not optimized for efficiency,
but rather served as a proof of principle that decoding
with such networks is possible and yield good perfor-
mance regardless of the noise type. Moreover, we stress
that neural-network decoding already provides an enor-
mous data-compression advantage over methods based
on (partial) look-up tables, even for small-distance quan-
tum codes. However, an important question of scalability
has to be addressed if neural decoders are ever going to
be used for practical purposes on future fault-tolerant
universal quantum devices. One possible approach to
scalable neural networks is to reduce the connectivity be-
tween the layers by exploiting the information about the
topological code lattice and geometric locality of stabi-
lizer generators. We imagine incorporating convolutional
neural networks as well as some renormalization ideas in
the future scalable neural decoders. Such an idea was
recently studied in a follow-up work in the context of
the toric code [47]. Also, a fully-fledged neural decoder
should account for the possibility of faulty stabilizer mea-
surements [82–84]. We do not perceive any fundamental
reasons why neural-network decoding, possibly based on
recurrent neural networks, would not work for the circuit
level noise model. However, in that setting the training
dataset as well as the size of the required neural network
grow substantially, making the training process compu-
tationally very challenging.
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